1
|
Donker VJJ, Meijer HJA, Slot W, Vissink A, Raghoebar GM. One-Piece Monolithic Zirconia Single Tooth Implant-Supported Restorations in the Posterior Region: A 1-Year Prospective Case Series Study. Clin Oral Implants Res 2024. [PMID: 39711513 DOI: 10.1111/clr.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE To assess the clinical, radiographic and patient-reported outcome measures, and the success of screw-retained one-piece monolithic zirconia implant-supported restorations in the posterior region during a 1-year follow-up. METHODS In a prospective case series, 50 single molar sites in the posterior region of 41 patients with a minimum age of 18 years and sufficient bone volume for placing an implant (≥ 8 mm) and space for an anatomical restoration were included. Following prosthetic-driven digital three-dimensional treatment planning, a tissue-level implant with an internal connection was inserted during a one-stage surgical procedure. Three months later, the implant was restored with a screw-retained one-piece monolithic zirconia restoration. Clinical, radiographic and patient-reported outcome measures, and restoration survival and success according to the modified USPHS criteria were assessed at baseline prior to and immediately after implant placement, and 1-month and 1-year after definitive restoration placement. RESULTS At the 1-year follow-up, 1 implant had been lost (implant survival rate 98%) hence, 49 restorations were evaluated. The restoration survival and success rates were 100% and 98%, respectively. Plaque, calculus, bleeding and suppuration on probing and peri-implant inflammation were absent in most cases. The mean (SD) marginal bone level change between implant placement and the 1-year follow-up was -0.14 mm (0.27) on the mesial and -0.25 mm (0.31) on the distal side. The mean (SD) patient satisfaction (0-10) was 9.2 (0.8) at the 1-year evaluation. CONCLUSION One-piece monolithic zirconia implant-supported restorations exhibited favourable outcomes over 1 year in situ. TRIAL REGISTRATION Registered in the National Trial Register (NL9059).
Collapse
Affiliation(s)
- Vincent J J Donker
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henny J A Meijer
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Restorative Dentistry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim Slot
- Department of Restorative Dentistry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerry M Raghoebar
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Dworan J, Aellos F, Grauer JA, Fabbri G, Harder KG, Boccardo S, Cuevas PL, Dawid I, Vicini M, Helms JA. Dynamics of Mucosal Integration of Machined versus Anodized Titanium Implants. J Dent Res 2024:220345241296506. [PMID: 39704472 DOI: 10.1177/00220345241296506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
The long-term success of dental implants depends on the ability of soft tissues to form a protective barrier, limiting pathogen infiltration into peri-implant tissues. Here, we investigated the impact of an anodized surface modification on mucosal integration. Scanning electron microscopy and surface chemistry characterization were carried out on miniaturized implants. Following placement in fresh extraction sockets of mice, peri-implant tissues were examined at 4 time points. Histology along with quantitative immunohistochemistry for Keratin14, Vimentin, Laminin5, and CD68 were carried out on postimplant day (PID) 3 to assess early events in soft-tissue repair; on PID7, when peri-implant epithelialization was complete; at PID14, when osseointegration was complete; and at PID28, when soft-tissue maturation was nearing completion. In all cases, an intact junctional epithelium served as a reference. These analyses supported 3 conclusions: first, maturation of the peri-implant epithelium (PIE) is a protracted process, consistent with clinical observations. Second, maturation of the soft tissue-implant interface is slower than maturation of the bone-implant interface. Third, there is a benefit, albeit transient, to soft-tissue maturation around an anodized implant surface. Given its prolonged time course, strategies to improve and/or accelerate PIE maturation are likely to have significant clinical benefit.
Collapse
Affiliation(s)
- J Dworan
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Medical University of Vienna, Department of Anatomy, Center for Anatomy and Cell Biology, Vienna, Austria
| | - F Aellos
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - J A Grauer
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - G Fabbri
- Private practice, Ban Mancini Fabbri Dental Clinic, Cattolica, Italy
| | - K G Harder
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - S Boccardo
- Nobel Biocare Services AG, Kloten, Switzerland
| | - P L Cuevas
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - I Dawid
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - M Vicini
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - J A Helms
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Strauss FJ, Park JY, Lee JS, Schiavon L, Smirani R, Hitz S, Chantler JGM, Mattheos N, Jung R, Bosshardt D, Cha JK, Thoma D. Wide Restorative Emergence Angle Increases Marginal Bone Loss and Impairs Integrity of the Junctional Epithelium of the Implant Supracrestal Complex: A Preclinical Study. J Clin Periodontol 2024; 51:1677-1687. [PMID: 39385502 DOI: 10.1111/jcpe.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
AIM To assess the influence of the emergence angle on marginal bone loss (MBL) and supracrestal soft tissue around dental implants. MATERIALS AND METHODS In six mongrel dogs, the mandibular premolars and molars were extracted. After 3 months of healing, four dental implants were placed in each hemimandible. The implants were randomly allocated to receive one of four customized healing abutments, each with a different value of the restorative emergence angle: 20°, 40°, 60° or 80°. Intra-oral radiographs were taken after placing the healing abutments and at 6, 9, 16 and 24 weeks of follow-up. Then, micro-CT and undecalcified histology and synchrotron were performed. MBL over time was analysed with generalized estimating equations (GEEs) and adjusted for baseline soft-tissue thickness. RESULTS From implant placement to 24 weeks, GEE modelling showed that the MBL at mesial and distal sites consistently increased over time, indicating MBL in all groups (p < 0.001). The model indicated that MBL varied significantly across the different restorative angles (angle effect, p < 0.001), with 80° showing the greatest bone loss. Micro-CT, histology and synchrotron confirmed the corresponding trends and showed that wide restorative angles (60° and 80°) impaired the integrity of the junctional epithelium of the supracrestal tissue. CONCLUSIONS A wide restorative angle increases MBL and impairs the integrity of the junctional epithelium of the implant supracrestal complex.
Collapse
Affiliation(s)
- Franz J Strauss
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
- Faculty of Health Sciences, Universidad Autonoma de Chile, Santiago, Chile
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Lucia Schiavon
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
- Department of Neurosciences, Dentistry Section, University of Padova, Padua, Italy
| | - Rawen Smirani
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
- Univ. Bordeaux, INSERM, Bordeaux, France
- CHU de Bordeaux, Service de Médecine Bucco-Dentaire, Bordeaux, France
| | - Sonja Hitz
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Jennifer G M Chantler
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
- Private Practice, Perth, Western Australia, Australia
| | - Nikos Mattheos
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ronald Jung
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
| | - Dieter Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Daniel Thoma
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zürich, Switzerland
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
4
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
5
|
Khurana S, Li Y, Kesterke M, Liu X, Zandinejad A. Comparative evaluation of human oral fibroblast proliferation on 3D-printed zirconia and silicon nitride as new ceramic materials for implant abutment. J Prosthodont 2024. [PMID: 39558124 DOI: 10.1111/jopr.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
PURPOSE Cell adhesion and subsequent proliferation on material surfaces depend on the physical and chemical characteristics of the material. There is a lack of literature on human gingival fibroblast proliferation on comparatively newer additively manufactured materials like silicon nitride. This study focused on the physical characteristics of the materials with the aim to compare the adhesion and proliferation of human gingival fibroblasts on additively manufactured silicon nitride (AMSN) with additively manufactured zirconia, conventional milled titanium (MTi), and milled zirconia. MATERIALS AND METHODS Surface roughness and water contact angle were measured by profilometer and goniometer, respectively. CCK-8 assay was done to assess the cell growth at 24 h (day 1), 48 h (day 2), and 72 h (day 3) in the same well. The morphologies of fibroblasts after cell attachment and proliferation were evaluated using scanning electron microscopy (SEM) after 72 h. RESULTS At the end of 24 h (day 1) additively manufactured zirconia showed the best proliferation among the experimental groups, which was around 50% of the positive control group proliferation. There was no statistically significant difference among the experimental groups. At 48 h (day 2) and 72 h (day 3), a loss of cell growth was seen in almost all the experimental group wells. A positive cell proliferation on the AMSN was observed on day 3. CONCLUSION Comparable cell proliferation was observed in the experimental groups. No conclusive correlation could be drawn between cell proliferation and surface roughness and water contact angle values in the experimental groups.
Collapse
Affiliation(s)
- Saumya Khurana
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Yingzi Li
- Chemical and Biomedical Engineering Department, University of Missouri, Columbia, Missouri, USA
| | - Matthew Kesterke
- Department of Orthodontics, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Xiaohua Liu
- Chemical and Biomedical Engineering Department, University of Missouri, Columbia, Missouri, USA
| | - Amirali Zandinejad
- Implant Dentistry Associates of Arlington, Arlington, Texas, USA
- Department of Prosthodontics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Lu EMC. Three-Dimensional Organotypic Systems for Modelling and Understanding Molecular Regulation of Oral Dentogingival Tissues. Int J Mol Sci 2024; 25:11552. [PMID: 39519105 PMCID: PMC11546252 DOI: 10.3390/ijms252111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Three-dimensional organotypic models benefit from the ability to mimic physiological cell-cell or cell-matrix interactions and therefore offer superior models for studying pathological or physiological conditions compared to 2D cultures. Organotypic models consisting of keratinocytes supported by fibroblasts embedded in collagen matrices have been utilised for the study of oral conditions. However, the provision of a suitable model for investigating the pathogenesis of periodontitis has been more challenging. Part of the complexity relates to the different regional epithelial specificities and connective tissue phenotypes. Recently, it was confirmed, using 3D organotypic models, that distinct fibroblast populations were implicated in the provision of specific inductive and directive influences on the overlying epithelia. This paper presents the organotypic model of the dentogingival junction (DGJ) constructed to demonstrate the differential fibroblast influences on the maintenance of regionally specific epithelial phenotypes. Therefore, the review aims are (1) to provide the biological basis underlying 3D organotypic cultures and (2) to comprehensively detail the experimental protocol for the construction of the organotypic cultures and the unique setup for the DGJ model. The latter is the first organotypic culture model used for the reconstruction of the DGJ and is recommended as a useful tool for future periodontal research.
Collapse
Affiliation(s)
- Emily Ming-Chieh Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
7
|
Zhao T, Liu X, Chu Z, Zhao J, Jiang D, Dong X, Lu Z, Yeung KWK, Liu X, Ouyang L. L-arginine loading porous PEEK promotes percutaneous tissue repair through macrophage orchestration. Bioact Mater 2024; 40:19-33. [PMID: 38882001 PMCID: PMC11179658 DOI: 10.1016/j.bioactmat.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/18/2024] Open
Abstract
Infection and poor tissue repair are the key causes of percutaneous implantation failure. However, there is a lack of effective strategies to cope with due to its high requirements of sterilization, soft tissue healing, and osseointegration. In this work, l-arginine (L-Arg) was loaded onto a sulfonated polyetheretherketone (PEEK) surface to solve this issue. Under the infection condition, nitric oxide (NO) and reactive oxygen species (ROS) are produced through catalyzing L-Arg by inducible nitric oxide synthase (iNOS) and thus play a role in bacteria sterilization. Under the tissue repair condition, L-Arg is catalyzed to ornithine by Arginase-1 (Arg-1), which promotes the proliferation and collagen secretion of L929 and rBMSCs. Notably, L-Arg loading samples could polarize macrophages to M1 and M2 in infection and tissue repair conditions, respectively. The results in vivo show that the L-Arg loading samples could enhance infected soft tissue sealing and bone regeneration. In summary, L-Arg loading sulfonated PEEK could polarize macrophage through metabolic reprogramming, providing multi-functions of antibacterial abilities, soft tissue repair, and bone regeneration, which gives a new idea to design percutaneous implantation materials.
Collapse
Affiliation(s)
- Tong Zhao
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xingdan Liu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhuangzhuang Chu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Dongya Jiang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ziyi Lu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Kelvin W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology, Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Liping Ouyang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
8
|
Matsuura T, Komatsu K, Suzumura T, Stavrou S, Juanatas ML, Park W, Ogawa T. Enhanced functionality and migration of human gingival fibroblasts on vacuum ultraviolet light-treated titanium: An implication for mitigating cellular stress to improve peri-implant cellular reaction. J Prosthodont Res 2024:JPR_D_24_00071. [PMID: 39198200 DOI: 10.2186/jpr.jpr_d_24_00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
PURPOSE The maintenance of peri-implant health relies significantly on the integrity of the peri-implant seal, particularly vulnerable at the interface between implant abutment and soft tissue. Early healing stages around implants involve cellular exposure to oxidative stress. This study aimed to investigate whether vacuum ultraviolet (VUV)-treated titanium augments the growth and functionality of human gingival fibroblasts while mitigating cellular stress. METHODS Machined titanium plates underwent treatment with 172 nm VUV light for one minute, with untreated plates as controls. Human gingival fibroblasts were cultured on treated and untreated plates, and their behavior, growth, and functionality were assessed. Functionally impaired fibroblasts, treated with hydrogen peroxide, were also cultured on these titanium plates, and plate-to-plate transmigration ability was evaluated. RESULTS Fibroblasts on VUV-treated titanium exhibited a 50% reduction in intracellular reactive oxygen species production compared to controls. Additionally, glutathione, an antioxidant, remained undepleted in cells on VUV-treated titanium. Furthermore, the expression levels of inflammatory cytokines IL-1β and IL-8 decreased by 40-60% on VUV-treated titanium. Consequently, fibroblast attachment and proliferation doubled on VUV-treated titanium compared to those in the controls, leading to enhanced cell retention. Plate-to-plate transmigration assays demonstrated that fibroblasts migrated twice as far on VUV-treated surfaces compared to those in the controls. In particular, the transmigration ability, impaired in functionally impaired fibroblasts on the controls, was preserved on VUV-treated titanium. CONCLUSIONS VUV-treated titanium promotes the growth, function, and migration of human gingival fibroblasts by reducing cellular stress and enhancing antioxidative capacity. Notably, the transmigration ability significantly improved on VUV-treated titanium.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Periodontology, Graduated School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Stella Stavrou
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Mary Lou Juanatas
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
9
|
Yin D, Zhan S, Liu Y, Yan L, Shi B, Wang X, Zhang S. Experimental models for peri-implant diseases: a narrative review. Clin Oral Investig 2024; 28:378. [PMID: 38884808 DOI: 10.1007/s00784-024-05755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES Peri-implant diseases, being the most common implant-related complications, significantly impact the normal functioning and longevity of implants. Experimental models play a crucial role in discovering potential therapeutic approaches and elucidating the mechanisms of disease progression in peri-implant diseases. This narrative review comprehensively examines animal models and common modeling methods employed in peri-implant disease research and innovatively summarizes the in vitro models of peri-implant diseases. MATERIALS AND METHODS Articles published between 2015 and 2023 were retrieved from PubMed/Medline, Web of Science, and Embase. All studies focusing on experimental models of peri-implant diseases were included and carefully evaluated. RESULTS Various experimental models of peri-implantitis have different applications and advantages. The dog model is currently the most widely utilized animal model in peri-implant disease research, while rodent models have unique advantages in gene knockout and systemic disease induction. In vitro models of peri-implant diseases are also continuously evolving to meet different experimental purposes. CONCLUSIONS The utilization of experimental models helps simplify experiments, save time and resources, and promote advances in peri-implant disease research. Animal models have been proven valuable in the early stages of drug development, while technological advancements have brought about more predictive and relevant in vitro models. CLINICAL RELEVANCE This review provides clear and comprehensive model selection strategies for researchers in the field of peri-implant diseases, thereby enhancing understanding of disease pathogenesis and providing possibilities for developing new treatment strategies.
Collapse
Affiliation(s)
- Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030032, Shanxi, China
| | - Suying Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanbo Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030032, Shanxi, China
| | - Lichao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Binmian Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Bellon B, Pippenger B, Stähli A, Degen M, Parisi L. Cementum and enamel surface mimicry influences soft tissue cell behavior. J Periodontal Res 2024. [PMID: 38828886 DOI: 10.1111/jre.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
AIMS To test whether titanium surface roughness disparity might be used to specifically guide the behavior of gingiva fibroblasts and keratinocytes, thereby improving the quality of soft tissue (ST) integration around abutments. METHODS Titanium discs resembling the roughness of enamel (M) or cementum (MA) were created with normal or increased hydrophilicity and used as substrates for human fibroblasts and keratinocytes. Adhesion and proliferation assays were performed to assess cell-type specific responses upon encountering the different surfaces. Additionally, immunofluorescence and qPCR analyses were performed to study more in depth the behavior of fibroblasts and keratinocytes on MA and M surfaces, respectively. RESULTS While enamel-like M surfaces supported adhesion, growth and a normal differentiation potential of keratinocytes, cementum-emulating MA surfaces specifically impaired the growth of keratinocytes. Vice versa, MA surfaces sustained regular adhesion and proliferation of fibroblasts. Yet, a more intimate adhesion between fibroblasts and titanium was achieved by an increased hydrophilicity of MA surfaces, which was associated with an increased expression of elastin. CONCLUSION The optimal titanium implant abutment might be achieved by a bimodal roughness design, mimicking the roughness of enamel (M) and cementum with increased hydrophilicity (hMA), respectively. These surfaces can selectively elicit cell responses favoring proper ST barrier by impairing epithelial downgrowth and promoting firm adhesion of fibroblasts.
Collapse
Affiliation(s)
- Benjamin Bellon
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
- Preclinical and Translational Research, Institut Straumann AG, Basel, Switzerland
- Clinic of Conservative and Preventive Dentistry, University of Zurich, Zürich, Switzerland
| | - Benjamin Pippenger
- Preclinical and Translational Research, Institut Straumann AG, Basel, Switzerland
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Safaei M, Mohammadi H, Beddu S, Mozaffari HR, Rezaei R, Sharifi R, Moradpoor H, Fallahnia N, Ebadi M, Md Jamil MS, Md Zain AR, Yusop MR. Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant. Int J Nanomedicine 2024; 19:4835-4856. [PMID: 38828200 PMCID: PMC11141758 DOI: 10.2147/ijn.s461549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.
Collapse
Affiliation(s)
- Mohsen Safaei
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Biomaterials Research Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, 14300, Malaysia
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Salmia Beddu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Rezaei
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Fallahnia
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Ebadi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Mohd Suzeren Md Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
12
|
Han J, Leeuwenburgh SCG, Jansen JA, Yang F, van Oirschot BAJA. Biological Processes in Gingival Tissue Integration Around Dental Implants. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38526353 DOI: 10.1089/ten.teb.2023.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Affiliation(s)
- Jing Han
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Bart A J A van Oirschot
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Guo Y, Shao Z, Wang W, Liu H, Zhao W, Wang L, Bao C. Periodontium-Mimicking, Multifunctional Biomass-Based Hydrogel Promotes Full-Course Socket Healing. Biomacromolecules 2024; 25:1246-1261. [PMID: 38305191 DOI: 10.1021/acs.biomac.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Preserving stable tooth-periodontal tissue integration is vital for maintaining alveolar bone stability under physiological conditions. However, tooth extraction compromises this integration and impedes socket healing. Therefore, it becomes crucial to provide early stage coverage of the socket to promote optimal healing. Drawing inspiration from the periodontium, we have developed a quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel, termed the quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel (QDL hydrogel). Through blue-light-induced cross-linking, the QDL hydrogel serves as a comprehensive wound dressing for socket healing. The QDL hydrogel exhibits remarkable efficacy in closing irregular tooth extraction wounds. Its favorable mechanical properties, flexible formability, and strong adhesion are achieved through modifications of chitosan and sodium alginate derived from biomass sources. Moreover, the QDL hydrogel demonstrates a superior hemostatic ability, facilitating swift blood clot formation. Additionally, the inherent antibacterial properties of the QDL hydrogel effectively inhibit oral microorganisms. Furthermore, the QDL hydrogel promotes angiogenesis, which facilitates the nutrient supply for subsequent tissue regeneration. Notably, the hydrogel accelerates socket healing by upregulating the expression of genes associated with wound healing. In conclusion, the periodontium-mimicking multifunctional hydrogel exhibits significant potential as a clinical tooth extraction wound dressing.
Collapse
Affiliation(s)
- Yuxuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Zijian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huaze Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Liao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Hu Z, Rong X, Liu X. E7-Conjugated Bio-Inspired Microspheres as a Biological Barrier for Guided Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58136-58150. [PMID: 38063848 PMCID: PMC10862379 DOI: 10.1021/acsami.3c12213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Guided tissue regeneration (GTR), which is based on creating a physical barrier to prevent the downgrowth of epithelial and connective tissues into the defect site, has been widely used in clinical practice for periodontal regeneration for many years. However, its outcomes remain variable due to highly specific indications, the demand for proficient surgical skills, and frequent occurrence of complications. In this study, we developed a new GTR biomaterial that acts as a biological barrier for epithelial cells and fibroblasts while also serving as a scaffold for bone marrow-derived mesenchymal stem cells (BMSCs) and periodontal ligament stem cells (PDLSCs). This innovative GTR biomaterial is bioinspired injectable microspheres that are self-assembled from nanofibers, and their surfaces are conjugated with E7, a short peptide that selectively promotes BMSC and PDLSC adhesion but inhibits the attachment and spreading of epithelial cells and gingival fibroblasts. The selective affinity afforded by E7 on the surfaces of the nanofibrous microspheres facilitated the colonization of BMSCs in the periodontal defect, thereby substantially improving functional periodontal regeneration, as evidenced by enhanced new bone formation, reduced root exposure, and diminished attachment loss. The remarkable superiority of the bioinspired microspheres over conventional GTR materials in promoting periodontal regeneration underscores the potential of this innovative approach to enhance the efficacy of functional periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zhiai Hu
- Department
of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas 75246, United States
| | - Xin Rong
- Department
of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas 75246, United States
| | - Xiaohua Liu
- Department
of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas 75246, United States
- Chemical
and Biomedical Engineering Department, University
of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Li Y, Zhang J, Cai W, Wang C, Yu Z, Jiang Z, Lai K, Wang Y, Yang G. CREB3L2 Regulates Hemidesmosome Formation during Epithelial Sealing. J Dent Res 2023; 102:1199-1209. [PMID: 37555472 DOI: 10.1177/00220345231176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
The long-term success rate of dental implants can be improved by establishing a favorable biological sealing with a high-quality epithelial attachment. The application of mesenchymal stem cells (MSCs) holds promise for facilitating the soft tissue integration around implants, but the molecular mechanism is still unclear and the general application of MSC sheet for soft tissue integration is also relatively unexplored. We found that gingival tissue-derived MSC (GMSC) sheet treatment significantly promoted the expression of hemidesmosome (HD)-related genes and proteins in gingival epithelial cells (GECs). The formation of HDs played a key role in strengthening peri-implant epithelium (PIE) sealing. Further, high-throughput transcriptome sequencing showed that GMSC sheet significantly upregulated the PI3K/AKT pathway, confirming that cell adhesion and HD expression in GECs were regulated by GMSC sheet. We observed that the expression of transcription factor CREB3L2 in GECs was downregulated. After treatment with PI3K pathway inhibitor LY294002, CREB3L2 messenger RNA and protein expression levels were upregulated. Further experiments showed that overexpression or knockdown of CREB3L2 could significantly inhibit or promote HD-related genes and proteins, respectively. We confirmed that CREB3L2 was a transcription factor downstream of the PI3K/AKT pathway and participated in the formation of HDs regulated by GMSC sheet. Finally, through the establishment of early implant placement model in rats, we clarified the molecular function of CREB3L2 in PIE sealing as a mechanical transmission molecule in GECs. The application of GMSC sheet-implant complex could enhance the formation of HDs at the implant-PIE interface and decrease the penetration distance of horseradish peroxidase between the implant and PIE. Meanwhile, GMSC sheet reduced the length of CREB3L2 protein expression on PIE. These findings elucidate the potential function and molecular mechanism of MSC sheet regulating the epithelial sealing around implants, providing new insights and ideas for the application of stem cell therapy in regenerative medicine.
Collapse
Affiliation(s)
- Y Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - J Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - W Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - C Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Z Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Z Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - K Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Y Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - G Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioact Mater 2023; 27:348-361. [PMID: 37180640 PMCID: PMC10172871 DOI: 10.1016/j.bioactmat.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
Collapse
Affiliation(s)
- Kai Tang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meng-Lin Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| | - Fu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
17
|
Huang C, Miao X, Li J, Liang J, Xu J, Wu Z. Promoted Abutment-Soft Tissue Integration Around Self-Glazed Zirconia Surfaces with Nanotopography Fabricated by Additive 3D Gel Deposition. Int J Nanomedicine 2023; 18:3141-3155. [PMID: 37333732 PMCID: PMC10276606 DOI: 10.2147/ijn.s404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving the biological sealing around dental abutments could promote the long-term success of implants. Although titanium abutments have a wide range of clinical applications, they incur esthetic risks due to their color, especially in the esthetic zone. Currently, zirconia has been applied as an esthetic alternative material for implant abutments; however, zirconia is purported to be an inert biomaterial. How to improve the biological activities of zirconia has thus become a popular research topic. In this study, we presented a novel self-glazed zirconia (SZ) surface with nanotopography fabricated by additive 3D gel deposition and investigated its soft tissue integration capability compared to that of clinically used titanium and polished conventional zirconia surfaces. Materials and Methods Three groups of disc samples were prepared for in vitro study and the three groups of abutment samples were prepared for in vivo study. The surface topography, roughness, wettability and chemical composition of the samples were examined. Moreover, we analyzed the effect of the three groups of samples on protein adsorption and on the biological behavior of human gingival keratinocytes (HGKs) and human gingival fibroblasts (HGFs). Furthermore, we conducted an in vivo study in which the bilateral mandibular anterior teeth of rabbits were extracted and replaced with implants and corresponding abutments. Results The surface of SZ showed a unique nanotopography with nm range roughness and a greater ability to absorb protein. The promoted expression of adhesion molecules in both HGKs and HGFs was observed on the SZ surface compared to the surfaces of Ti and PCZ, while the cell viability and proliferation of HGKs and the number of HGFs adhesion were not significant among all groups. In vivo results showed that the SZ abutment formed strong biological sealing at the abutment-soft tissue interface and exhibited markedly more hemidesmosomes when observed with a transmission electron microscope. Conclusion These results demonstrated that the novel SZ surface with nanotopography promoted soft tissue integration, suggesting its promising application as a zirconia surface for the dental abutment.
Collapse
Affiliation(s)
- Chaoyi Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Xinchao Miao
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jiang Li
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jieyi Liang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Junxi Xu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
18
|
Zhou M, Wang J, Wang J, Yu J, Huang S, Wang T, Wei H. Construction of a Localized and Long-Acting CCN2 Delivery System on Percutaneous Ti Implant Surfaces for Enhanced Soft-Tissue Integration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22864-22875. [PMID: 37133335 DOI: 10.1021/acsami.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soft-tissue integration (STI) plays an essential role in the long-term success of percutaneous Ti implants since it acts as a biological barrier that protects the soft and hard tissue around implants. Surface modification of Ti implants with drug-release properties to achieve soft-tissue regeneration has been proven to be effective in STI. However, the short-acting effect caused by the uncontrolled drug release of the topical delivery system limits long-term STI enhancement. Herein, a long-acting protein delivery system for Ti implants that involved micro-arc oxidation of Ti surfaces (MAO-Ti) and localized immobilization of cellular communication network factor 2 (CCN2) bearing mesoporous silica nanoparticles (MSNs) on MAO-Ti was prepared, namely, CCN2@MSNs-Ti. The CCN2 release study of CCN2@MSNs-Ti demonstrated a sustained-release profile for 21 days, which was able to maintain long-term stable STI. In addition, in vitro cell behavior evaluation results indicated that CCN2@MSNs-Ti could promote the STI-related biological response of human dermal fibroblasts via the FAK-MAPK pathway. More importantly, the system could effectively enhance STI after 4 weeks and proinflammatory factors in the soft tissue decreased significantly in a rat model of implantation. These results denote that CCN2@MSNs-Ti showed an appealing application prospect for enhanced STI around transcutaneous Ti implants, which would ultimately result in an increased success rate of percutaneous Ti implants.
Collapse
Affiliation(s)
- Minghao Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jia Wang
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Jingwei Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Shitou Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710129, Shaanxi, P. R. China
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| |
Collapse
|
19
|
Hermans F, Hemeryck L, Bueds C, Torres Pereiro M, Hasevoets S, Kobayashi H, Lambrechts D, Lambrichts I, Bronckaers A, Vankelecom H. Organoids from mouse molar and incisor as new tools to study tooth-specific biology and development. Stem Cell Reports 2023; 18:1166-1181. [PMID: 37084723 DOI: 10.1016/j.stemcr.2023.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Organoid models provide powerful tools to study tissue biology and development in a dish. Presently, organoids have not yet been developed from mouse tooth. Here, we established tooth organoids (TOs) from early-postnatal mouse molar and incisor, which are long-term expandable, express dental epithelium stem cell (DESC) markers, and recapitulate key properties of the dental epithelium in a tooth-type-specific manner. TOs display in vitro differentiation capacity toward ameloblast-resembling cells, even more pronounced in assembloids in which dental mesenchymal (pulp) stem cells are combined with the organoid DESCs. Single-cell transcriptomics supports this developmental potential and reveals co-differentiation into junctional epithelium- and odontoblast-/cementoblast-like cells in the assembloids. Finally, TOs survive and show ameloblast-resembling differentiation also in vivo. The developed organoid models provide new tools to study mouse tooth-type-specific biology and development and gain deeper molecular and functional insights that may eventually help to achieve future human biological tooth repair and replacement.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Celine Bueds
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Marc Torres Pereiro
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Steffie Hasevoets
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Hiroto Kobayashi
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Steyl SK, Beck JP, Agarwal JP, Bachus KN, Rou DL, Jeyapalina S. Fluorapatite-Coated Percutaneous Devices Promote Wound Healing and Limit Epithelial Downgrowth at the Skin-Device Interface. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/2212035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A percutaneous osseointegrated device becomes deeply ingrown by endosteal bone and traverses the overlying soft tissues of the residual limb, providing a direct link to the bone-anchored artificial limb. Continuous wound healing around these devices can result in the formation of sinus tracts as “down-growing” epithelial cells are unable to recognize and adhere to the “nonbiological” implant surface. Such sinus tracts provide paths for bacterial colonization and deep infection. In order to limit adverse outcomes and provide a robust seal, it was hypothesized that by coating the titanium surface of the percutaneous post with the mineral component of dental enamel, down-growing epidermal cells might recognize the coating as “biological” and adhere to this nonliving surface. To test this hypothesis, sintered partially and fully fluoridated hydroxyapatite (HA) was chosen as coatings. Using an established surgical protocol, fluorapatite (FA), hydroxyfluorapatite (FHA), HA-coated percutaneous posts, and titanium controls were surgically placed under the dorsal skin in 20 CD hairless rats. The animals were sacrificed at four weeks, and implants and surrounding tissues were harvested and subjected to further analyses. Downgrowth and granulation tissue area data showed statistically significant reductions around the FA-coated devices. Moreover, compared to the control group, the FA- and HA-coated groups showed downregulation of mRNA for EGFr, EGF, and FGF-10. Interestingly, the FA-coated group had upregulation of TGF-α. These data suggest that FA could become an ideal coating material for preventing downgrowth, assuming the long-term stability of these coated surfaces can be verified in a clinically relevant animal model.
Collapse
|
21
|
Ikezaki S, Otsu K, Kumakami-Sakano M, Harada H. A novel junctional epithelial cell line, mHAT-JE01, derived from incisor epithelial cells. J Oral Biosci 2023; 65:47-54. [PMID: 36693475 DOI: 10.1016/j.job.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Junctional epithelium (JE) connects the tooth surface and gingival epithelium and adheres directly to the tooth enamel. JE plays an important role as a barrier preventing the invasion of exogenous bacteria and substances. However, the cellular characteristics of this epithelium have not been adequately described, because no useful in vitro experimental model exists for JE. METHODS We generated a novel JE cell line, mHAT-JE01, using naturally immortalized dental epithelium derived from incisor labial cervical cells and by selecting cells that adhered to apatite. mHAT-JE01 was characterized by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction and compared with the gingival epithelial cell line, mOE-PE01. RESULTS The mHAT-JE01 cells had a higher capacity for producing JE-specific markers than oral mucous epithelial cells. In addition, the presence of lipopolysaccharides from Porphyromonas gingivalis downregulated the expression of JE protein markers in mHAT-JE01 cells. CONCLUSIONS This cell line is stable and presents the opportunity to characterize JE efficiently, which is essential for the prevention and treatment of periodontal disease.
Collapse
Affiliation(s)
- Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan.
| |
Collapse
|
22
|
Pizarek JA, Fischer NG, Aparicio C. Immunomodulatory IL-23 receptor antagonist peptide nanocoatings for implant soft tissue healing. Dent Mater 2023; 39:204-216. [PMID: 36642687 PMCID: PMC9899321 DOI: 10.1016/j.dental.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Peri-implantitis, caused by an inflammatory response to pathogens, is the leading cause of dental implant failure. Poor soft tissue healing surrounding implants - caused by inadequate surface properties - leads to infection, inflammation, and dysregulated keratinocyte and macrophage function. One activated inflammatory response, active around peri-implantitis compared to healthy sites, is the IL-23/IL-17A cytokine axis. Implant surfaces can be synthesized with peptide nanocoatings to present immunomodulatory motifs to target peri-implant keratinocytes to control macrophage polarization and regulate inflammatory axises toward enhancing soft tissue healing. METHODS We synthesized an IL-23 receptor (IL-23R) noncompetitive antagonist peptide nanocoating using silanization and evaluated keratinocyte secretome changes and macrophage polarization (M1-like "pro-inflammatory" vs. M2-like "pro-regenerative"). RESULTS IL-23R antagonist peptide nanocoatings were successfully synthesized on titanium, to model dental implant surfaces, and compared to nonfunctional nanocoatings and non-coated titanium. IL-23R antagonist nanocoatings significantly decreased keratinocyte IL-23, and downstream IL-17A, expression compared to controls. This peptide noncompetitive antagonistic function was demonstrated under lipopolysaccharide stimulation. Large scale changes in keratinocyte secretome content, toward a pro-regenerative milieu, were observed from keratinocytes cultured on the IL-23R antagonist nanocoatings compared to controls. Conditioned medium collected from keratinocytes cultured on the IL-23R antagonist nanocoatings polarized macrophages toward a M2-like phenotype, based on increased CD163 and CD206 expression and reduced iNOS expression, compared to controls. SIGNIFICANCE Our results support development of IL-23R noncompetitive antagonist nanocoatings to reduce the pro-inflammatory IL-23/17A pathway and augment macrophage polarization toward a pro-regenerative phenotype. Immunomodulatory implant surface engineering may promote soft tissue healing and thereby reduce rates of peri-implantitis.
Collapse
Affiliation(s)
- John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, USA
| | - Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; UIC Barcelona - Universitat Internacional de Catalunya, Josep Trueta s/n, 08195 Sant Cugat del Valles, Barcelona, Spain; IBEC- Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| |
Collapse
|
23
|
Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater 2023; 157:108-123. [PMID: 36435441 DOI: 10.1016/j.actbio.2022.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The application of mesenchymal stem cell (MSC)-based therapy is expected to make a significant contribution to the improvement of epithelial sealing around implants. However, there is currently no optimal MSC delivery biomaterial for clinical application in peri-implant epithelium (PIE) integration. In this study, we show that injectable photo-cross-linkable porous gelatin methacryloyl (GelMA)/silk fibroin glycidyl methacrylate (SilMA) hydrogels encapsulating gingival tissue-derived MSCs (GMSCs) are a simple and practical approach for re-epithelization applications. The hydrogels played a prominent role in supporting the proliferation, survival, and spread of GMSCs. Moreover, it was found that GMSCs-laden Porous GelMA/SilMA hydrogels could significantly upregulate the hemidesmosomes (HDs)-related genes and proteins expression and promote M2 polarization while inhibiting M1 polarization in vitro. Based on a rat model of early implant placement, application of the MSC-loaded hydrogels could enhance the protein expression of LAMA3 and BP180 (COL17A1) at the implant-PIE interface and reduce horseradish peroxidase (HRP) penetration between the implants and PIE. Noticeably, hydrogel-based MSC therapy contributed to augmenting M2 macrophage infiltration at two time points in the gingival connective tissue around implants. These findings demonstrated that GMSCs-laden Porous GelMA/SilMA hydrogels could facilitate epithelial sealing around implants and M2-polarized macrophages and may be a novel and facile therapeutic strategy for implant-PIE integration. STATEMENT OF SIGNIFICANCE: In the case of poor integration between the implant and gingival epithelium, peri-implantitis can develop, which is one of the main causes of implant failure. While stem cell therapy has tremendous potential for addressing this issue, poor cell survival and engraftment compromise the effectiveness of the therapy. Due to the excellent modifiable and tunable properties of gelatin and silk fibroin, injectable photo-cross-linkable porous hydrogels were developed using gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SilMA) as delivery vehicles for gingiva-derived MSCs (GMSCs). Porous GelMA/SilMA not only enhanced the proliferation and viability of GMSCs but also promoted their immunomodulatory capability for favorable epithelial sealing around implants. Overall, GMSCs-seeded porous hydrogels could be promising strategies for re-epithelization treatment.
Collapse
|
24
|
Chen S, Huang Z, Visalakshan RM, Liu H, Bachhuka A, Wu Y, Dabare PRL, Luo P, Liu R, Gong Z, Xiao Y, Vasilev K, Chen Z, Chen Z. Plasma polymerized bio-interface directs fibronectin adsorption and functionalization to enhance "epithelial barrier structure" formation via FN-ITG β1-FAK-mTOR signaling cascade. Biomater Res 2022; 26:88. [PMID: 36572920 PMCID: PMC9791785 DOI: 10.1186/s40824-022-00323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transepithelial medical devices are increasing utilized in clinical practices. However, the damage of continuous natural epithelial barrier has become a major risk factor for the failure of epithelium-penetrating implants. How to increase the "epithelial barrier structures" (focal adhesions, hemidesmosomes, etc.) becomes one key research aim in overcoming this difficulty. Directly targeting the in situ "epithelial barrier structures" related proteins (such as fibronectin) absorption and functionalization can be a promising way to enhance interface-epithelial integration. METHODS Herein, we fabricated three plasma polymerized bio-interfaces possessing controllable surface chemistry. Their capacity to adsorb and functionalize fibronectin (FN) from serum protein was compared by Liquid Chromatography-Tandem Mass Spectrometry. The underlying mechanisms were revealed by molecular dynamics simulation. The response of gingival epithelial cells regarding the formation of epithelial barrier structures was tested. RESULTS Plasma polymerized surfaces successfully directed distinguished protein adsorption profiles from serum protein pool, in which plasma polymerized allylamine (ppAA) surface favored adsorbing adhesion related proteins and could promote FN absorption and functionalization via electrostatic interactions and hydrogen bonds, thus subsequently activating the ITG β1-FAK-mTOR signaling and promoting gingival epithelial cells adhesion. CONCLUSION This study offers an effective perspective to overcome the current dilemma of the inferior interface-epithelial integration by in situ protein absorption and functionalization, which may advance the development of functional transepithelial biointerfaces. Tuning the surface chemistry by plasma polymerization can control the adsorption of fibronectin and functionalize it by exposing functional protein domains. The functionalized fibronectin can bind to human gingival epithelial cell membrane integrins to activate epithelial barrier structure related signaling pathway, which eventually enhances the formation of epithelial barrier structure.
Collapse
Affiliation(s)
- Shoucheng Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuwei Huang
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | | | - Haiwen Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Akash Bachhuka
- grid.410367.70000 0001 2284 9230Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), Tarragona, 43003 Spain
| | - You Wu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Panthihage Ruvini L. Dabare
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Pu Luo
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Runheng Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuohong Gong
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Yin Xiao
- grid.1024.70000000089150953Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Australia
| | - Krasimir Vasilev
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Zhuofan Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zetao Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| |
Collapse
|
25
|
Hou M, Liu S, Yan K, Sun Z, Li S. Downregulation of Odontogenic Ameloblast-associated Protein in the Progression of Periodontal Disease Affects Cell Adhesion, Proliferation, and Migration. Arch Oral Biol 2022; 145:105588. [DOI: 10.1016/j.archoralbio.2022.105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
|
26
|
Hermans F, Bueds C, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Establishment of inclusive single-cell transcriptome atlases from mouse and human tooth as powerful resource for dental research. Front Cell Dev Biol 2022; 10:1021459. [PMID: 36299483 PMCID: PMC9590651 DOI: 10.3389/fcell.2022.1021459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell (sc) omics has become a powerful tool to unravel a tissue's cell landscape across health and disease. In recent years, sc transcriptomic interrogation has been applied to a variety of tooth tissues of both human and mouse, which has considerably advanced our fundamental understanding of tooth biology. Now, an overarching and integrated bird's-view of the human and mouse tooth sc transcriptomic landscape would be a powerful multi-faceted tool for dental research, enabling further decipherment of tooth biology and development through constantly progressing state-of-the-art bioinformatic methods as well as the exploration of novel hypothesis-driven research. To this aim, we re-assessed and integrated recently published scRNA-sequencing datasets of different dental tissue types (healthy and diseased) from human and mouse to establish inclusive tooth sc atlases, and applied the consolidated data map to explore its power. For mouse tooth, we identified novel candidate transcriptional regulators of the ameloblast lineage. Regarding human tooth, we provide support for a developmental connection, not advanced before, between specific epithelial compartments. Taken together, we established inclusive mouse and human tooth sc atlases as powerful tools to potentiate innovative research into tooth biology, development and disease. The maps are provided online in an accessible format for interactive exploration.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Celine Bueds
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Annelies Bronckaers
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
27
|
Modification of Zirconia Implant Surfaces by Nd:YAG Laser Grooves: Does It Change Cell Behavior? Biomimetics (Basel) 2022; 7:biomimetics7020049. [PMID: 35645176 PMCID: PMC9149890 DOI: 10.3390/biomimetics7020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this study was to evaluate gingival fibroblasts and human osteoblasts’ response to textured Nd:YAG laser microgrooves, with different dimensions, on zirconia implant surfaces. A total of 60 zirconia disks (8 mm in diameter and 2 mm in thickness) were produced and divided between four study groups (N = 15): three laser-textured (widths between 125.07 ± 5.29 μm and 45.36 ± 2.37 μm and depth values from 50.54 ± 2.48 μm to 23.01 ± 3.79 μm) and a control group without laser treatment. Human osteoblasts and gingival fibroblasts were cultured on these surfaces for 14 days. FEG-SEM (Field Emission Gun–Scanning Electron Microscope) images showed cellular adhesion at 24 h, with comparable morphology in all samples for both cell types. A similar cell spreading within the grooves and in the space between them was observed. Cell viability increased over time in all study groups; however, no differences were found between them. Additionally, proliferation, ALP (Alkaline phosphatase) activity, collagen type I, osteopontin and interleukin levels were not significantly different between any of the study groups for any of the cell types. Analysis of variance to compare parameters effect did not reveal statistically significant differences when comparing all groups in the different tests performed. The results obtained revealed similar cell behavior based on cell viability and differentiation on different microtopographic laser grooves, compared to a microtopography only established by sandblasting and acid-etching protocol, the reference surface treatment on zirconia dental implants.
Collapse
|