1
|
Golebiowska AA, Intravaia JT, Sathe V, Kumbar SG, Nukavarapu SP. Engineered Osteochondral Scaffolds with Bioactive Cartilage Zone for Enhanced Articular Cartilage Regeneration. Ann Biomed Eng 2024:10.1007/s10439-024-03655-1. [PMID: 39602036 DOI: 10.1007/s10439-024-03655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Despite progress, osteochondral (OC) tissue engineering strategies face limitations in terms of articular cartilage layer development and its integration with the underlying bone tissue. The main objective of this study is to develop a zonal OC scaffold with native biochemical signaling in the cartilage zone to promote articular cartilage development devoid of cells and growth factors. Herein, we report the development and in vivo assessment of a novel gradient and zonal-structured scaffold for OC defect regeneration. The scaffold system is composed of a mechanically supportive 3D-printed template containing decellularized cartilage extracellular matrix (ECM) biomaterial in the cartilage zone that possesses bioactive characteristics, such as chemotactic activity and native tissue biochemical composition. OC scaffolds with a bioactive cartilage zone were implanted in vivo in a rabbit osteochondral defect model and assessed for gross morphology, matrix deposition, cellular distribution, and overall tissue regeneration. The scaffold system supported recruitment and infiltration of host cells into the cartilage zone of the graft, which led to increased ECM deposition and physiologically relevant articular cartilage tissue formation. Semi-quantitative ICRS scoring (overall score double for OC scaffold with bioactive cartilage zone compared to PLA scaffold) further confirm the bioactive scaffold enhanced articular cartilage engineering. This strategy of designing bioactive scaffolds to promote endogenous cellular infiltration can be a much simpler and effective approach for OC tissue repair and regeneration.
Collapse
Affiliation(s)
- Aleksandra A Golebiowska
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Jonathon T Intravaia
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - Vinayak Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G Kumbar
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA.
| |
Collapse
|
2
|
Golebiowska AA, Jala VR, Nukavarapu SP. Decellularized Tissue-Induced Cellular Recruitment for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2024; 52:1835-1847. [PMID: 36952144 DOI: 10.1007/s10439-023-03182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
3
|
El-Kady AM, Mahmoud EM, Sayed M, Kamel SM, Naga SM. In-vitro and in-vivo evaluation for the bio-natural Alginate/nano-Hydroxyapatite (Alg/n-HA) injectable hydrogel for critical size bone substitution. Int J Biol Macromol 2023; 253:126618. [PMID: 37659491 DOI: 10.1016/j.ijbiomac.2023.126618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Currently, bio-natural injectable hydrogels are receiving a lot of attention due to their ability to control, adjust, and adapt to random bone defects, in addition, to their ability to mimic the composition of natural bones. From such a viewpoint, this study goal is to prepare and characterize the injectable hydrogels paste based on the natural alginate (Alg) derived from brown sea algae as a polysaccharide polymer, which coupled with nano biogenic-hydroxyapatite (n-HA) prepared from eggshells and enriched with valuable trace elements. The viscosity and mechanical properties of the paste were investigated. As well as the in-vitro study in terms of water absorption and biodegradability in the PBS, biocompatibility and the capability of the injectable Alginate/n-Hydroxyapatite (Alg/n-HA) to regenerate bone for the most suitable injectable form. The injectable hydrogel (BP -B sample) was chosen for the study as it had an appropriate setting time for injecting (13 mins), and suitable compressive strength reached 6.3 MPa. The in vivo study was also carried out including a post-surgery follow-up test of the newly formed bone (NB) in the defect area after 10 and 20 weeks using different techniques such as (SEM/EDX) and histological analysis, the density of the newly formed bone by Dual x-ray absorptiometry (DEXA), blood biochemistry and the radiology test. The results proved that the injectable hydrogels Alginate/n-Hydroxyapatite (Alg/n-HA) had an appreciated biodegradability and bioactivity, which allow the progress of angiogenesis, endochondral ossification, and osteogenesis throughout the defect area, which positively impacts the healing time and ensures the full restoration for the well-mature bone tissue that similar to the natural bone.
Collapse
Affiliation(s)
- Abeer M El-Kady
- Glass Research Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| | - E M Mahmoud
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt.
| | - M Sayed
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| | - S M Kamel
- Oral Biology Department, MSA University, Egypt
| | - S M Naga
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| |
Collapse
|
4
|
Zhu G, Zhang R, Xie Q, Li P, Wang F, Wang L, Li C. Shish-kebab structure fiber with nano and micro diameter regulate macrophage polarization for anti-inflammatory and bone differentiation. Mater Today Bio 2023; 23:100880. [PMID: 38149017 PMCID: PMC10750111 DOI: 10.1016/j.mtbio.2023.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Biopolymer grafts often have limited biocompatibility, triggering excessive inflammatory responses similar to foreign bodies. Macrophage phenotype shifts are pivotal in the inflammatory response and graft success. The effects of the morphology and physical attributes of the material itself on macrophage polarization should be the focus. In this study, we prepared electrospun fibers with diverse diameters and formed a shish-kebab (SK) structure on the material surface by solution-induced crystallization, forming electrospun fiber scaffolds with diverse pore sizes and roughness. In vitro cell culture experiments demonstrated that SK structure fibers could regulate macrophage differentiation toward M2 phenotype, and the results of in vitro simulation of in vivo tissue reconstruction by the microenvironment demonstrated that the paracrine role of M2 phenotype macrophages could promote bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts. In rats implanted with a subcutaneous SK-structured fiber scaffold, the large-pore size and low-stiffness SK fiber scaffolds demonstrated superior immune performance, less macrophage aggregation, and easier differentiation to the anti-inflammatory M2 phenotype. Large pore sizes and low-stiffness SK fiber scaffolds guide the morphological design of biological scaffolds implanted in vivo, which is expected to be an effective strategy for reducing inflammation when applied to graft materials in clinical settings.
Collapse
Affiliation(s)
- Gaowei Zhu
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Rongyan Zhang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qianyang Xie
- Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, and Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639, Zhizaoju Rd., Shanghai, 200011, China
| | - Peilun Li
- Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, and Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, No. 639, Zhizaoju Rd., Shanghai, 200011, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Gu X, Cheng H, Lu X, Li R, Ouyang X, Ma N, Zhang X. Plant-based Biomass/Polyvinyl Alcohol Gels for Flexible Sensors. Chem Asian J 2023; 18:e202300483. [PMID: 37553785 DOI: 10.1002/asia.202300483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Flexible sensors show great application potential in wearable electronics, human-computer interaction, medical health, bionic electronic skin and other fields. Compared with rigid sensors, hydrogel-based devices are more flexible and biocompatible and can easily fit the skin or be implanted into the body, making them more advantageous in the field of flexible electronics. In all designs, polyvinyl alcohol (PVA) series hydrogels exhibit high mechanical strength, excellent sensitivity and fatigue resistance, which make them promising candidates for flexible electronic sensing devices. This paper has reviewed the latest progress of PVA/plant-based biomass hydrogels in the construction of flexible sensor applications. We first briefly introduced representative plant biomass materials, including sodium alginate, phytic acid, starch, cellulose and lignin, and summarized their unique physical and chemical properties. After that, the design principles and performance indicators of hydrogel sensors are highlighted, and representative examples of PVA/plant-based biomass hydrogel applications in wearable electronics are illustrated. Finally, the future research is briefly prospected. We hope it can promote the research of novel green flexible sensors based on PVA/biomass hydrogel.
Collapse
Affiliation(s)
- Xiaochun Gu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Haoge Cheng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyi Lu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rui Li
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xiao Ouyang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyue Zhang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|