1
|
Yin H, Zhang Z, Zhang D, Peng L, Xia C, Yang X, Wang X, Li Z, Chang J, Huang H. A new method for treating chronic pancreatitis and preventing fibrosis using bioactive calcium silicate ion solution. J Mater Chem B 2023; 11:9163-9178. [PMID: 37642526 DOI: 10.1039/d3tb01287e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chronic pancreatitis (CP) is a multifactorial fibroinflammatory syndrome. At present, there is no effective way to treat it clinically. In this study, we proposed a new approach by application of a highly active calcium silicate ion solution derived from calcium silicate (CS) bioceramics, which effectively inhibited the development of CP. This bioceramic derived bioactive ionic solution mainly regulated pancreatic acinar cells (PACs), macrophages and pancreatic stellate cells (PSCs) by SiO32- ions to inhibit inflammation and fibrosis and promote acinar regeneration. The possible mechanism of the therapeutic effect of CS ion solution mainly includes the inhibition of PAC apoptosis by down-regulating the c-caspase3 signal pathway and promotion of the regeneration of PACs by up-regulating the WNT/β-catenin signaling pathway. In addition, the CS ion solution also effectively down-regulated the NF-κB signaling pathway to reduce macrophage infiltration and PAC inflammatory factor secretion, thereby reducing PSC mediated pancreatic fibrosis. This bioceramics-based ion solution provides a new idea for disease treatment using biomaterials, which may have the potential for the development of new therapy for CP.
Collapse
Affiliation(s)
- Hua Yin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia, 750004, People's Republic of China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Xiaoli Yang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia, 750004, People's Republic of China
| | - Xinyue Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
2
|
Zhang Y, Li X, Zhang Z, Li H, Chen D, Jiao Y, Fan C, Zeng Z, Chang J, Xu Y, Peng B, Yang C, Que Y. Zn 2 SiO 4 Bioceramic Attenuates Cardiac Remodeling after Myocardial Infarction. Adv Healthc Mater 2023; 12:e2203365. [PMID: 37162169 DOI: 10.1002/adhm.202203365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/06/2023] [Indexed: 05/11/2023]
Abstract
In the pursuit of therapeutic strategies for myocardial infarction (MI), a pivotal objective lies in the concurrent restoration of blood perfusion and reduction of cardiomyocyte apoptosis. However, achieving these dual goals simultaneously presents a considerable challenge. In this study, a Zn2 SiO4 bioceramic capable of concurrently sustaining the release of bioactive SiO3 2- and Zn2+ ions, which exhibit a synergistic impact on endothelial cell angiogenesis promotion, cardiomyocyte apoptosis inhibition, and myocardial mitochondrial protection against oxygen-free radical (reactive oxygen species) induced injury is developed. Furthermore, in vivo outcomes from a murine MI model demonstrate that either systemic administration via tail vein injection of Zn2 SiO4 extract or local application through intramyocardial injection of a Zn2 SiO4 composite hydrogel promotes cardiac function and reduces cardiac fibrosis, thus aiding myocardial repair. This research is the first to elucidate the advantageous effects of dual bioactive ions in myocardial protection and may offer a novel therapeutic avenue for ischemic heart disease based on meticulously engineered bioceramics.
Collapse
Affiliation(s)
- Yanxin Zhang
- College of Pharmacy, Dali University, 671000, Dali, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Xin Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Huili Li
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Dongmin Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Yuhong Xu
- College of Pharmacy, Dali University, 671000, Dali, China
| | - Baowei Peng
- College of Pharmacy, Dali University, 671000, Dali, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| | - Yumei Que
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, China
| |
Collapse
|
3
|
Li X, Zhang Y, Jin Q, Song Q, Fan C, Jiao Y, Yang C, Chang J, Dong Z, Que Y. Silicate Ions Derived from Calcium Silicate Extract Decelerate Ang II-Induced Cardiac Remodeling. Tissue Eng Regen Med 2023; 20:671-681. [PMID: 36920676 PMCID: PMC10352221 DOI: 10.1007/s13770-023-00523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Pathological cardiac hypertrophy is one of the main activators of heart failure. Currently, no drug can completely reverse or inhibit the development of pathological cardiac hypertrophy. To this end, we proposed a silicate ion therapy based on extract derived from calcium silicate (CS) bioceramics for the treatment of angiotensin II (Ang II) induced cardiac hypertrophy. METHODS In this study, the Ang II induced cardiac hypertrophy mouse model was established, and the silicate ion extract was injected to mice intravenously. The cardiac function was evaluated by using a high-resolution Vevo 3100 small animal ultrasound imaging system. Wheat germ Agglutinin, Fluo4-AM staining and immunofluorescent staining was conducted to assess the cardiac hypertrophy, intracellular calcium and angiogenesis of heart tissue, respectively. RESULTS The in vitro results showed that silicate ions could inhibit the cell size of cardiomyocytes, reduce cardiac hypertrophic gene expression, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC), decrease the content of intracellular calcium induced by Ang II. In vivo experiments in mice confirmed that intravenous injection of silicate ions could remarkably inhibit the cardiac hypertrophy and promote the formation of capillaries, further alleviating Ang II-induced cardiac function disorder. CONCLUSION This study demonstrated that the released silicate ions from CS possessed potential value as a novel therapeutic strategy of pathological cardiac hypertrophy, which provided a new insight for clinical trials.
Collapse
Affiliation(s)
- Xin Li
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yanxin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Qishu Jin
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Qiaoyu Song
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Chen Fan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Zhihong Dong
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China.
| | - Yumei Que
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Zhang J, Zeng Z, Chen Y, Deng L, Zhang Y, Que Y, Jiao Y, Chang J, Dong Z, Yang C. 3D-printed GelMA/CaSiO 3 composite hydrogel scaffold for vascularized adipose tissue restoration. Regen Biomater 2023; 10:rbad049. [PMID: 37274616 PMCID: PMC10234763 DOI: 10.1093/rb/rbad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 06/06/2023] Open
Abstract
The increased number of mastectomies, combined with rising patient expectations for cosmetic and psychosocial outcomes, has necessitated the use of adipose tissue restoration techniques. However, the therapeutic effect of current clinical strategies is not satisfying due to the high demand of personalized customization and the timely vascularization in the process of adipose regeneration. Here, a composite hydrogel scaffold was prepared by three-dimensional (3D) printing technology, applying gelatin methacrylate anhydride (GelMA) as printing ink and calcium silicate (CS) bioceramic as an active ingredient for breast adipose tissue regeneration. The in vitro experiments showed that the composite hydrogel scaffolds could not only be customized with controllable architectures, but also significantly stimulated both 3T3-L1 preadipocytes and human umbilical vein endothelial cells in multiple cell behaviors, including cell adhesion, proliferation, migration and differentiation. Moreover, the composite scaffold promoted vascularized adipose tissue restoration under the skin of nude mice in vivo. These findings suggest that 3D-printed GelMA/CS composite scaffolds might be a good candidate for adipose tissue engineering.
Collapse
Affiliation(s)
| | | | - Yanxin Chen
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Li Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yanxin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jiang Chang
- Correspondence address. E-mail: (J.C.); (Z.D.); (C.Y.)
| | - Zhihong Dong
- Correspondence address. E-mail: (J.C.); (Z.D.); (C.Y.)
| | - Chen Yang
- Correspondence address. E-mail: (J.C.); (Z.D.); (C.Y.)
| |
Collapse
|
5
|
Yu B, Li H, Zhang Z, Chen P, Wang L, Fan X, Ning X, Pan Y, Zhou F, Hu X, Chang J, Ou C. Extracellular vesicles engineering by silicates-activated endothelial progenitor cells for myocardial infarction treatment in male mice. Nat Commun 2023; 14:2094. [PMID: 37055411 PMCID: PMC10102163 DOI: 10.1038/s41467-023-37832-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Extracellular vesicles have shown good potential in disease treatments including ischemic injury such as myocardial infarction. However, the efficient production of highly active extracellular vesicles is one of the critical limitations for their clinical applications. Here, we demonstrate a biomaterial-based approach to prepare high amounts of extracellular vesicles with high bioactivity from endothelial progenitor cells (EPCs) by stimulation with silicate ions derived from bioactive silicate ceramics. We further show that hydrogel microspheres containing engineered extracellular vesicles are highly effective in the treatment of myocardial infarction in male mice by significantly enhancing angiogenesis. This therapeutic effect is attributed to significantly enhanced revascularization by the high content of miR-126a-3p and angiogenic factors such as VEGF and SDF-1, CXCR4 and eNOS in engineered extracellular vesicles, which not only activate endothelial cells but also recruit EPCs from the circulatory system.
Collapse
Affiliation(s)
- Bin Yu
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
| | - Hekai Li
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Zhaowenbin Zhang
- Wenzhou Institute, Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, 325000, Wenzhou, China
- State Key Laboratory of High-Performance Ceramics and Super fine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, People's Republic of China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Peier Chen
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Ling Wang
- School of Biomedical Engineering, Biomaterials Research Center, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xianglin Fan
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Xiaodong Ning
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
| | - Yuxuan Pan
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China
| | - Feiran Zhou
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Xinyi Hu
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China
| | - Jiang Chang
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China.
- Wenzhou Institute, Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, 325000, Wenzhou, China.
- State Key Laboratory of High-Performance Ceramics and Super fine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, People's Republic of China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| | - Caiwen Ou
- The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510280, Guangzhou, China.
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
6
|
Cao L, Gu H, Zhang Z, Zhang E, Chang J, Cai Z. Calcium silicate/bortezomib combinatory therapy for multiple myeloma. J Mater Chem B 2023; 11:1929-1939. [PMID: 36744994 DOI: 10.1039/d2tb02009b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy. Bortezomib (BOR), a first-generation proteasome inhibitor, is the basic agent for the treatment of MM and has greatly improved the survival of patients with MM. However, the side effects of BOR (e.g. peripheral neuropathy) occur frequently and almost all MM patients eventually develop resistance to BOR and go on to develop refractory relapsed multiple myeloma (RRMM). Therefore, it is of great significance to find a method to increase the sensitivity of MM to BOR to reduce toxicity and drug resistance. Herein, we found that calcium silicate (CS), a silicate bioceramic that releases Si ions (SIs), enhanced the BOR anti-myeloma effect in vitro in human myeloma cell lines (HMCLs), including BOR-resistant cell lines (U266/BOR). The enhanced anti-myeloma effect of these two agents was demonstrated in primary MM cells regardless of disease status and in MM xenograft mice. Mechanistically, SI enhanced G2/M cell cycle arrest and the inhibition of the NF-κB pathway induced by BOR. These results imply that the combination of SI and BOR (SI/BOR) is a promising way to overcome BOR resistance in MM and RRMM. The future use of nanotechnology to prepare CS nanomaterials as BOR carriers for the treatment of MM and RRMM is a very promising clinical application.
Collapse
Affiliation(s)
- Liqin Cao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Huiyao Gu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaowenbing Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jiang Chang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
7
|
Pan H, Deng L, Huang L, Zhang Q, Yu J, Huang Y, Chen L, Chang J. 3D-printed Sr 2ZnSi 2O 7 scaffold facilitates vascularized bone regeneration through macrophage immunomodulation. Front Bioeng Biotechnol 2022; 10:1007535. [PMID: 36185424 PMCID: PMC9523139 DOI: 10.3389/fbioe.2022.1007535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Biomaterial-based bone grafts are emerged as an effective strategy for the treatment of large bone defects, especially for the scaffolds with enhanced osteogenic and angiogenic bioactivities. However, most studies focused on the direct interactions between scaffolds and bone-related cells such as osteoblasts and endothelial cells, and ignored the effects of material-triggered immunomodulation and the subsequent immune-regulated bone regeneration process. In this study, we developed a silicate bioceramic (Sr2ZnSi2O7, SZS) scaffold with well-defined pore structures using a three-dimensional (3D) printing technique. The prepared scaffolds were biodegradable, and the released bioactive ions were beneficial for immunomodulation, which stimulated macrophages to release more pro-healing cytokines and less pro-inflammatory cytokines. The obtained scaffold/macrophage conditioned medium further promoted the proliferation and osteogenic differentiation of a murine preosteoblast cell line (MC3T3-E1), as well as the angiogenic activity of human umbilical vein endothelial cells (HUVECs). Moreover, the in vivo experiments of critical-sized calvarial defects in rats revealed that the 3D printed SZS scaffolds could facilitate more vascularized bone regeneration than the 3D printed β-tricalcium phosphate (β-TCP, a typical clinically used bioceramic) scaffolds, suggesting that the 3D-printed SZS scaffolds hold the potential as implantable biomaterials with favorable osteoimmunomodulation for bone repair.
Collapse
Affiliation(s)
- Hao Pan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Deng
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang, China
| | - Lingwei Huang
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Wenzhou, Zhejiang, China
| | - Qi Zhang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Yu
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang, China
| | - Yueyue Huang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Lei Chen
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang, China
- Oujiang Laboratory, Wenzhou, Zhejiang, China
| |
Collapse
|