1
|
Liu J, Lyu Q, Wu M, Zhou Y, Wang T, Zhang Y, Fan N, Yang C, Wang W. Integrating mTOR Inhibition and Photodynamic Therapy Based on Carrier-Free Nanodrugs for Breast Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2402357. [PMID: 39235716 DOI: 10.1002/adhm.202402357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Conventional photodynamic therapy (PDT) in cancer treatment needs to utilize oxygen to produce reactive oxygen species to eliminate malignant tissues. However, oxygen consumption in tumor microenvironment exacerbates cancer cell hypoxia and may promote vasculature angiogenesis. Since the mammalian target of rapamycin (mTOR) signaling pathway plays a vital role in endothelial cell proliferation and fibrosis, mTOR inhibitor drugs hold the potential to reverse hypoxia-evoked angiogenesis for improved PDT effect. In this study, a carrier-free nanodrug formulation composed of Torin 1 as mTORC1/C2 dual inhibitor and Verteporfin as a photosensitizer and Yes-associated protein inhibitor is developed. These two drug molecules can self-assemble into stable nanoparticles through π-π stacking and hydrophobic interactions with good long-term stability. The nanodrugs can prompt synergistic apoptosis, combinational anti-angiogenesis, and strong immunogenic cell death effects upon near-infrared light irradiation in vitro. Furthermore, the nanosystem also exhibits improved antitumor effect, anti-cancer immune response, and distant tumor inhibition through tumor microenvironment remodeling in vivo. In this way, the nanodrugs can reverse PDT-elicited angiogenesis and promote cancer immunotherapy to eliminate tumor tissues and prevent metastasis. This nanosystem provides insights into integrating mTOR inhibitors and photosensitizers for safe and effective breast cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Jinzhao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Qingyang Lyu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Meicen Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Yang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Tianyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Yichi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Ni Fan
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Chang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, 999077, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
2
|
Moon Y, Cho H, Kim J, Song S, Yeon Park J, Young Min J, Hee Han E, Kim Y, Seong JK, Kyu Shim M, Kim K. Self-Assembled Peptide-Derived Proteolysis-Targeting Chimera (PROTAC) Nanoparticles for Tumor-Targeted and Durable PD-L1 Degradation in Cancer Immunotherapy. Angew Chem Int Ed Engl 2024:e202414146. [PMID: 39572518 DOI: 10.1002/anie.202414146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/17/2024] [Indexed: 12/18/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are a promising technique for the specific and durable degradation of cancer-related proteins via the ubiquitin-proteasome system in cancer treatment. However, the therapeutic efficacy of PROTACs is restricted due to their hydrophobicity, poor cell permeability and insufficient tumor-targeting ability. Herein, we develop the self-assembled peptide-derived PROTAC nanoparticles (PT-NPs) for precise and durable programmed death-ligand 1 (PD-L1) degradation in targeted tumors. The PT-NPs with an average size of 211.8 nm are formed through the self-assembly of amphiphilic peptide-derived PROTAC (CLQKTPKQC-FF-ALAPYIP), comprising a PD-L1-targeting 'CLQKTPKQC', self-assembling linker 'FF' and E3 ligase recruiting 'ALAPYIP'. Particularly, PT-NPs strongly bind to tumor cell surface PD-L1 to form PD-L1/PT-NPs complex, then internalized through receptor-mediated endocytosis and degraded in lysosomes. Second, free PROTACs released from PT-NPs to the cytoplasm further induce the durable proteolysis of cytoplasmic PD-L1 via the ubiquitin-proteasome system. In colon tumor models, intravenously injected PT-NPs accumulate significantly at targeted tumor tissues through nanoparticle-derived passive and active targeting. At the targeted tumor tissues, PT-NPs promote durable PD-L1 degradation and ultimately trigger a substantial antitumor immune response. Collectively, this study provides valuable insights into the rational design of self-assembled peptide-derived PROTAC nanoparticles to ensure noticeable accuracy and enhanced efficacy in cancer treatment.
Collapse
Affiliation(s)
- Yujeong Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Bioengineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hanhee Cho
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sukyung Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Young Min
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Eun Hee Han
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Kyung Seong
- Department of Bioengineering, Korea University, Seoul, 02841, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Chen Y, Ji DK, Huang Y, Huang W, Dong X, Yao D, Wang D. Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer. J Nanobiotechnology 2024; 22:461. [PMID: 39090622 PMCID: PMC11293135 DOI: 10.1186/s12951-024-02727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The combination of programmed cell death ligand-1 (PD-L1) immune checkpoint blockade (ICB) and immunogenic cell death (ICD)-inducing chemotherapy has shown promise in cancer immunotherapy. However, triple-negative breast cancer (TNBC) patients undergoing this treatment often face obstacles such as systemic toxicity and low response rates, primarily attributed to the immunosuppressive tumor microenvironment (TME). METHODS AND RESULTS In this study, PD-L1-targeted theranostic systems were developed utilizing anti-PD-L1 peptide (APP) conjugated with a bio-orthogonal click chemistry group. Initially, TNBC was treated with azide-modified sugar to introduce azide groups onto tumor cell surfaces through metabolic glycoengineering. A PD-L1-targeted probe was developed to evaluate the PD-L1 status of TNBC using magnetic resonance/near-infrared fluorescence imaging. Subsequently, an acidic pH-responsive prodrug was employed to enhance tumor accumulation via bio-orthogonal click chemistry, which enhances PD-L1-targeted ICB, the pH-responsive DOX release and induction of pyroptosis-mediated ICD of TNBC. Combined PD-L1-targeted chemo-immunotherapy effectively reversed the immune-tolerant TME and elicited robust tumor-specific immune responses, resulting in significant inhibition of tumor progression. CONCLUSIONS Our study has successfully engineered a bio-orthogonal multifunctional theranostic system, which employs bio-orthogonal click chemistry in conjunction with a PD-L1 targeting strategy. This innovative approach has been demonstrated to exhibit significant promise for both the targeted imaging and therapeutic intervention of TNBC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanhong Chen
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yuelin Huang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weixi Huang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xue Dong
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Yu L, Huang K, Liao Y, Wang L, Sethi G, Ma Z. Targeting novel regulated cell death: Ferroptosis, pyroptosis and necroptosis in anti-PD-1/PD-L1 cancer immunotherapy. Cell Prolif 2024; 57:e13644. [PMID: 38594879 PMCID: PMC11294428 DOI: 10.1111/cpr.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
Chemotherapy, radiotherapy, and immunotherapy represent key tumour treatment strategies. Notably, immune checkpoint inhibitors (ICIs), particularly anti-programmed cell death 1 (PD1) and anti-programmed cell death ligand 1 (PD-L1), have shown clinical efficacy in clinical tumour immunotherapy. However, the limited effectiveness of ICIs is evident due to many cancers exhibiting poor responses to this treatment. An emerging avenue involves triggering non-apoptotic regulated cell death (RCD), a significant mechanism driving cancer cell death in diverse cancer treatments. Recent research demonstrates that combining RCD inducers with ICIs significantly enhances their antitumor efficacy across various cancer types. The use of anti-PD-1/PD-L1 immunotherapy activates CD8+ T cells, prompting the initiation of novel RCD forms, such as ferroptosis, pyroptosis, and necroptosis. However, the functions and mechanisms of non-apoptotic RCD in anti-PD1/PD-L1 therapy remain insufficiently explored. This review summarises the emerging roles of ferroptosis, pyroptosis, and necroptosis in anti-PD1/PD-L1 immunotherapy. It emphasises the synergy between nanomaterials and PD-1/PD-L1 inhibitors to induce non-apoptotic RCD in different cancer types. Furthermore, targeting cell death signalling pathways in combination with anti-PD1/PD-L1 therapies holds promise as a prospective immunotherapy strategy for tumour treatment.
Collapse
Affiliation(s)
- Li Yu
- Health Science CenterYangtze UniversityJingzhouHubeiChina
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Ke Huang
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| | - Yixiang Liao
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Lingzhi Wang
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
5
|
Zhang H, Jiang M, Xing W, Zhao R, Li G, Zheng Z. Peptide-IR820 Conjugate: A Promising Strategy for Efficient Vascular Disruption and Hypoxia Induction in Melanoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051862 DOI: 10.1021/acsami.4c07503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Photothermal therapy (PTT) has emerged as a noninvasive and precise cancer treatment modality known for its high selectivity and lack of drug resistance. However, the clinical translation of many PTT agents is hindered by the limited biodegradability of inorganic nanoparticles and the instability of organic dyes. In this study, a peptide conjugate, IR820-Cys-Trp-Glu-Trp-Thr-Trp-Tyr (IR820-C), was designed to self-assemble into nanoparticles for both potent PTT and vascular disruption in melanoma treatment. When co-assembled with the poorly soluble vascular disrupting agent (VDA) combretastatin A4 (CA4), the resulting nanoparticles (IR820-C@CA4 NPs) accumulate efficiently in tumors, activate systemic antitumor immune responses, and effectively ablate melanoma with a single treatment and near-infrared irradiation, as confirmed by our in vivo experiments. Furthermore, by exploiting the resulting tumor hypoxia, we subsequently administered the hypoxia-activated prodrug tirapazamine (TPZ) to capitalize on the created microenvironment, thereby boosting therapeutic efficacy and antimetastatic potential. This study showcases the potential of short-peptide-based nanocarriers for the design and development of stable and efficient photothermal platforms. The multifaceted therapeutic strategy, which merges photothermal ablation with vascular disruption and hypoxia-activated chemotherapy, holds great promise for advancing the efficacy and scope of cancer treatment modalities.
Collapse
Affiliation(s)
- Hongxia Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Mengmeng Jiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Weiyu Xing
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Rui Zhao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Zheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
6
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
7
|
Dai Q, Xie L, Ren E, Liu G. Cathepsin B Responsive Peptide-Purpurin Conjugates Assembly-Initiated in Situ Self-Aggregation for Cancer Sonotheranostics. NANO LETTERS 2024; 24:950-957. [PMID: 38198622 DOI: 10.1021/acs.nanolett.3c04371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Sonodynamic therapy (SDT) was hampered by the sonosensitizers with low bioavailability, tumor accumulation, and therapeutic efficiency. In situ responsive sonosensitizer self-assembly strategy may provide a promising route for cancer sonotheranositics. Herein, an intelligent sonotheranostic peptide-purpurin conjugate (P18-P) is developed that can self-assemble into supramolecular structures via self-aggregation triggered by rich enzyme cathepsin B (CTSB). After intravenous injection, the versatile probe could achieve deep tissue penetration because of the penetration sequence of P18-P. More importantly, CTSB-triggered self-assembly strongly prolonged retention time, amplified photoacoustic imaging signal for sensitive CTSB detection, and boosted reactive oxygen species for advanced SDT, evoking specific CTSB responsive sonotheranostics. This peptide-purpurin conjugate may serve as an efficient sonotheranostic platform for the early diagnosis of CTSB activity and effective cancer therapy.
Collapse
Affiliation(s)
- Qixuan Dai
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lisi Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - En Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Xu W, Liu W, Yang J, Lu J, Zhang H, Ye D. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:181-198. [PMID: 37403660 DOI: 10.1111/imr.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
9
|
Agwa MM, Elmotasem H, Moustafa RI, Abdelsattar AS, Mohy-Eldin MS, Fouda MMG. Advent in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers to accomplish active or homologous tumor targeting for smart amalgamated chemotherapy/photo-therapy: A review. Int J Biol Macromol 2023; 253:127460. [PMID: 37866559 DOI: 10.1016/j.ijbiomac.2023.127460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Conventional cancer mono-therapeutic approaches including radiotherapy, surgery, and chemotherapy don't always achieve satisfactory outcomes and are frequently associated with significant limitations. Although chemotherapy is a vital intervention, its effectiveness is frequently inadequate and is associated with metastasis, multidrug resistance, off-target effect, and normal cells toxicity. Phototherapies are employed in cancer therapy, encompassing photo-dynamic and photo-thermal therapies which under favorable NIR laser light irradiation initiate the included photosensitizers and photo-thermal agents to generate ROS or thermal heat respectively for cancer cells destruction. Photo-therapy is considered noninvasive, posing no resistance, but it still suffers from several pitfalls like low penetration depth and excessive heat generation affecting neighboring tissues. Improved selectivity and tumor-homing capacity could be attained through surface modulation of nanoparticles with targeting ligands that bind to receptors, which are exclusively overexpressed on cancerous cells. Developing novel modified targeted nanoparticulate platforms integrating different therapeutic modalities like photo-therapy and chemotherapy is a topic of active research. This review aimed to highlight recent advances in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers for smart combinatorial chemotherapy/photo-therapy. Nanocarriers decorated with precise targeting ligands, like aptamers, antibody, and lactoferrin, to achieve active tumor-targeting or camouflaging using various biological cell membrane coating are designed to achieve homologous tumor-targeting.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt
| | - Rehab I Moustafa
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute, (TRT) National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
10
|
Hu XJ, Zhang NY, Hou DY, Wang ZJ, Wang MD, Yi L, Song ZZ, Liang JX, Li XP, An HW, Xu W, Wang H. An In Vivo Self-Assembled Bispecific Nanoblocker for Enhancing Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303831. [PMID: 37462447 DOI: 10.1002/adma.202303831] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 10/11/2023]
Abstract
Anti-PD-L1 monoclonal antibody has achieved substantial success in tumor immunotherapy by T-cells activation. However, the excessive accumulation of extracellular matrix components induced by unsatisfactory T-cells infiltration and poor tumor penetration of antibodies make it challenging to realize efficient tumor immunotherapy. Herein, a peptide-based bispecific nanoblocker (BNB) strategy is reported for in situ construction of CXCR4/PD-L1 targeted nanoclusters on the surface of tumor cells that are capable of boosting T-cells infiltration through CXCR4 blockage and enhancing T-cells activation by PD-L1 occupancy, ultimately realizing high-performance tumor immunotherapy. Briefly, the BNB strategy selectively recognizes and bonds CXCR4/PD-L1 with deep tumor penetration, which rapidly self-assembles into nanoclusters on the surface of tumor cells. Compared to the traditional bispecific antibody, BNB exhibits an intriguing metabolic behavior, that is, the elimination half-life (t1/2 ) of BNB in the tumor is 69.3 h which is ≈50 times longer than that in the plasma (1.4 h). The higher tumor accumulation and rapid systemic clearance overcome potential systemic side effects. Moreover, the solid tumor stress generated by excessive extracellular matrix components is substantially reduced to 44%, which promotes T-cells infiltration and activation for immunotherapy efficacy. Finally, these findings substantially strengthen and extend clinical applications of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Xing-Jie Hu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Zhi-Jia Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhang-Zhi Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jian-Xiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Peng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Zandieh MA, Farahani MH, Daryab M, Motahari A, Gholami S, Salmani F, Karimi F, Samaei SS, Rezaee A, Rahmanian P, Khorrami R, Salimimoghadam S, Nabavi N, Zou R, Sethi G, Rashidi M, Hushmandi K. Stimuli-responsive (nano)architectures for phytochemical delivery in cancer therapy. Biomed Pharmacother 2023; 166:115283. [PMID: 37567073 DOI: 10.1016/j.biopha.2023.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The use of phytochemicals for purpose of cancer therapy has been accelerated due to resistance of tumor cells to conventional chemotherapy drugs and therefore, monotherapy does not cause significant improvement in the prognosis and survival of patients. Therefore, administration of natural products alone or in combination with chemotherapy drugs due to various mechanisms of action has been suggested. However, cancer therapy using phytochemicals requires more attention because of poor bioavailability of compounds and lack of specific accumulation at tumor site. Hence, nanocarriers for specific delivery of phytochemicals in tumor therapy has been suggested. The pharmacokinetic profile of natural products and their therapeutic indices can be improved. The nanocarriers can improve potential of natural products in crossing over BBB and also, promote internalization in cancer cells through endocytosis. Moreover, (nano)platforms can deliver both natural and synthetic anti-cancer drugs in combination cancer therapy. The surface functionalization of nanostructures with ligands improves ability in internalization in tumor cells and improving cytotoxicity of natural compounds. Interestingly, stimuli-responsive nanostructures that respond to endogenous and exogenous stimuli have been employed for delivery of natural compounds in cancer therapy. The decrease in pH in tumor microenvironment causes degradation of bonds in nanostructures to release cargo and when changes in GSH levels occur, it also mediates drug release from nanocarriers. Moreover, enzymes in the tumor microenvironment such as MMP-2 can mediate drug release from nanocarriers and more progresses in targeted drug delivery obtained by application of nanoparticles that are responsive to exogenous stimulus including light.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
13
|
Chang R, Li T, Fu Y, Chen Z, He Y, Sun X, Deng Y, Zhong Y, Xie Z, Yang Y, Liu J, Chen X, Liu H, Zhao Y. A PD-L1 targeting nanotheranostic for effective photoacoustic imaging guided photothermal-immunotherapy of tumor. J Mater Chem B 2023; 11:8492-8505. [PMID: 37594411 DOI: 10.1039/d3tb00221g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Tumor immunotherapy has been partly effective for specific cancers. However, problems such as low immune response, limited antitumor effectiveness, and high antibody costs still persist. Synergistic therapeutic approaches, such as immune checkpoint inhibition in conjunction with photothermal therapy and photoacoustic imaging, are expected to provide approaches for more precise and efficient immunotherapy of tumors. Furthermore, developing alternatives for antibodies, such as PD-L1 aptamers and nanocarriers, would reduce the cost of tumor immunotherapy. Herein, we develop a PD-L1-targeting nanotheranostic to block immune checkpoints for synergistic photothermal-immunotherapy against tumors, along with effective photoacoustic (PA) imaging. The nanotheranostic is synthesized by the modification of gold nanorods (GNRs) with the PD-L1 aptamer (APDL1), which can sensitively and specifically recognize PD-L1 on the tumor cell surface, and mediate nanoparticle accumulation and strong PA signals in tumors. The aptamer is released from GNR through a competition of glutathione (GSH) and is then functionalized as a PD-L1 blockade. In collaboration with the concurrent photothermal therapy, antitumor immunity is significantly augmented by enhancing the filtration of matured dendritic cells and suppressing regulatory T cells, followed by the activation of cytotoxic T cells and inhibition of T cell exhaustion. Such a nanotheranostic modality effectively suppresses tumor growth in mice, representing an appealing platform for both biological imaging and photoimmunotherapy of tumors.
Collapse
Affiliation(s)
- Ruimin Chang
- Department of Dermatology, Xiangya Clinical Research Center for Cancer Immunotherapy, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tan Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Yao Fu
- Department of Dermatology, Xiangya Clinical Research Center for Cancer Immunotherapy, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zeyu Chen
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Yilang He
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Xin Sun
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Yiyi Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Yanqing Zhong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Zuozhong Xie
- Department of Dermatology, Xiangya Clinical Research Center for Cancer Immunotherapy, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yang Yang
- College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jing Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410078, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Clinical Research Center for Cancer Immunotherapy, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Clinical Research Center for Cancer Immunotherapy, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yuetao Zhao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
14
|
Qiao Y, Xu B. Peptide Assemblies for Cancer Therapy. ChemMedChem 2023; 18:e202300258. [PMID: 37380607 PMCID: PMC10613339 DOI: 10.1002/cmdc.202300258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Supramolecular assemblies made by the self-assembly of peptides are finding an increasing number of applications in various fields. While the early exploration of peptide assemblies centered on tissue engineering or regenerative medicine, the recent development has shown that peptide assemblies can act as supramolecular medicine for cancer therapy. This review covers the progress of applying peptide assemblies for cancer therapy, with the emphasis on the works appeared over the last five years. We start with the introduction of a few seminal works on peptide assemblies, then discuss the combination of peptide assemblies with anticancer drugs. Next, we highlight the use of enzyme-controlled transformation or shapeshifting of peptide assemblies for inhibiting cancer cells and tumors. After that, we provide the outlook for this exciting field that promises new kind of therapeutics for cancer therapy.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
15
|
Zhu H, Yang K, Yao H, Chen X, Yan S, He Y, Cao Y, Luo J, Wang D. Multifunctional Nanoplatform-Mediated Chemo-Photothermal Therapy Combines Immunogenic Cell Death with Checkpoint Blockade to Combat Triple-Negative Breast Cancer and Distant Metastasis. Int J Nanomedicine 2023; 18:3109-3124. [PMID: 37323948 PMCID: PMC10265501 DOI: 10.2147/ijn.s408855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Background Breast cancer has become the most common cancer in women. Compare with other subtypes of breast cancer, triple-negative breast cancer (TNBC) is more likely to relapse and metastasize. Highly effective therapeutic strategies are desperately needed to be explored. In this study, a multifunctional nanoplatform is expected to mediate chemo-photothermal therapy, which can combine immunogenic cell death with checkpoint blockade to combat TNBC and distant metastasis. Methods Poly (lactic acid-glycolic acid)-Poly (ethylene glycol) (PLGA-PEG) nanoparticles (NPs), a type of polymeric NPs, loaded with IR780, a near-infrared (NIR) dye, and doxorubicin (DOX) as the chemotherapeutic drug, were assembled by an improved double emulsification method (designated as IDNPs). The characterization, intracellular uptake, biosafety, photoacoustic (PA) imaging performance, and biodistribution of IDNPs were studied. Chemo-photothermal therapeutic effect and immunogenic cell death (ICD) were evaluated both in vitro and in vivo. The potency of chemo-photothermal therapy-triggered ICD in combination with anti-PD-1 immune checkpoint blockade (ICB) immunotherapy in eliciting immune response and treating distant tumors was further investigated. Results IR780 and DOX were successfully loaded into PLGA-PEG to form the IDNPs, with size of 243.87nm and Zeta potential of -6.25mV. The encapsulation efficiency of IR780 and DOX was 83.44% and 5.98%, respectively. IDNPs demonstrated remarkable on-site accumulation and PA imaging capability toward 4T1 TNBC models. Chemo-photothermal therapy demonstrated satisfactory therapeutic effects both in vitro and in vivo, and triggered ICD efficiently. ICD, in combination with anti-PD-1, provoked a systemic antitumor immune response against distant tumors. Conclusion Multifunctional IDNPs were successfully synthesized to mediate chemo-photothermal therapy, which combines immunogenic cell death with checkpoint blockade to combat TNBC and distant metastasis, showing great promise preclinically and clinically.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ke Yang
- Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Huan Yao
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xueying Chen
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shujin Yan
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jie Luo
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, Liang H, Ding F, Hong S, Steinmetz NF, Cai H. Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS NANO 2023; 17:8004-8025. [PMID: 37079378 DOI: 10.1021/acsnano.3c01452] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembly has emerged as an extensively used method for constructing biomaterials with sizes ranging from nanometers to micrometers. Peptides have been extensively investigated for self-assembly. They are widely applied owing to their desirable biocompatibility, biodegradability, and tunable architecture. The development of peptide-based nanoparticles often requires complex synthetic processes involving chemical modification and supramolecular self-assembly. Stimuli-responsive peptide nanoparticles, also termed "smart" nanoparticles, capable of conformational and chemical changes in response to stimuli, have emerged as a class of promising materials. These smart nanoparticles find a diverse range of biomedical applications, including drug delivery, diagnostics, and biosensors. Stimuli-responsive systems include external stimuli (such as light, temperature, ultrasound, and magnetic fields) and internal stimuli (such as pH, redox environment, salt concentration, and biomarkers), facilitating the generation of a library of self-assembled biomaterials for biomedical imaging and therapy. Thus, in this review, we mainly focus on peptide-based nanoparticles built by self-assembly strategy and systematically discuss their mechanisms in response to various stimuli. Furthermore, we summarize the diverse range of biomedical applications of peptide-based nanomaterials, including diagnosis and therapy, to demonstrate their potential for medical translation.
Collapse
Affiliation(s)
- Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ye Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Zhu Wang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Hui Liang
- Department of Urology, Affiliated People's Hospital of Longhua Shenzhen, Southern Medical University, 38 Jinglong Jianshe Road, Shenzhen, Guangdong 518109, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Biongineering, Department of Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Center for Engineering in Cancer, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| |
Collapse
|
17
|
Liu N, Zhang R, Shi Q, Jiang H, Zhou Q. Intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy. Bioorg Chem 2023; 136:106550. [PMID: 37121105 DOI: 10.1016/j.bioorg.2023.106550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
The drugs targeting the PD-1/PD-L1 pathway have gained abundant clinical applications for cancer immunotherapy. However, only a part of patients benefit from such immunotherapy. Thus, brilliant novel tactic to increase the response rate of patients is on the agenda. Nanocarriers, particularly the rationally designed intelligent delivery systems with controllable therapeutic agent release ability and improved tumor targeting capacity, are firmly recommended. In light of this, state-of-the-art nanocarriers that are responsive to tumor-specific microenvironments (internal stimuli, including tumor acidic microenvironment, high level of GSH and ROS, specifically upregulated enzymes) or external stimuli (e.g., light, ultrasound, radiation) and release the target immunomodulators at tumor sites feature the advantages of increased anti-tumor potency but decreased off-target toxicity. Given the fantastic past achievements and the rapid developments in this field, the future is promising. In this review, intelligent delivery platforms targeting the PD-1/PD-L1 axis are attentively appraised. Specifically, mechanisms of the action of these stimuli-responsive drug release platforms are summarized to raise some guidelines for prior PD-1/PD-L1-based nanocarrier designs. Finally, the conclusion and outlook in intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Qiang Shi
- Moji-Nano Technology Co. Ltd., Yantai 264006, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300038, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
18
|
Zhang Y, Zhou J, Chen X, Li Z, Gu L, Pan D, Zheng X, Zhang Q, Chen R, Zhang H, Gong Q, Gu Z, Luo K. Modulating tumor-stromal crosstalk via a redox-responsive nanomedicine for combination tumor therapy. J Control Release 2023; 356:525-541. [PMID: 36918084 DOI: 10.1016/j.jconrel.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Interaction between carcinoma-associated fibroblasts (CAFs) and tumor cells leads to the invasion and metastasis of breast cancer. Herein, we prepared a redox-responsive chondroitin sulfate (CS)-based nanomedicine, in which hydrophobic cabazitaxel (CTX) was conjugated to the backbone of CS via glutathione (GSH)-sensitive dithiomaleimide (DTM) to form an amphipathic CS-DTM-CTX (CDC) conjugate, and dasatinib (DAS) co-assembled with the CDC conjugate to obtain DAS@CDC. After CD44 receptor-mediated internalization by CAFs, the nanomedicine could reverse CAFs to normal fibroblasts, blocking their crosstalk with tumor cells and reducing synthesis of major tumor extracellular matrix proteins, including collagen and fibronectin. Meanwhile, the nanomedicine internalized by tumor cells could effectively inhibit tumor proliferation and metastasis, leading to shrinkage of the tumor volume and inhibition of lung metastasis in a subcutaneous 4T1 tumor model with low side effects. Collectively, the nanomedicine showed a remarkably synergistic therapy effect against breast cancer by modulating tumor-stromal crosstalk.
Collapse
Affiliation(s)
- Yuxin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianfeng Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Animal Experimental Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
19
|
Li K, Yang D, Liu D. Targeted Nanophotoimmunotherapy Potentiates Cancer Treatment by Enhancing Tumor Immunogenicity and Improving the Immunosuppressive Tumor Microenvironment. Bioconjug Chem 2023; 34:283-301. [PMID: 36648963 DOI: 10.1021/acs.bioconjchem.2c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer immunotherapy, such as immune checkpoint blockade, chimeric antigen receptor, and cytokine therapy, has emerged as a robust therapeutic strategy activating the host immune system to inhibit primary and metastatic lesions. However, low tumor immunogenicity (LTI) and immunosuppressive tumor microenvironment (ITM) severely compromise the killing effect of immune cells on tumor cells, which fail to evoke a strong and effective immune response. As an exogenous stimulation therapy, phototherapy can induce immunogenic cell death (ICD), enhancing the therapeutic effect of tumor immunotherapy. However, the lack of tumor targeting and the occurrence of immune escape significantly reduce its efficacy in vivo, thus limiting its clinical application. Nanophotoimmunotherapy (nano-PIT) is a precision-targeted tumor treatment that co-loaded phototherapeutic agents and various immunotherapeutic agents by specifically targeted nanoparticles (NPs) to improve the effectiveness of phototherapy, reduce its phototoxicity, enhance tumor immunogenicity, and reverse the ITM. This review will focus on the theme of nano-PIT, introduce the current research status of nano-PIT on converting "cold" tumors to "hot" tumors to improve immune efficacy according to the classification of immunotherapy targets, and discuss the challenges, opportunities, and prospects.
Collapse
Affiliation(s)
- Kunwei Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Dan Yang
- Department of Pharmaceutical Sciences, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Weiyang University Park, Xi'an 710021, China
| | - Dechun Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|