1
|
Hameed S, Rahman SU, Konain K, Samie M, Farid S, Elango J, Habib SR, Woo KM, Arany PR. Advanced 3D biomimetic scaffolds with bioactive glass and bone-conditioned medium for enhanced osteogenesis. BIOMATERIALS ADVANCES 2025; 173:214282. [PMID: 40081288 DOI: 10.1016/j.bioadv.2025.214282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
The study focuses on developing and evaluating 3D biomimetic fibrous scaffolds to enhance osteoblast differentiation and bone tissue regeneration. Utilizing a synergistic approach, biological and chemical factors were compartmentalized within the fibrous scaffolds through co-axial electrospinning. Bioactive glass (BG) was used for osteo-conductivity, and Bone-Conditioned Medium (BCM) for osteoinduction. The BCM, derived from ovine bone chips, was investigated for its optimal concentration using pre-osteoblast cells. Comprehensive assessment of the scaffolds included physicochemical properties, drug release, cell viability, and osteogenic potential. The scaffold's architecture, confirmed by Scanning electron microscopy (SEM) analysis, effectively emulated the natural extracellular matrix (ECM). Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) analyses verified the successful integration of BG and BCM, while UV-Vis spectroscopy demonstrated controlled BCM release. Both BG and BCM scaffolds notably enhanced osteoblast differentiation, as evident with Alizarin red staining. The combined use of BG and BCM in scaffolds synergistically promoted osteogenic differentiation and viability of MC3T3-E1 cells. Furthermore, these scaffolds significantly increased the expression of Bone Sialoprotein (BSP), Osteocalcin (OCN), and Runt-related transcription factor 2 (RUNX2) which indicate increase in osteogenic differentiation. This study provides evidence for advanced scaffold systems that can guide cell responses for effective bone tissue regeneration.
Collapse
Affiliation(s)
- Shazia Hameed
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Saeed Ur Rahman
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan; Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, NY, USA.
| | - Kiran Konain
- Molecular Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Samie
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sajida Farid
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM- Universidad Católica San Antonio de Murcia, Guadalupe 30107, Murcia, Spain; Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Syed Rashid Habib
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Kyung Mi Woo
- Department of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Praveen R Arany
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, NY, USA
| |
Collapse
|
2
|
Yang Y, Qiu Y, Lin C, Chen X, Zhao F. Stimulus-responsive smart bioactive glass composites for repair of complex tissue defects. Theranostics 2025; 15:1760-1786. [PMID: 39897548 PMCID: PMC11780539 DOI: 10.7150/thno.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Smart biomaterials with active environmental responsiveness have attracted widespread attention in recent years. Previous studies on bioactive glass (BG) have mainly focused on the property of bioactivity, while little attention has been paid to the property of smart response of BG. Herein, we propose the concept of Smart Bioactive Glass Composites (SBGC) which are capable of actively responding to the endogenous disease microenvironment or exogenous physical stimuli, thereby enabling active treatment of tissue defect sites and ultimately promoting tissue regeneration. In this review, the response characteristics of SBGC to different internal and external environments are described. Subsequently, the applications of SBGC in complex tissue defect repair of tumors, infections, and diabetes are reviewed. By deeply analyzing the recent progress of SBGC in different fields, this review will point out the direction for the research of next-generation BG.
Collapse
Affiliation(s)
- Yulian Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China
| | - Cai Lin
- Department of Burn, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaofeng Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, PR China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China
| |
Collapse
|
3
|
Li D, Dai D, Wang J, Zhang C. Honeycomb Bionic Graphene Oxide Quantum Dot/Layered Double Hydroxide Composite Nanocoating Promotes Osteoporotic Bone Regeneration via Activating Mitophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403907. [PMID: 39344577 DOI: 10.1002/smll.202403907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Abnormal osteogenic and remodeling microenvironment due to osteoblast apoptosis are the primary causes of delayed fracture healing in osteoporotic patients. Magnesium (Mg) alloys exhibit biodegradability and appropriate elastic moduli for bone defects in osteoporosis, but the effect on the local bone remodeling disorder is still insufficient. Inspired by the "honeycomb," layered double hydroxide (LDH) with regular traps with graphene oxide quantum dots (GOQDs) inlayed is constructed by pulsed electrodeposition to generate GOQD/LDH composite nanocoatings on the surfaces of Mg alloy substrates. The honeycomb bionic multi-layer stereoscopic structure shows good regulation of the degradation of Mg alloy for the support of healing time required for osteoporotic bone defect. Within its lattice, the local microenvironment conducive to osteogenesis is provided by both the rescue effect of GOQD and LDH. The osteoblast apoptosis is rescued due to the activation of mitophagy to clear dysfunctional mitochondria, where the upregulation of BNIP3 phosphorylation played a key role. The osteoporotic rat model of femoral defects confirmed the improvement of bone regeneration and osseointegration of GOQD/LDH coating. In summary, honeycomb bionic composite nanocoatings with controllable degradation and excellent pro-osteogenic performance demonstrated a promising design strategy on Mg alloy implants in the therapy of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Jianrong Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
4
|
Zheng W, Zhu Z, Hong J, Wang H, Cui L, Zhai Y, Li J, Wang C, Wang Z, Xu L, Hao Y, Cheng G, Ma S. Incorporation of small extracellular vesicles in PEG/HA-Bio-Oss hydrogel composite scaffold for bone regeneration. Biomed Mater 2024; 19:065014. [PMID: 39312942 DOI: 10.1088/1748-605x/ad7e6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Stem cell derived small extracellular vesicles (sEVs) have emerged as promising nanomaterials for the repair of bone defects. However, low retention of sEVs affects their therapeutic effects. Clinically used natural substitute inorganic bovine bone mineral (Bio-Oss) bone powder lacks high compactibility and efficient osteo-inductivity that limit its clinical application in repairing large bone defects. In this study, a poly ethylene glycol/hyaluronic acid (PEG/HA) hydrogel was used to stabilize Bio-Oss and incorporate rat bone marrow stem cell-derived sEVs (rBMSCs-sEVs) to engineer a PEG/HA-Bio-Oss (PEG/HA-Bio) composite scaffold. Encapsulation and sustained release of sEVs in hydrogel scaffold can enhance the retention of sEVs in targeted area, achieving long-lasting repair effect. Meanwhile, synergistic administration of sEVs and Bio-Oss in cranial defect can improve therapeutic effects. The PEG/HA-Bio composite scaffold showed good mechanical properties and biocompatibility, supporting the growth of rBMSCs. Furthermore, sEVs enhancedin vitrocell proliferation and osteogenic differentiation of rBMSCs. Implantation of sEVs/PEG/HA-Bio in rat cranial defect model promotedin vivobone regeneration, suggesting the great potential of sEVs/PEG/HA-Bio composite scaffold for bone repair and regeneration. Overall, this work provides a strategy of combining hydrogel composite scaffold systems and stem cell-derived sEVs for the application of tissue engineering repair.
Collapse
Affiliation(s)
- Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou 215028, People's Republic of China
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhanchi Zhu
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jing Hong
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China
| | - Leisha Cui
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yuanxin Zhai
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jiawei Li
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chen Wang
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhaojun Wang
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, People's Republic of China
| | - Ying Hao
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, People's Republic of China
| | - Guosheng Cheng
- Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, People's Republic of China
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou 215028, People's Republic of China
| |
Collapse
|
5
|
Qiu H, Xiong H, Zheng J, Peng Y, Wang C, Hu Q, Zhao F, Chen K. Sr-Incorporated Bioactive Glass Remodels the Immunological Microenvironment by Enhancing the Mitochondrial Function of Macrophage via the PI3K/AKT/mTOR Signaling Pathway. ACS Biomater Sci Eng 2024; 10:3923-3934. [PMID: 38766805 DOI: 10.1021/acsbiomaterials.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. In vivo, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr2+-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.
Collapse
Affiliation(s)
- Huanhuan Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Huacui Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiafu Zheng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuqi Peng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Qing Hu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ke Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
6
|
Druzian DM, Bonazza GKC, Sangoi GG, Machado AK, Moreno Ruiz YP, Galembeck A, Pavoski G, Romano Espinosa DC, da Silva WL. Fabrication and Properties of the Montmorillonite/Nanobioglass Hybrid Reinforcement from Agroindustrial Waste for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19391-19410. [PMID: 38591172 DOI: 10.1021/acsami.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nowadays, bone systems have a series of consequences that compromise the quality of life mainly due to wear and decreased bioactivity, generally in elderly people and children. In this context, the combination of montmorillonite (MMT-NPs) in a vitreous system such as nanobioglass facilitates the adsorption of biomolecules on the surface and within the interlamellar spaces, enabling the entry of ions by a cation exchange process focusing on increasing the rate of bone formation. This work aims to synthesize and characterize an eco-friendly hybrid reinforcement containing MMT-NPs with nanobioglass doped with magnesium nanoparticles (MgNPs-BV). In this way, MMT-NPs@MgNPs-BV was synthesized by the impregnation method, where an experimental design was used to verify the synthesis conditions. The ideal condition by experimental design was carried out in terms of the characterization and biological activity, where we demonstrated MMT-NPs of 30% w w-1, MgNPs-BV of 6% w w-1, and a calcination temperature of 1273.15 K with a cell viability around 66.87%, an average crystallite diameter of 12.5 nm, and a contact angle of 17.7°. The characterizations confirmed the impregnation method with an average particle size of 51.4 ± 13.1 nm. The mechanical tests showed a hardness of 2.6 GPa with an apparent porosity of 22.2%, similar to human bone. MMT-NPs@MgNPs-BV showed a cell proliferation of around 96% in osteoblastic cells (OFCOL II), with the formation of the apatite phase containing a relation of Ca/P of around 1.63, a biodegradability of 82%, and rapid release of ions with a Ca/P ratio of 1.42. Therefore, the eco-friendly hybrid reinforcement with MMT-NPs and MgNPs-BV shows potential for application with a matrix for biocompatible nanocomposites for bone regeneration.
Collapse
Affiliation(s)
- Daniel Moro Druzian
- Applied Nanomaterials Research Group (GPNAp), Nanoscience Graduate Program, Franciscan University (UFN), Santa Maria, Rio Grande do Sul 97010-49, Brazil
| | - Giovana Kolinski Cossettin Bonazza
- Cell Culture Laboratory and Bioactive Effects (LABCULTBIO), Nanoscience Graduate Program, Franciscan University (UFN), Santa Maria, Rio Grande do Sul 97010-491, Brazil
| | - Gabriela Geraldo Sangoi
- Cell Culture Laboratory and Bioactive Effects (LABCULTBIO), Nanoscience Graduate Program, Franciscan University (UFN), Santa Maria, Rio Grande do Sul 97010-491, Brazil
| | - Alencar Kolinski Machado
- Cell Culture Laboratory and Bioactive Effects (LABCULTBIO), Nanoscience Graduate Program, Franciscan University (UFN), Santa Maria, Rio Grande do Sul 97010-491, Brazil
| | - Yolice Patricia Moreno Ruiz
- Academic Center of Vitoria (CAV), Department of Fundamental Chemistry (DQF), Federal University of Pernambuco (UFPE), Recife, State of Pernambuco 50740-560, Brazil
| | - André Galembeck
- Academic Center of Vitoria (CAV), Department of Fundamental Chemistry (DQF), Federal University of Pernambuco (UFPE), Recife, State of Pernambuco 50740-560, Brazil
| | - Giovani Pavoski
- Polytechnical School of Chemical Engineering, University of the Sao Paulo (USP), São Paulo, State of São Paulo 05508-010, Brazil
- Department of Materials Engineering, The University of British Columbia, Vancouver Campus, British Columbia V6T 1Z4, Canada
| | - Denise Crocce Romano Espinosa
- Polytechnical School of Chemical Engineering, University of the Sao Paulo (USP), São Paulo, State of São Paulo 05508-010, Brazil
| | - William Leonardo da Silva
- Applied Nanomaterials Research Group (GPNAp), Nanoscience Graduate Program, Franciscan University (UFN), Santa Maria, Rio Grande do Sul 97010-49, Brazil
| |
Collapse
|
7
|
Tan S, Qiu Y, Xiong H, Wang C, Chen Y, Wu W, Yang Z, Zhao F. Mussel-inspired cortical bone-adherent bioactive composite hydrogels promote bone augmentation through sequential regulation of endochondral ossification. Mater Today Bio 2023; 23:100843. [PMID: 37942424 PMCID: PMC10628777 DOI: 10.1016/j.mtbio.2023.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Endochondral ossification (ECO) plays an integral part in bone augmentation, which undergoes sequential processes including mesenchymal stem cells (MSC) condensation, chondrocyte differentiation, chondrocyte hypertrophy, and mineralized bone formation. Thus, accelerating these steps will speed up the osteogenesis process through ECO. Herein, inspired by the marine mussels' adhesive mechanism, a bioactive glass-dopamine (BG-Dopa) hydrogel was prepared by distributing the micro-nano BG to aldehyde modified hyaluronic acid with dopamine-modified gelatin. By in vitro and in vivo experiments, we confirm that after implanting in the bone augmentation position, the hydrogel can adhere to the cortical bone surface firmly without sliding. Moreover, the condensation and hypertrophy of stem cells were accelerated at the early stage of ECO. Whereafter, the osteogenic differentiation of the hypertrophic chondrocytes was promoted, which lead to accelerating the late stage of ECO process to achieve more bone augmentation. This experiment provides a new idea for the design of bone augmentation materials.
Collapse
Affiliation(s)
- Shuyi Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Huacui Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yifan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Wangxi Wu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
8
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Atila D, Kumaravel V. Advances in antimicrobial hydrogels for dental tissue engineering: regenerative strategies for endodontics and periodontics. Biomater Sci 2023; 11:6711-6747. [PMID: 37656064 DOI: 10.1039/d3bm00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Dental tissue infections have been affecting millions of patients globally leading to pain, severe tissue damage, or even tooth loss. Commercial sterilizers may not be adequate to prevent frequent dental infections. Antimicrobial hydrogels have been introduced as an effective therapeutic strategy for endodontics and periodontics since they have the capability of imitating the native extracellular matrix of soft tissues. Hydrogel networks are considered excellent drug delivery platforms due to their high-water retention capacity. In this regard, drugs or nanoparticles can be incorporated into the hydrogels to endow antimicrobial properties as well as to improve their regenerative potential, once biocompatibility criteria are met avoiding high dosages. Herein, novel antimicrobial hydrogel formulations were discussed for the first time in the scope of endodontics and periodontics. Such hydrogels seem outstanding candidates especially when designed not only as simple volume fillers but also as smart biomaterials with condition-specific adaptability within the dynamic microenvironment of the defect site. Multifunctional hydrogels play a pivotal role against infections, inflammation, oxidative stress, etc. along the way of dental regeneration. Modern techniques (e.g., 3D and 4D-printing) hold promise to develop the next generation of antimicrobial hydrogels together with their limitations such as infeasibility of implantation.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
10
|
Tian T, Hu Q, Shi M, Liu C, Wang G, Chen X. The synergetic effect of hierarchical pores and micro-nano bioactive glass on promoting osteogenesis and angiogenesis in vitro. J Mech Behav Biomed Mater 2023; 146:106093. [PMID: 37651757 DOI: 10.1016/j.jmbbm.2023.106093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Hierarchical pores are important structural components of the bone tissue and are closely related to angiogenesis, nutrient transport, and metabolism involved in the repair of a bone defect. Here, we fabricated a composite scaffold having a hierarchical structure, based on micro-nano bioactive glass (MNBG) incorporated into poly (lactic-co-glycolic acid) (PLGA), and with camphene as a pore-forming agent for bone repair. The results showed that camphene formed abundant micropores in the walls of large pores, resulting in hierarchical pore structures ranging from a few microns to a hundred microns. Moreover, there was 2-3 folds increased in compressive modulus and the scaffolds showed a stable degradation rate and a higher degree of apatite crystallization than ordinary porous scaffolds. The results of in vitro studies showed that, when compared to ordinary porous scaffolds, PLGA-MNBG scaffolds with multi-holes could better promote the proliferation of bone marrow mesenchymal stem cells (BMSCs) and the expression of angiogenic marker (CD31) of human umbilical vein endothelial cells (HUVECs).
Collapse
Affiliation(s)
- Ting Tian
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333001, China
| | - Miao Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Cong Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
| | - Gang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
12
|
Ren Y, Kong W, Liu Y, Yang X, Xu X, Qiang L, Mi X, Zhang C, Niu H, Wang C, Wang J. Photocurable 3D-Printed PMBG/TCP Scaffold Coordinated with PTH (1-34) Bidirectionally Regulates Bone Homeostasis to Accelerate Bone Regeneration. Adv Healthc Mater 2023; 12:e2300292. [PMID: 37354129 DOI: 10.1002/adhm.202300292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Bone defect repair remains a major clinical challenge that requires the construction of scaffolds that can regulate bone homeostasis. In this study, a photo-cured mesoporous bioactive glass (PMBG) precursor is developed as a tricalcium phosphate (TCP) agglomerant to obtain a double-phase PMBG/TCP scaffold via 3D printing. The scaffold exhibits multi-scale porous structures and large surface areas, making it a suitable carrier for the loading of parathyroid hormone (PTH) (1-34), which is used for the treatment of osteoporosis. In vitro and in vivo results demonstrate that PMBG/TCP scaffolds coordinated with PTH (1-34) can regulate bone homeostasis in a bidirectional manner to facilitate bone formation and inhibit bone resorption. Furthermore, bidirectional regulation of bone homeostasis by PTH (1-34) is achieved by inhibiting fibrogenic activation protein (FAP). Thus, PMBG/TCP scaffolds coordinated with PTH (1-34) are viable materials with considerable potential for application in the field of bone regeneration and provide an excellent solution for the design and development of clinical materials.
Collapse
Affiliation(s)
- Ya Ren
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong Province, 266000, P. R. China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Xue Yang
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
| | - Xiang Xu
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuelian Mi
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
- Institute of Translational Medicine, Shanghai Jiaotong University, No. 800 DongChuan Road, Shanghai, 200240, P. R. China
| | - Haoyi Niu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Chengwei Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
- Shanghai Beierkang Biomedical Technology Co. LTD, No. 515 Shennan Rd, Shanghai, 201108, P. R. China
| | - Jinwu Wang
- Southwest Jiaotong University College of Medicine, No. 111, Second Ring Road, North Section 1, Chengdu, 610036, P. R. China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
13
|
Gupta T, Ghosh SB, Bandyopadhyay-Ghosh S, Sain M. Is it possible to 3D bioprint load-bearing bone implants? A critical review. Biofabrication 2023; 15:042003. [PMID: 37669643 DOI: 10.1088/1758-5090/acf6e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Rehabilitative capabilities of any tissue engineered scaffold rely primarily on the triad of (i) biomechanical properties such as mechanical properties and architecture, (ii) chemical behavior such as regulation of cytokine expression, and (iii) cellular response modulation (including their recruitment and differentiation). The closer the implant can mimic the native tissue, the better it can rehabilitate the damage therein. Among the available fabrication techniques, only 3D bioprinting (3DBP) can satisfactorily replicate the inherent heterogeneity of the host tissue. However, 3DBP scaffolds typically suffer from poor mechanical properties, thereby, driving the increased research interest in development of load-bearing 3DBP orthopedic scaffolds in recent years. Typically, these scaffolds involve multi-material 3D printing, comprising of at-least one bioink and a load-bearing ink; such that mechanical and biological requirements of the biomaterials are decoupled. Ensuring high cellular survivability and good mechanical properties are of key concerns in all these studies. 3DBP of such scaffolds is in early developmental stages, and research data from only a handful of preliminary animal studies are available, owing to limitations in print-capabilities and restrictive materials library. This article presents a topically focused review of the state-of-the-art, while highlighting aspects like available 3DBP techniques; biomaterials' printability; mechanical and degradation behavior; and their overall bone-tissue rehabilitative efficacy. This collection amalgamates and critically analyses the research aimed at 3DBP of load-bearing scaffolds for fulfilling demands of personalized-medicine. We highlight the recent-advances in 3DBP techniques employing thermoplastics and phosphate-cements for load-bearing applications. Finally, we provide an outlook for possible future perspectives of 3DBP for load-bearing orthopedic applications. Overall, the article creates ample foundation for future research, as it gathers the latest and ongoing research that scientists could utilize.
Collapse
Affiliation(s)
- Tanmay Gupta
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Mohini Sain
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Zhang Y, Zhang W, Zhang X, Zhou Y. Erbium-ytterbium containing upconversion mesoporous bioactive glass microspheres for tissue engineering: luminescence monitoring of biomineralization and drug release. Acta Biomater 2023; 168:628-636. [PMID: 37454706 DOI: 10.1016/j.actbio.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The development of functional biomaterials with real-time monitoring of mineralization processes, drug release and biodistribution has potential applications but remains an unsolved challenge. Herein, erbium- and ytterbium- containing mesoporous bioactive glass microspheres (MBGs:Er/Yb) with blue and red emission at an excitation wavelength of 980 nm were synthesized by a sol-gel combined with organic template method. As the concentration of Yb3+ ions gradually increases, the emission intensity of the MBGs:Er/Yb exhibits a clear concentration quenching effect. Combined with in vitro bioactivity tests, the optimal molar ratio of Er3+/Yb3+ was determined to be 4:3. Therefore, MBGs:4Er/3Yb was selected for in vitro biomineralization and drug release monitoring. The results of biomineralization monitoring show that the upconversion luminescence intensity is closely related to the degree of biomineralization. The upconversion luminescence intensity of MBGs:4Er/3Yb is quenched with the increase of the degree of biomineralization. The degree of luminescence quenching during biomineralization can be semiquantized. Drug release monitoring experiments showed that the anticancer drug doxorubicin hydrochloride (DOX) was successfully loaded into MBGs:4Er/3Yb and selectively quenched the green emission. When DOX was released, the green emission recovered stably, and It/I0 increased gradually. Moreover, there was a linear relationship between It/I0 and cumulative drug release, indicating that DOX-MBGs:4Er/3Yb is highly sensitive to DOX release, and monitoring the It/I0 values of DOX-MBGs:4Er/3Yb can achieve real-time tracking of the DOX release process to a certain extent. In conclusion, MBGs:4Er/3Yb has potential application as an upconversion luminescence biomonitoring material in the field of bone tissue engineering. STATEMENT OF SIGNIFICANCE: Mesoporous bioactive glasses have great potential for applications in bone tissue repair due to their excellent biological properties, but the effective information of the repair process cannot be grasped in a timely manner. Therefore, real-time monitoring of mineralization and drug release processes will be beneficial to obtain the degree of healing and optimize the amount and distribution of drugs to improve targeted therapeutic effects. For biomaterials, in vitro biological properties determine their biological properties in vivo, where the environment is more complex and diverse, and thus in vitro biomonitoring is particularly crucial. The organic combination of physical properties and biological properties will also provide a feasible idea for the development of biomaterials.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaona Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yu Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
15
|
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, Davaran S, Orive G. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol 2023; 246:125674. [PMID: 37406921 DOI: 10.1016/j.ijbiomac.2023.125674] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Annually, millions of patients suffer from irreversible injury owing to the loss or failure of an organ or tissue caused by accident, aging, or disease. The combination of injectable hydrogels and the science of stem cells have emerged to address this persistent issue in society by generating minimally invasive treatments to augment tissue function. Hydrogels are composed of a cross-linked network of polymers that exhibit a high-water retention capacity, thereby mimicking the wet environment of native cells. Due to their inherent mechanical softness, hydrogels can be used as needle-injectable stem cell carrier materials to mend tissue defects. Hydrogels are made of different natural or synthetic polymers, displaying a broad portfolio of eligible properties, which include biocompatibility, low cytotoxicity, shear-thinning properties as well as tunable biological and physicochemical properties. Presently, novel ongoing developments and native-like hydrogels are increasingly being used broadly to improve the quality of life of those with disabling tissue-related diseases. The present review outlines various future and in-vitro applications of injectable hydrogel-based biomaterials, focusing on the newest ongoing developments of in-situ forming injectable hydrogels for bone and cartilage tissue engineering purposes.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran; Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Alehosseini
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; University of the Basque Country, Spain.
| |
Collapse
|
16
|
Du J, Fan L, Razal JM, Chen S, Zhang H, Yang H, Li H, Li J. Strontium-doped mesoporous bioglass nanoparticles for enhanced wound healing with rapid vascularization. J Mater Chem B 2023; 11:7364-7377. [PMID: 37431606 DOI: 10.1039/d3tb01256e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Tissue engineered skin and its substitutes have a promising future in wound healing. However, enabling fast formation of blood vessels during the wound healing process is still a huge challenge to the currently available wound substitutes. In this work, active mesoporous bioglass nanoparticles with a high specific surface area and doped with strontium (Sr) were fabricated for rapid microvascularization and wound healing. The as-prepared bioglass nanoparticles with Sr ions significantly promoted the proliferation of fibroblasts and microvascularization of human umbilical vein endothelial cells in vitro. Silk fibroin sponges encapsulating the nanoparticles accelerated wound healing by promoting the formation of blood vessels and epithelium in vivo. This work provides a strategy for the design and development of active biomaterials for enhancing wound healing by rapid vascularization and epithelial reconstruction.
Collapse
Affiliation(s)
- Juan Du
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Hongmei Zhang
- School of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
17
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
18
|
Zhang L, Liu YX, Yao YT, Zhou TJ, Jiang HL, Li CJ. Injectable rhein-assisted crosslinked hydrogel for efficient local osteosarcoma chemotherapy. Int J Pharm 2023; 634:122637. [PMID: 36702387 DOI: 10.1016/j.ijpharm.2023.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Osteosarcoma (OS) is the most common malignant tumor of the bone that affects children and adolescents, and its treatment usually involves doxorubicin hydrochloride (DOX). However, the drug resistance and side effects caused by high-dose DOX infusion greatly hinder its therapeutic effects. To achieve efficient OS treatment with low toxicity, an injectable rhein (RH)-assisted crosslinked hydrogel (PVA@RH@DOX hydrogel, PRDH) was designed, which was prepared by loading DOX and RH into a polyvinyl alcohol (PVA) solution. The cytotoxicity assay and live/dead staining results showed that the combination of RH and DOX more effectively killed OS cells, producing excellent effects at low concentrations of DOX. The wound healing and transwell test results proved that PRDH could significantly inhibit the metastasis and invasion of OS cells. PRDH showed a long-lasting antitumor effect after injection of a single dose, significantly suppressing the proliferation and metastasis of OS and achieving the strategy of a single administration for long-term treatment. Excitingly, RH facilitated hydrogel formation by assisting with PVA crosslinking. This system provides an alternative regimen and broadens the horizon for the clinical treatment of OS.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China
| | - Ying-Xuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ya-Ting Yao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Cheng-Jun Li
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|