1
|
Ultimo A, Jain A, Gomez-Gonzalez E, Alex TS, Moreno-Borrallo A, Jana S, Ghosh S, Ruiz-Hernandez E. Nanotherapeutic Formulations for the Delivery of Cancer Antiangiogenics. Mol Pharm 2025; 22:2322-2349. [PMID: 40184281 PMCID: PMC12056699 DOI: 10.1021/acs.molpharmaceut.4c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Antiangiogenic medications for cancer treatment have generally failed in showing substantial benefits in terms of prolonging life on their own; their effects are noticeable only when combined with chemotherapy. Moreover, treatments based on prolonged antiangiogenics administration have demonstrated to be ineffective in stopping tumor progression. In this scenario, nanotherapeutics can address certain issues linked to existing antiangiogenic treatments. More specifically, they can provide the ability to target the tumor's blood vessels to enhance drug accumulation and manage release, ultimately decreasing undesired side effects. Additionally, they enable the administration of multiple angiogenesis inhibitors at the same time as chemotherapy. Key reports in this field include the design of polymeric nanoparticles, inorganic nanoparticles, vesicles, and hydrogels for loading antiangiogenic substances like endostatin and interleukin-12. Furthermore, nanoformulations have been proposed to efficiently control relevant pro-angiogenic pathways such as VEGF, Tie2/Angiopoietin-1, HIF-1α/HIF-2α, and TGF-β, providing powerful approaches to block tumor growth and metastasis. In this article, we outline a selection of nanoformulations for antiangiogenic treatments for cancer that have been developed in the past ten years.
Collapse
Affiliation(s)
- Amelia Ultimo
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Ayushi Jain
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Elisabet Gomez-Gonzalez
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Thomson Santosh Alex
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Almudena Moreno-Borrallo
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Sukanya Jana
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| | - Shubhrima Ghosh
- Trinity
Translational Medicine Institute, Trinity College Dublin, the University
of Dublin, St. James’s
Hospital, Dublin 8 D08 NHY1, Ireland
- School
of Biological, Health and Sports Sciences, Technological University Dublin, Grangegorman Lower, Dublin 7 D07 ADY7, Ireland
| | - Eduardo Ruiz-Hernandez
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, the University of Dublin, College Green, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
2
|
Baldan M, Zhang S, Sun Q, Su Y, Mei D, Sun R, Zheng A, Liu D, Zhang J, Huo R, Tian Y, Han L, Wang S, Wang Y, Cui C. NIR-Triggered siRNA Release and Lysosomal Escape for Synergistic Photothermal Tumor Therapy. Int J Nanomedicine 2025; 20:4863-4882. [PMID: 40259913 PMCID: PMC12010081 DOI: 10.2147/ijn.s511655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Abstract
Background Resistance to traditional treatments has spurred research into innovative therapeutic approaches for tumors. Among these innovative treatments, photothermal therapy (PTT) has gained increasing attention for its use of photothermal agents (PTAs) to convert light into heat for localized tumor ablation. However, PTT faces limitations due to heat shock protein 70 (HSP70)-mediated resistance in tumor cells. Combining PTT via indocyanine green (ICG) with siRNA HSP70 could reduce the thermal resistance of the tumor, thereby enhancing treatment efficacy. Albumin-based nanoparticles (NPs) can effectively deliver ICG and siRNA into tumor cells. When exposed to near-infrared (NIR) light, these nanoparticles trigger lysosomal escape and release, further enhancing gene silencing activity. Methods This study aimed to develop a biocompatible delivery system, HSA@ICG/siRNA NPs, for photothermal-enhanced tumor therapy. The nanoparticles were characterized for size, charge, surface functionalization, and photoconversion properties. In vitro antitumor efficacy was evaluated using MTT assay, calcein AM/PI staining, RT-PCR, and Western blot in 4T1 tumor cells. In vivo, we assessed photothermal effects, biodistribution, tumor inhibition, and biosafety following irradiation. Results Characterization confirmed the successful synthesis of uniform, stable HSA@ICG/siRNA NPs with effective photothermal conversion properties. Cellular uptake studies revealed high siRNA internalization, with laser-induced lysosomal escape enhancing cytoplasmic delivery. In vitro, gene silencing reduced mRNA and protein levels by 82.8% and 65%, respectively. In vivo, local tumor temperature increased to 42°C within 3 minutes, indicating a mild but effective photothermal effect. Tumor inhibition rates were 50.00% ± 9.16% for HSA@ICG and 71.26% ± 7.92% for HSA@ICG/siRNA, demonstrating enhanced tumor suppression. The treatment achieved sustained tumor targeting with minimal off-target toxicity. Conclusion As a dual-function photothermal therapy agent, HSA@ICG/siRNA NPs combine targeted gene silencing with photothermal effects, demonstrating significant therapeutic promise. This integrated approach addresses tumor resistance, offering a potential advancement in cancer treatment strategies.
Collapse
Affiliation(s)
- Myagmarsuren Baldan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Shuang Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Qi Sun
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yan Su
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Dong Mei
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
- Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Ran Sun
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Ao Zheng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Danni Liu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Ran Huo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yang Tian
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Le Han
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Shibo Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yaoqi Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Chunying Cui
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing Laboratory of Biomedical Materials, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, People’s Republic of China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Zhao X, Zhong Q, Abudouaini N, Zhao Y, Zhang J, Tan G, Miao G, Wang X, Liu J, Pan Y, Wang X. Switchable Nanophotosensitizers as Pyroptosis Inducers for Targeted Boosting of Antitumor Photoimmunotherapy. Biomacromolecules 2025. [PMID: 40200409 DOI: 10.1021/acs.biomac.5c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising modality for cancer treatment, but its clinical application is constrained by unexpected phototoxicity arising from nonspecific photosensitizer activation and their "always-on" nature. Herein, we developed a switchable nanophotosensitizer, poly(cation-π) nanoparticles (NP), which achieves supramolecular assembly through cation-π interactions. By coupling choline cationic moieties with aromatic photosensitizers (ZnPc), the polymer facilitates self-assembly driven by cation-π interactions for NP engineering. Surprisingly, the photoactivity of ZnPc was completely quenched upon complexation via cation-π interactions, thereby significantly avoiding skin phototoxicity. Upon targeting tumor cells, NP undergoes a GSH-responsive degradation process that weakens cation-π interactions, leading to spontaneous restoration of photoactivity and amplifying tumor immunogenic pyroptosis. In vivo studies demonstrated that NP achieved a high tumor inhibition rate of 84% while effectively avoiding skin phototoxicity. This work provides a novel perspective for enhancing the safety and efficacy of PDT-based tumor treatment.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinjie Zhong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Naibijiang Abudouaini
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jibin Zhang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Natural Drugs Research and Development, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| |
Collapse
|
4
|
Selim S, Almuhayawi MS, Alruhaili MH, Saddiq AA, Baghdadi AM, Atta RMS, Al Jaouni SK. Synthesis, characterization, anticancer, antibacterial and antifungal activities of nanocomposite based on tertiary metal oxide Fe 2O 3@CuO@ZnONPs, starch, ethylcellulose and collagen. Int J Biol Macromol 2025; 301:140376. [PMID: 39880259 DOI: 10.1016/j.ijbiomac.2025.140376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
This study aimed to synthesize a nanocomposite based on tertiary metal oxide Fe2O3@CuO@ZnONPs, starch, ethylcellulose, and collagen, as well as evaluate its biological activities. The prepared nanocomposites were characterized using physicochemical analysis, which included FTIR, XRD, and DLS. Additionally, topographical analysis using FI-SEM, EDX, mapping, HR-TEM, and SAED affirmed the molecular structure and nanosized of formulated nanocomposites. Moreover, DLS performed a size of free nanocomposite (Bnanocomp) and trimetallic loaded nanocomposite (Lnanocomp) as 158 and 105 nm, respectively. The synthesized loaded nanocomposite with metal oxides (Lnanocomp) was assessed for cytotoxicity on normal and cancerous cell lines. Results revealed that the IC50 of Lnanocomp toward Wi-38 normal cell line was 196.4 μg/mL; this confirms that Lnanocomp is non-toxic and safe in use. Moreover, Lnanocomp displayed anticancer activity against Hep-G2 with IC50 53.7 μg/mL. Furthermore, Lnanocomp displayed potential antibacterial activity toward E. coli, P. aeruginosa, S. typhimurium, S. aureus, and B. subtilis with MICs 50, 50, 12.5, 50, and 25 μg/mL, respectively. Also, Lnanocomp exhibited antifungal activity where MIC was 200, 50, and 100 μg/mL toward C. albicans, A. fumigatus, and A. brasilienisis respectively. In conclusion, the prepared Fe2O3@CuO@ZnONPs-based nanocomposite shows promising synergetic antibacterial, antifungal, and anticancer activities with state biocompatibility.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia.
| | - Amna A Saddiq
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Afra Mohammed Baghdadi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Roba M S Atta
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Raj M, Meena A, Seth R, Mathur A, Luqman S. An update on nanoformulations with FDA approved drugs for female reproductive cancer. J Microencapsul 2025:1-34. [PMID: 40114400 DOI: 10.1080/02652048.2025.2474457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.
Collapse
Affiliation(s)
- Mahima Raj
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Zhang H, Yang M, Wu Q, Xue J, Liu H. Engineering Two-Dimensional Nanomaterials for Photothermal Therapy. Angew Chem Int Ed Engl 2025; 64:e202424768. [PMID: 39936912 DOI: 10.1002/anie.202424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Two-dimensional (2D) nanomaterials offer a transformative platform for photothermal therapy (PTT) due to their unique physicochemical properties and exceptional photothermal conversion efficiencies. This Minireview summarizes the photothermal mechanisms of common 2D nanomaterials and details their synthesis, surface modification, and optimization strategies. Recent advances leveraging 2D nanomaterials for enhanced PTT are highlighted, with particular emphasis on synergistic therapeutic modalities. Despite the significant potential of 2D nanomaterials in PTT, challenges persist, including scalable and reproducible manufacturing, precise targeted delivery, understanding of the underlying biological interactions, and comprehensive assessment of long-term biocompatibility and toxicity. Looking forward, emerging technologies such as machine learning are expected to play a crucial role in accelerating the design and optimization of 2D nanomaterials for PTT, enabling the prediction of optimal structures, properties, and therapeutic efficacy, and ultimately paving the way for personalized nanomedicine.
Collapse
Affiliation(s)
- Haoyuan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Min Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Qingyuan Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, No. 30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiajia Xue
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
7
|
Pan Y, Zhao H, Huang W, Liu S, Qi Y, Huang Y. Metal-Protein Hybrid Materials: Unlocking New Frontiers in Biomedical Applications. Adv Healthc Mater 2025; 14:e2404405. [PMID: 39778029 DOI: 10.1002/adhm.202404405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Metal-protein hybrid materials represent a novel class of functional materials that exhibit exceptional physicochemical properties and tunable structures, rendering them remarkable applications in diverse fields, including materials engineering, biocatalysis, biosensing, and biomedicine. The design and development of multifunctional and biocompatible metal-protein hybrid materials have been the subject of extensive research and a key aspiration for practical applications in clinical settings. This review provides a comprehensive analysis of the design strategies, intrinsic properties, and biomedical applications of these hybrid materials, with a specific emphasis on their potential in cancer therapy, drug and vaccine delivery, antibacterial treatments, and tissue regeneration. Through rational design, stable metal-protein hybrid materials can be synthesized using straightforward methods, enabling them with therapeutic, delivery, immunomodulatory, and other desired functionalities. Finally, the review outlines the existing limitations and challenges associated with metal-protein hybrid materials and evaluates their potential for clinical translation, providing insights into their practical implementation within biomedical applications.
Collapse
Affiliation(s)
- Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Han Zhao
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Wenyong Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Siyang Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| |
Collapse
|
8
|
He L, Liu N, Pan R, Zhu J. Copper(II)-Complexed Polyethylenimine-Entrapped Gold Nanoparticles Enable Targeted CT/MR Imaging and Chemodynamic Therapy of Tumors. Polymers (Basel) 2025; 17:423. [PMID: 39940627 PMCID: PMC11819761 DOI: 10.3390/polym17030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Transition-metal ion copper(II) (Cu(II)) has drawn increasing attention as a small-molecular cancer theranostic agent. However, delivering a sufficient dosage of Cu(II) to the tumor site and integrating multiple imaging modalities to achieve precise and effective cancer theranostics remains a critical challenge. Herein, an emerging Cu(II)-based nanocomposite has been synthesized for targeted tumor computed tomography (CT)/magnetic resonance (MR) dual-mode imaging and chemodynamic therapy (CDT). Briefly, 2-picolinic acid (PA-COOH), polyethylene glycol (PEG)-linked folic acid (FA), and fluorescein isothiocyanate (FI) were sequentially conjugated with polyethylenimine (PEI.NH2) and then in situ fabrication of gold nanoparticles (Au NPs) occurred within the PEI.NH2 internal cavity. After acetylation of PEI.NH2 terminal amines and Cu(II) complexation, the Cu(II)-based nanocomposites FA-Au/Cu(II) PENPs with a mean diameter of 2.87 nm were generated. The synthesized FA-Au/Cu(II) PENPs showed favorable stability of colloidal dispersion, sustainable Cu(II) release properties in a pH-dependent manner, and Fenton-like catalytic activity specifically. With the FA-mediated targeting pathway, FA-Au/Cu(II) PENPs can specifically accumulate in cancer cells with high expression of FA receptors. Meanwhile, the complementary CT/MR dual-mode imaging in vitro and in vivo can be afforded by FA-Au/Cu(II) PENPs based on the excellent X-ray attenuation properties of Au NPs and the applicable r1 relaxivity (0.7378 mM-1s-1) of Cu(II). Notably, the Cu(II)-mediated CDT mechanism enables FA-Au/Cu(II) PENPs to elicit the generation of toxic hydroxyl radicals (·OH), depletion of glutathione (GSH), promotion of lipid peroxidation (LPO), and induction of cancer cell apoptosis in vitro, and further demonstrates remarkable anti-tumor efficacy in a xenograft tumor model. With the illustrated targeted theranostic capacity of FA-Au/Cu(II) PENPs towards tumors, this Cu(II)-based nanocomposite paradigm inspires the construction of advanced theranostic nanoplatforms incorporating alternative transition metal ions.
Collapse
Affiliation(s)
- Lingxiu He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.H.); (N.L.)
| | - Na Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.H.); (N.L.)
| | - Risong Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Jingyi Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China; (L.H.); (N.L.)
| |
Collapse
|
9
|
Tan G, Zhong Q, Zhang J, He P, Zhao X, Miao G, Xu Y, Wang X. A general strategy towards activatable nanophotosensitizer for phototoxicity-free photodynamic therapy. Theranostics 2025; 15:943-964. [PMID: 39776796 PMCID: PMC11700870 DOI: 10.7150/thno.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Photodynamic therapy (PDT) has gained widespread attention in cancer treatment, but it still faces clinical problems such as skin phototoxicity. Activatable photosensitizers offer a promising approach to addressing this issue. However, several significant hurdles need to be overcome, including developing effective activation strategies and achieving the optimal balance between photodynamic effects and related side effects. Herein, we present a novel and general strategy for the construction of tumor-targeted activatable nanophotosensitizers (TNP1/PSs). Methods: TNP1/PSs were constructed through simple nanoprecipitation method, leveraging the strong cation-π interaction between cationic polymers and aromatic photosensitizers. We conducted a comprehensive characterization and investigation of the photoactivity, as well as the mechanisms underlying both OFF state and switched-on properties of TNP1/PSs. Additionally, we thoroughly evaluated the cytotoxicity, tumor-targeted ability, and anti-tumor efficacy of TNP1/PSs in the 4T1 cell line. Results: TNP1/PSs exhibit a markedly fully OFF state of photoactivity, subsequent to self-assembly through cation-π interactions in aqueous media. The mechanism study reveals a multi-pathway process induced by cation-π complexes, which includes reduced absorption and radiative decay, as well as enhanced thermal decay and intermolecular charge transfer. Upon targeting tumor cells, TNP1/PSs were effectively endocytosed and predominantly traversed the lysosomes, where degradation of the cationic polymer occurs, resulting in the spontaneous switch-on of PDT activity. In vivo studies employing small animal models demonstrated that the as-synthesized nanophotosensitizer possesses remarkable anti-tumor activity while completely avoiding skin phototoxicity. Conclusion: This work provides a powerful platform for efficiently constructing tumor-targeted activatable nanophotosensitizers, paving the way for safe and effective photodynamic therapy in cancer treatment.
Collapse
Affiliation(s)
- Guozhu Tan
- Department of Orthopaedics and Traumatology, The Seventh Affiliated Hospital, Southern Medical University 528000, Foshan, Guangdong Province, China
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China
| | - Qinjie Zhong
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China
| | - Jibin Zhang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China
| | - Peiyi He
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China
| | - Xiaoxi Zhao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China
| | - Guifeng Miao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, Guangdong Province, China
| | - Yafei Xu
- Department of Orthopaedics and Traumatology, The Seventh Affiliated Hospital, Southern Medical University 528000, Foshan, Guangdong Province, China
| | - Xiaorui Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University 510515, Guangzhou, Guangdong Province, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Veloso-Giménez V, Cárdenas-Calderón C, Castillo V, Carvajal F, Gallardo-Agüero D, González-Itier S, Corrales-Orovio R, Becerra D, Miranda M, Rebolledo R, San Martín S, Boric MP, Egaña JT. Oxygenation by Intravascular Photosynthesis Reduces Kidney Damage During ex Vivo Preservation. ACS APPLIED BIO MATERIALS 2024; 7:8528-8542. [PMID: 39514332 DOI: 10.1021/acsabm.4c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Several clinical issues are associated with reduced oxygen delivery to tissues due to impaired vascular perfusion; moreover, organs procured for transplantation are subjected to severe hypoxia during preservation. Consequently, alternative tissue oxygenation is an active field in biomedical research where several innovative approaches have been recently proposed. Among these, intravascular photosynthesis represents a promising approach as it relies on the intrinsic capacity of certain microorganisms to produce oxygen upon illumination. In this context, this work aims at the development of photosynthetic perfusable solutions that could be applied to preserve organs for transplantation purposes. Our findings demonstrate that a biocompatible physiological solution containing the photosynthetic microalgae Chlamydomonas reinhardtii can fulfill the metabolic oxygen demand of rat kidney slices in vitro. Furthermore, intravascular administration of this solution does not induce tissue damage in the rat kidneys. Moreover, kidney slices obtained from these algae-perfused organs exhibited significantly improved preservation after 24 h of incubation in hypoxia while exposed to light, resulting in reduced tissue damage and enhanced metabolic status. Overall, the results presented here contribute to the development of alternative strategies for tissue oxygenation, supporting the use of perfusable photosynthetic solutions for organ preservation in transplantation.
Collapse
Affiliation(s)
- Valentina Veloso-Giménez
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Camila Cárdenas-Calderón
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Valentina Castillo
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Felipe Carvajal
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Daniela Gallardo-Agüero
- Center of Interdisciplinary Biomedical and Engineering Research for Health (MEDING), School of Medicine, Universidad de Valparaíso, Angamos 655, Viña del Mar 2540064, Chile
| | - Sergio González-Itier
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Ziemssenstraße 5, Munich 80336, Germany
| | - Daniela Becerra
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Miguel Miranda
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- Department of Morphological Sciences, Faculty of Medicine, Universidad San Sebastian, General Lagos 1163, Valdivia 5110693, Chile
| | - Rolando Rebolledo
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Av. Concha y Toro 3459, Santiago 8150215, Chile
| | - Sebastián San Martín
- Center of Interdisciplinary Biomedical and Engineering Research for Health (MEDING), School of Medicine, Universidad de Valparaíso, Angamos 655, Viña del Mar 2540064, Chile
| | - Mauricio P Boric
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| |
Collapse
|
11
|
Deng W, Wei Z, Xu Y, Gong Z, Cai F, Shi Q, Guo K, Jia M, Zhao Y, Feng Y, Deng J, Zhang B. "One-Pot" Synthesized Phosphorus Corrole-Based Metal-Organic Frameworks for Synergistic Phototherapy and Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408975. [PMID: 39676348 DOI: 10.1002/smll.202408975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Indexed: 12/17/2024]
Abstract
As a distinctive class of porphyrin derivatives, corroles offer exceptional potential in phototherapy applications owing to their unique electronic structures. However, developing metal-organic frameworks (MOFs) that incorporate photosensitive corroles as functional ligands for synergistic phototherapy remains a formidable challenge. Herein, for the first time, the unique phosphorus corrole-based MOFs Cor(P)-Hf with (3,18)-connected gea topology are reported, which are constructed by Cs-symmetric dicarboxylate 3-connected linkers, 10-pentafluorophenyl-5,15-di(p-benzoate)phosphorus corrole (Cor(P)), and the peculiar D3h-symmetric 18-connected Hf12-oxo clusters. Interestingly, six para-position F substituents of six Cor(P) linkers are found to be coordinated with the apex of the Hf12-oxo cluster through Hf-F bonds along the c-axis direction, which is believed to help stabilize the framework. Furthermore, the mixed corrolic ligand-based MOFs Cor(P)/Cor(Cu)-Hf and Cor(P)/Cor(Fe)-Hf involving Cor(Fe) or Cor(Cu) as the secondary functional linkers are constructed by a simple "one-pot" solvent-thermal method, respectively. Remarkably, Cor(P)/Cor(Fe)-Hf facilitates synergistic phototherapy combining photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) when activated by an 808 nm laser, as evidenced by in vivo and in vitro experiments. This study demonstrates corrole-based MOFs Cor(P)-Hf as a powerful multifunctional nanoplatform for anti-cancer phototherapy.
Collapse
Affiliation(s)
- Wenbo Deng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Zixiang Wei
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yunhao Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhichao Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fenglin Cai
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Quan Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Kai Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Meng Jia
- Xi'an Aerospace Propulsion Test Technology Institute, Xian, 710000, China
| | - Yanming Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zheng Zhou, 450000, China
| | - Yaqing Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jingyu Deng
- Department of Gastric Surgery, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
12
|
Ryu D, Park HB, An EK, Kim SJ, Kim DY, Lim D, Hwang J, Kwak M, Im W, Ryu JH, You S, Lee PCW, Jin JO. Photoimmunotherapy using indocyanine green-loaded Codium fragile polysaccharide and chitosan nanoparticles suppresses tumor growth and metastasis. J Nanobiotechnology 2024; 22:650. [PMID: 39438917 PMCID: PMC11515802 DOI: 10.1186/s12951-024-02944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Metastasis and recurrence are the main challenges in cancer treatment. Among various therapeutic approaches, immunotherapy holds promise for preventing metastasis and recurrence. In this study, we evaluated the efficacy of treating primary cancer and blocking metastasis and recurrence with photo-immunotherapeutic nanoparticles, which were synthesized using two types of charged polysaccharides. Codium fragile polysaccharide (CFP), which exhibits immune-stimulating properties and carries a negative charge, was combined with positively charged chitosan to synthesize nanoparticles. Additionally, indocyanine green (ICG), a photosensitizer, was loaded inside these particles and was referred to as chitosan-CFP-ICG (CC-ICG). Murine colon cancer cells (CT-26) internalized CC-ICG, and subsequent 808-nanometer laser irradiation promoted apoptotic/necrotic cell death. Moreover, intratumoral injection of CC-ICG, with 808-nanometer laser irradiation eliminated CT-26 tumors in mice. Rechallenged lung metastases of CT-26 cancer were inhibited by dendritic cell activation-mediated cytotoxic T lymphocyte stimulation in mice cured by CC-ICG. These results demonstrated that CC-ICG is a natural tumor therapeutic with the potential to treat primary tumors and suppress metastasis and recurrence.
Collapse
Affiliation(s)
- Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - So-Jung Kim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Da Young Kim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Daeun Lim
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea
| | - Juyoung Hwang
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Wonpil Im
- Departments of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung Daehangno, Gangneung, Gangwon, 210-702, South Korea.
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, 05505, South Korea.
| |
Collapse
|
13
|
Merlin JPJ, Crous A, Abrahamse H. Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. Int J Mol Sci 2024; 25:10796. [PMID: 39409125 PMCID: PMC11477455 DOI: 10.3390/ijms251910796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT induces selective cellular damage and death by activating photosensitizers (PS) with certain wavelengths of light. However, PDT's efficacy can be hampered by issues such as poor light penetration and a lack of selectivity. To overcome these challenges, targeted drug delivery systems have emerged as a promising technique for precisely delivering therapeutic medicines to tumor cells while avoiding off-target effects. We investigate how these technologies can improve mitochondrial targeting and damage, which is critical for causing cancer cell death. The combination method seeks to capitalize on the advantages of both modalities: selective PDT activation and specific targeted drug delivery. We review current preclinical and clinical evidence supporting the efficacy of this combination therapy, focusing on case studies and experimental models. This review also addresses issues such as safety, distribution efficiency, resistance mechanisms, and costs. The prospects of further research include advances in photodynamic agents and medication delivery technology, with a focus on personalized treatment. In conclusion, combining PDT with targeted drug delivery systems provides a promising frontier in cancer therapy, with the ability to overcome current treatment limits and open the way for more effective, personalized cancer treatments.
Collapse
Affiliation(s)
- J. P. Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (A.C.); (H.A.)
| | | | | |
Collapse
|
14
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
15
|
Pesnel S, Bertolotti A, Duquenne S, Zahouani H, Mortier L, Perrot J, Morel A. Plasmonic nanophotothermal therapy: Destruction of 500 mm 3 subcutaneous human basal cell carcinoma with gold nanoparticles and near infrared laser. Skin Res Technol 2024; 30:e13890. [PMID: 39096178 PMCID: PMC11297533 DOI: 10.1111/srt.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
SIGNIFICANCE Multilesional basal cell carcinoma (BCC) are spread on sun exposed skin areas, including arms, face and back. The first-line treatment remains the surgical resection or Mohs surgery. Despite its high complexity, Mohs surgery is well practiced in USA and Germany and presents very good results both in esthetic and in carcinology point of view. Large lesions more than 2 cm remain challenging to remove by topical cream used in photodynamic therapy (PDT). If these larger lesions are not treated in less than 1 month, they could grow deeply in the skin, thus enhancing the risk of reoccurrence and the severity of the disease. Despite this model herein studied, that is non melanoma skin cancer is a good prognostic cancer, the therapy aims to be applied to more aggressive melanoma skin cancers. AIM Total regression of large cutaneous lesions less than 1 month with no reoccurrence. APPROACH Tumor induction on murine model bearing a 500 mm3 subcutaneous lesion. Increasing dose of gold nanoparticles at fixed initial concentration C0 = 0.3 mg/mL, infused into the tumor then exposition of the region of interest to NIR medical laser to assess the therapy. One or two intratumoral administration(s) were compared to surgery and control, that is no treatment, laser alone or nanoparticles alone. RESULTS Gold nanoparticles alone or the NIR laser alone did not induce the tumor regression. The combination of laser and nanoparticles called plasmonic nanophotothermal therapy induced apoptosis. Derma and hypoderm do not show any visible gold nanoparticles and demonstrated a good cicatrization process. CONCLUSION Plasmonic nanophotothermal therapy using two doses of gold nanoparticles was the only protocol that proved its efficacy on large lesions in 14 days, that is 500 mm3 on a murine model bearing human basal cell carcinoma.
Collapse
Affiliation(s)
| | - Antoine Bertolotti
- CICEC‐INSERM1410, Service de Maladies‐Infectieuses et DermatologieCHU RéunionSaint‐Pierre CedexRéunionFrance
| | | | | | - Laurent Mortier
- CHRU Lille, Service de Dermatologie, Hôpital HuriezLilleFrance
| | - Jean‐Luc Perrot
- CHU Saint Etienne, Service de dermatologie, Hôpital NordLilleFrance
| | | |
Collapse
|
16
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
17
|
Xian T, Liu Y, Song Q, Li J, Liu W, Gu Z. NIR-Mediated Cu 2O/Au Nanomotors for Synergistically Treating Hepatoma Carcinoma Cells. Chem Asian J 2024; 19:e202301137. [PMID: 38285022 DOI: 10.1002/asia.202301137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We presented a NIR-driven Janus Cu2O/Au nanomotor. The nanomotor has a truncated octahedral structure. By asymmetric Au evaporation, the light response range of Cu2O nanomotor is extended to near-infrared range, and the speed of Cu2O/Au nanomotors under NIR is significantly increased. In promoting apoptosis of hepatocellular carcinoma, except the nanotoxicity of Cu2O itself, the Au layer enhances the photothermal properties, allowing Cu2O/Au nanomotors to induce apoptosis in hepatocellular carcinoma cells by heating them. On the other hand, a Schottky barrier formed at the interface of Cu2O and Au, preventing the recombination of electrons, which makes more electrons react with biomolecules to produce toxic ROS to kill hepatocellular cells. The killing rate of hepatocellular carcinoma cells reached 87 % by the combined effect of nanotoxicity inhibition of proliferation and photothermal & photodynamic therapy (PTT & PDT). Nanomotors in combination with multiple approaches are explored as a new treatment to tumor in this article.
Collapse
Affiliation(s)
- Ting Xian
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yilin Liu
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingtao Song
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjuan Liu
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Adv. Mater., College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
18
|
Zhang L, Parvin R, Lin S, Chen M, Zheng R, Fan Q, Ye F. Peptide Nucleic Acid Clamp-Assisted Photothermal Multiplexed Digital PCR for Identifying SARS-CoV-2 Variants of Concern. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306088. [PMID: 38243642 PMCID: PMC10987151 DOI: 10.1002/advs.202306088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/16/2023] [Indexed: 01/21/2024]
Abstract
The unprecedented demand for variants diagnosis in response to the COVID-19 epidemic has brought the spotlight onto rapid and accurate detection assays for single nucleotide polymorphisms (SNPs) at multiple locations. However, it is still challenging to ensure simplicity, affordability, and compatibility with multiplexing. Here, a novel technique is presented that combines peptide nucleic acid (PNA) clamps and near-infrared (NIR)-driven digital polymerase chain reaction (dPCR) to identify the Omicron and Delta variants. This is achieved by simultaneously identifying highly conserved mutated signatures at codons 19, 614, and 655 of the spike protein gene. By microfluidically introducing graphene-oxide-nanocomposite into the assembled gelatin microcarriers, they achieved a rapid temperature ramping-up rate and switchable gel-to-sol phase transformation synchronized with PCR activation under NIR irradiation. Two sets of duplex PCR reactions, each classifying respective PNA probes, are emulsified in parallel and illuminated together using a homemade vacuum-based droplet generation device and a programmable NIR control module. This allowed for selective amplification of mutant sequences due to single-base-pair mismatch with PNA blockers. Sequence-recognized bioreactions and fluorescent-color scoring enabled quick identification of variants. This technique achieved a detection limit of 5,100 copies and a 5-fold quantitative resolution, which is promising to unfold minor differences and dynamic changes.
Collapse
Affiliation(s)
- Lexiang Zhang
- Joint Centre of Translational Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000China
- Key Laboratory of Structural Malformations in Children of Zhejiang Provincethe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325027China
| | - Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000China
| | - Siyue Lin
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Mingshuo Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000China
| | - Ruixuan Zheng
- Joint Centre of Translational Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina100190
| | - Fangfu Ye
- Joint Centre of Translational Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina100190
| |
Collapse
|
19
|
Merlin JPJ, Crous A, Abrahamse H. Nano-phototherapy: Favorable prospects for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1930. [PMID: 37752098 DOI: 10.1002/wnan.1930] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Nanotechnology-based phototherapies have drawn interest in the fight against cancer because of its noninvasiveness, high flexibility, and precision in terms of cancer targeting and drug delivery based on its surface properties and size. Phototherapy has made remarkable development in recent decades. Approaches to phototherapy, which utilize nanomaterials or nanotechnology have emerged to contribute to advances around nanotechnologies in medicine, particularly for cancers. A brief overviews of the development of photodynamic therapy as well as its mechanism in cancer treatment is provided. We emphasize the design of novel nanoparticles utilized in photodynamic therapy while summarizing the representative progress during the recent years. Finally, to forecast important future research in this area, we examine the viability and promise of photodynamic therapy systems based on nanoparticles in clinical anticancer treatment applications and briefly make mention of the elimination of all reactive metabolites pertaining to nano formulations inside living organisms providing insight into clinical mechanistic processes. Future developments and therapeutic prospects for photodynamic treatments are anticipated. Our viewpoints might encourage scientists to create more potent phototherapy-based cancer therapeutic modalities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
20
|
Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1942. [PMID: 38456341 DOI: 10.1002/wnan.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
21
|
Song Q, Zheng Y, Zhong G, Wang S, He C, Li M. Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:1305-1326. [PMID: 39129164 PMCID: PMC11497148 DOI: 10.2174/0118715206323900240807110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.
Collapse
Affiliation(s)
- Qiuyu Song
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Gao YX, Ning QQ, Yang PX, Guan YY, Liu PX, Liu ML, Qiao LX, Guo XH, Yang TW, Chen DX. Recent advances in recurrent hepatocellular carcinoma therapy. World J Hepatol 2023; 15:460-476. [PMID: 37206651 PMCID: PMC10190692 DOI: 10.4254/wjh.v15.i4.460] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, accounting for 75%-85% of cases. Although treatments are given to cure early-stage HCC, up to 50%-70% of individuals may experience a relapse of the illness in the liver after 5 years. Research on the fundamental treatment modalities for recurrent HCC is moving significantly further. The precise selection of individuals for therapy strategies with established survival advantages is crucial to ensuring better outcomes. These strategies aim to minimize substantial morbidity, support good life quality, and enhance survival for patients with recurrent HCC. For individuals with recurring HCC after curative treatment, no approved therapeutic regimen is currently available. A recent study presented novel approaches, like immunotherapy and antiviral medication, to improve the prognosis of patients with recurring HCC with the apparent lack of data to guide the clinical treatment. The data supporting several neoadjuvant and adjuvant therapies for patients with recurring HCC are outlined in this review. We also discuss the potential for future clinical and translational investigations.
Collapse
Affiliation(s)
- Yu-Xue Gao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Qi-Qi Ning
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Peng-Xiang Yang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yuan-Yue Guan
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Peng-Xiang Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Meng-Lu Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Lu-Xin Qiao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Xiang-Hua Guo
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Tong-Wang Yang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Academician Workstation, Changsha Medical University, Changsha 410219, Hunan Province, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - De-Xi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| |
Collapse
|
23
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
24
|
Bhattacharya S, Prajapati BG, Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit Rev Oncol Hematol 2023; 185:103961. [PMID: 36921781 DOI: 10.1016/j.critrevonc.2023.103961] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Stimuli-responsive nanocarriers have the potential to revolutionize cancer treatment by allowing precise delivery of drugs to the site of disease. The use of polymeric nanocarriers with surfaces that respond to triggers such as pH, light, temperature, and redox potential enables targeted drug distribution. pH is a particularly useful tool, as the lower pH in tumour microenvironments can trigger changes in drug release. Recent advances in the development of pH-responsive polymer nanoparticles have shown great promise for improved in vivo drug delivery, reduced negative drug responses, and more precise drug distribution. A deeper understanding of these nanocarriers will allow us to overcome the challenges of targeted cancer treatment and create a better drug delivery system.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, 22 Kherva, 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
25
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|