1
|
Han D, Xu T, Lyu X, Li K, Xu S. Smaller-Sized Silica Nanoparticles Exacerbated Cardiomyocyte Pyroptosis by Impairing Mitophagy to Activate mtDNA-cGAS-STING Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9359-9369. [PMID: 40196980 DOI: 10.1021/acs.jafc.5c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Silica nanoparticles (SiNPs) are a nanometer powder widely used in various consumer products, engineering, the food industry, and medical applications. Environmental SiNPs have attracted attention owing to their exposure to various cardiovascular adverse events. Here, we exposed C57/BL6 mouse and HL-1 cells with different-sized SiNPs (50, 300 nm, and 1 μm) to investigate the underlying mechanism of its cardiovascular toxicity. Mice exposed to three-sized SiNPs showed significant weight loss after 21 days of treatment. Heart weight to tibia length ratio and histopathology staining indicated increased heart volume and cross-sectional area of myocardial fibers in mice exposed to SiNPs. In vivo and in vitro experiments results showed that exposure to SiNPs causes size-dependent mitochondrial damage and initiates mitophagy. Notably, compared to the damage caused by 300 nm and 1 μm SiNPs exposure, 50 nm SiNPs blocked autophagy flux, leading to excessive accumulation of mitochondrial DNA (mtDNA) in the cytoplasm, ultimately exacerbating downstream cGAS-STING pathway-mediated pyroptosis. This study revealed the potential health risks of SiNPs and helped to understand the differences in cytotoxicity caused by SiNPs of different sizes.
Collapse
Affiliation(s)
- Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiunan Lyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
2
|
Zhao B, Wei J, Jiang Z, Long Y, Xu Y, Jiang B. Mesenchymal stem cell-derived exosomes: an emerging therapeutic strategy for hepatic ischemia-reperfusion injury. Stem Cell Res Ther 2025; 16:178. [PMID: 40229893 DOI: 10.1186/s13287-025-04302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) severely threatens the success rates of liver surgery and transplantation. Its complex pathological process involves multiple factors such as oxidative stress, inflammatory responses, and ferroptosis, creating an urgent need for new therapeutic strategies. Exosomes derived from mesenchymal stem cells (MSCs) are emerging as a next-generation acellular therapeutic approach. With their outstanding immune-regulatory capabilities, significant reparative functions, and good biocompatibility, they are leading innovations in the field of HIRI treatment. This article provides a systematic comparison of the therapeutic characteristics of MSC-derived exosomes(MSC-EXOs) from four different sources: adipose tissue, bone marrow, umbilical cord, and induced pluripotent stem cells. Although the clinical translation of MSC-EXOs still faces challenges such as variations in isolation methods, large-scale production, and safety assessments, their remarkable therapeutic effects and vast application potential signal the arrival of a new era of precision treatment for HIRI. This review not only provides a comprehensive theoretical foundation to promote the clinical application of MSC-EXOs but also opens up innovative research directions in the field of regenerative medicine.
Collapse
Affiliation(s)
- Bo Zhao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, P. R. China
- Department of Urology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, 228 Jingui Road, Xian an District, Xianning, 437100, Hubei Province, P. R. China
| | - Jiping Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, P. R. China
- Department of Urology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, 228 Jingui Road, Xian an District, Xianning, 437100, Hubei Province, P. R. China
| | - Zijian Jiang
- Yangtze University, Jingzhou, 434000, Hubei Province, P. R. China
| | - Yiming Long
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, P. R. China
- Department of Urology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, 228 Jingui Road, Xian an District, Xianning, 437100, Hubei Province, P. R. China
| | - Yan Xu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, P. R. China
| | - Botao Jiang
- Department of Urology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, 228 Jingui Road, Xian an District, Xianning, 437100, Hubei Province, P. R. China.
| |
Collapse
|
3
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
4
|
Yang JJ, He SQ, Huang B, Wang PX, Xu F, Lin X, Liu J. A bibliometric and visualized analysis of extracellular vesicles in degenerative musculoskeletal diseases (from 2006 to 2024). Front Pharmacol 2025; 16:1550208. [PMID: 40183074 PMCID: PMC11966045 DOI: 10.3389/fphar.2025.1550208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Background With the rapid development of extracellular vesicles (EVs) in regenerative medicine research, they have become a promising new direction in the mechanistic, diagnosis and treatment studies of degenerative musculoskeletal diseases (DMDs), and has attracted increasing attention. However, there is currently a lack of comprehensive and objective summary analysis to help researchers quickly and conveniently understand the development trajectory and future trends of this field. Method This study collected articles and reviews published from 2006 to 2024 on EVs in DMDs from the Web of Science database. Bibliometric and visual analysis was conducted using several tools, including Microsoft Excel Office, VOSviewer, CiteSpace, Pajek, and R packages. Results 1,182 publications were included in the analysis from 2006 to 2024. Notably, there was a rapid increase in the number of publications starting in 2016, suggesting that this field remains in a developmental stage. Co-authorship analysis revealed that China ranked first in terms of publications, whereas the United States led in citations. The journal with the highest number of publications was International Journal of Molecular Sciences (INT J MOL SCI). The most prolific authors were Ragni, E with 23 publications, while the most cited author was Toh, WS. Additionally, nine of the top 10 institutions were from China, with Shanghai Jiao Tong University leading in the number of publications. The most cited article was "MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity", authored by Zhang, S, and published in BIOMATERIALS in 2018. Conclusion This study, through bibliometric and visual analysis, clearly illustrates the collaborative relationships among countries, authors, institutions, and journals, providing valuable insights for researchers seeking academic collaboration opportunities. Moreover, the analysis of keywords and citations allows researchers to better understand key research hotspots and frontiers in this field, and points toward promising directions for future research. The growing interest in EV research in DMDs over recent years indicates increasing attention and a dynamic progression in this field.
Collapse
Affiliation(s)
- Jun-Jie Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Sha-Qi He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Xin Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
5
|
Wang D, Wang Y, Zhang S, Yang X, Yang Y, Han T, Luo Y, Shui C, Yang M, Lin Y, Li C. Tetrahedral-DNA-Nanostructure-Modified Engineered Extracellular Vesicles Enhance Oral Squamous Cell Carcinomas Therapy by Targeting GPX4. ACS NANO 2025; 19:9351-9366. [PMID: 40014396 DOI: 10.1021/acsnano.5c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Oral squamous cell carcinoma (OSCC) represents a heterogeneous group of malignancies originating from the mucosal lining of the oral cavity. Current treatment modalities primarily involve surgery, chemotherapy, and radiotherapy. Despite the use of multimodal therapy, the 5 year overall survival rate for OSCC remains around 50%, underscoring the need for the development of nontoxic agents with potent antitumor activity. Extracellular vesicles (EVs) are nanoscale, membrane-bound structures that can selectively deliver small molecules, nucleic acids, and proteins to target cells, making them a promising platform for drug delivery in cancer therapy. Strategies to improve the uptake of EVs and enhance the delivery of therapeutic molecules to target cells are critical for advancing precision medicine. Tetrahedral DNA nanostructures (TDNs) have shown significant potential in facilitating drug endocytosis and delivery, as well as improving tissue penetration. In this study, TDN@EVs were conducted by modifying the membrane surface of M1-EVs with TDNs, which demonstrated improved biological stability and drug delivery efficiency compared to unmodified EVs. In vitro and in vivo experiments showed that TDN@EVs significantly inhibited OSCC cell proliferation and migration while promoting apoptosis. TDN@EVs exhibited superior drug penetration properties, further amplifying their antitumor effects. Proteomic analysis identified Hsc70 as the key protein responsible for the antitumor activity of the TDN@EVs. The efficient delivery of Hsc70 into tumor cells by TDN@EVs led to the degradation of GPX4, inducing ferroptosis, mitochondrial stress, and DNA damage in tumor cells. These findings highlight the potential of TDN@EVs as an effective and safe approach for cancer therapy. In conclusion, TDN@EVs present as a promising effective strategy for the targeted delivery of therapeutic agents in OSCC treatment, offering enhanced biological stability, efficient drug delivery, and significant antitumor effects.
Collapse
Affiliation(s)
- Dianri Wang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Sicheng Zhang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
| | - Xueting Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
| | - Yan Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
| | - Teng Han
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
| | - Yi Luo
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chunyan Shui
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mu Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chao Li
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center University of Electronic Science and Technology of China, Chengdu, Sichuan 610040, PR China
| |
Collapse
|
6
|
Kobatake T, Miyamoto Y, Fujihara Y, Saijo H, Hoshi K, Hikita A. Small extracellular vesicles derived from auricular chondrocytes promote secretion of interleukin 10 in bone marrow M1-like macrophages. Regen Ther 2025; 28:421-430. [PMID: 39925964 PMCID: PMC11804269 DOI: 10.1016/j.reth.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Elucidation of the paracrine interaction between chondrocytes and macrophages is useful for understanding the mechanisms of cartilage regeneration. Extracellular vesicles are granular substances with a diameter of approximately 150 nm, surrounded by a phospholipid bilayer membrane. In recent years, research has been conducted on clinical applications of extracellular vesicles. It has been shown that macrophages promote cartilage maturation, and macrophages acquire anti-inflammatory properties through cartilage, but the detailed mechanism of paracrine action involving extracellular vesicles remains unclear. Therefore, we focused on the effect of chondrocyte-derived extracellular vesicles on changes in macrophage characteristics. Methods Macrophages induced with granulocyte-macrophage colony stimulating factor (M1-like macrophages) and auricular chondrocytes were co-cultured using cell culture inserts and exosome inhibitors, and the expression of macrophage markers were analyzed. Next, extracellular vesicles separated from auricular chondrocytes were added to in vitro macrophage culture medium, and time-lapse observations of macrophage uptake of auricular chondrocyte-derived extracellular vesicles were performed. In addition, the effects of extracellular vesicles on the expression of macrophage markers were also analyzed. Results The expression of CD206, an M2 macrophage marker, was increased in macrophages due to the paracrine effect of chondrocytes, and CD206 expression was further increased by pharmacological inhibition of chondrocyte-derived exosomes. It was shown that chondrocyte-derived extracellular vesicles were taken up by macrophages and promoted the production of interleukin-10, an anti-inflammatory cytokine while reducing CD206 expression. Conclusions Auricular chondrocyte-derived extracellular vesicles promoted the production of interleukin-10 in bone marrow M1-like macrophages but reduced CD206 expression.
Collapse
Affiliation(s)
- Tetsuya Kobatake
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiyuki Miyamoto
- Division of Dentistry and Oral Surgery, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuko Fujihara
- Department of Dentistry and Oral Surgery, Tokyo Teishin Hospital, 2-14-23 Fujimi, Chiyoda-ku, Tokyo 102-8798, Japan
| | - Hideto Saijo
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Advanced Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Clinical Stem Cell Biology, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
7
|
Jin C, Wu P, Wu W, Chen W, Liu W, Zhu Y, Wu Q, Chen B, Ji C, Qian H. Therapeutic role of hucMSC-sEV-enriched miR-13896 in cisplatin-induced acute kidney injury through M2 macrophage polarization. Cell Biol Toxicol 2025; 41:50. [PMID: 39992453 PMCID: PMC11850457 DOI: 10.1007/s10565-025-09998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEV) have recently garnered attention as a potential therapeutic approach for kidney diseases with anti-inflammatory effects. Infiltrated macrophages play an important role in facilitating tissue regeneration. However, the intricate regulatory effects of hucMSC-sEV on macrophages during cisplatin-induced acute kidney injury (AKI) remain unknown. In this study, we uncovered that hucMSC-sEV exhibited potent anti-inflammation and effectively inhibited the polarization of M1 phenotype macrophages. Mechanically, miRNA sequencing analysis and qRT-PCR indicated that a novel miRNA, named miR-13896, was enriched in hucMSC-sEV. When transfected with miR-13896 mimic, macrophages displayed M2 phenotype with elevated levels of Arg1 and IL-10, while miR-13896 inhibitor promoted M1 phenotype. Furthermore, we firstly established that miR-13896 repressed Tradd expression by targeting its 3' untranslated region and subsequently inhibited NF-κB signaling pathway in macrophages. Additionally, to improve therapeutic effects, hucMSC-sEV were engineered with elevated levels of miR-13896 through electroporation, which resulted in promoting M2 phenotype macrophages, inhibiting inflammatory factors, and enhancing kidney repair. Conclusively, our findings provide novel insights into the mechanisms underlying the effects of hucMSC-sEV on macrophages and AKI, while also highlighting electroporation as a promising strategy for treating cisplatin-induced AKI.
Collapse
Affiliation(s)
- Can Jin
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Wu
- Department of Emergency Surgery, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai, China
| | - Wenya Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wanzhu Liu
- Department of Emergency Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Yuan Zhu
- Department of Emergency Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - QiShun Wu
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China
| | - Binghai Chen
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
| | - Cheng Ji
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, Jiangsu, China.
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China.
- Institute of Translational Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
8
|
Li H, Zhang P, Lin M, Li K, Zhang C, He X, Gao K. Pyroptosis: candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of bone-related diseases. Stem Cell Res Ther 2025; 16:68. [PMID: 39940049 DOI: 10.1186/s13287-025-04167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Bone-related diseases impact a large portion of the global population and, due to their high disability rates and limited treatment options, pose significant medical and economic challenges. Mesenchymal stem cells (MSCs) can differentiate into multiple cell types and offer strong regenerative potential, making them promising for treating various diseases. However, issues with the immune response and cell survival limit the effectiveness of cell transplantation. This has led to increased interest in cell-free stem cell therapy, particularly the use of exosomes, which is the most studied form of this approach. Exosomes are extracellular vesicles that contain proteins, lipids, and nucleic acids and play a key role in cell communication and material exchange. Pyroptosis, a form of cell death involved in innate immunity, is also associated with many diseases. Studies have shown that MSC-derived exosomes have therapeutic potential for treating a range of conditions by regulating inflammation and pyroptosis. This study explored the role of MSC-derived exosomes in modulating pyroptosis to improve the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Haiming Li
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Peng Zhang
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Minghui Lin
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Xiao He
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Kai Gao
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China.
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| |
Collapse
|
9
|
Li Z, Dai A, Fang X, Tang K, Chen K, Gao P, Su J, Chen X, Yang S, Deng Z, Li L. The miR-6779/XIAP axis alleviates IL-1β-induced chondrocyte senescence and extracellular matrix loss in osteoarthritis. Animal Model Exp Med 2025. [PMID: 39905808 DOI: 10.1002/ame2.12529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a long-term degenerative joint disease worsening over time. Aging and chondrocyte senescence contribute to OA progression. MicroRNAs have been confirmed to regulate different cellular processes. They contribute to OA pathology and may help to identify novel biomarkers and therapies for OA. METHODS This study used bioinformatics and experimental investigations to analyze and validate differentially expressed miRNAs in OA that might affect chondrocyte apoptosis and senescence. RESULTS miR-6779 was found to be significantly down-regulated in OA. Seventy-six of the predicted and miR-6779 targeted genes and the OA-associated disease genes overlapped, and these were enriched in cell proliferation, cell apoptosis, and cell cycle. miR-6779 overexpression remarkably attenuated IL-1β effects on chondrocytes by reducing MMP3 and MMP13 levels, promoting cell apoptosis, suppressing cell senescence, and increasing caspase-3, caspase-9 and reducing P16 and P21 levels. miR-6779 targeted inhibition of X-linked inhibitor of apoptosis protein (XIAP) expression. XIAP knockdown partially improved IL-1β-induced chondrocyte senescence and dysfunction. Lastly, when co-transfected with a miR-6779 agomir, the XIAP overexpression vector partially attenuated the effects of miR-6779 overexpression on chondrocytes; miR-6779 improved IL-1β-induced senescence and dysfunction in chondrocytes through targeting XIAP. CONCLUSION miR-6779 is down-regulated, and XIAP is up-regulated in OA cartilage and IL-1β-treated chondrocytes. miR-6779 inhibits XIAP expression, thereby promoting senescent chondrocyte cell apoptosis and reducing chondrocyte senescence and ECM loss through XIAP.
Collapse
Affiliation(s)
- Zongchao Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Aonan Dai
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Xiaoxiang Fang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Kexing Tang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Kun Chen
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Peng Gao
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jingyue Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwu Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liangjun Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
10
|
Feng K, Liu J, Gong L, Ye T, Chen Z, Wang Y, Li Q, Xie X. Engineered MSC-sEVs as a Versatile Nanoplatform for Enhanced Osteoarthritis Treatment via Targeted Elimination of Senescent Chondrocytes and Maintenance of Cartilage Matrix Metabolic Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413759. [PMID: 39755936 PMCID: PMC11848604 DOI: 10.1002/advs.202413759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment. In this study, versatile engineered MSC-sEVs are developed to targetedly clear senescent chondrocytes and maintain cartilage metabolic homeostasis. Specifically, MSC-sEVs are loaded with siRNA mouse double minute 2 homologue (siMDM2) and modified with cartilage-targeting peptide WYRGRL-PEG2K-DSPE (WPD), named WPD-sEVssiMDM2. The results demonstrate versatile modification improves the cellular uptake of MSC-sEVs in chondrocytes, and thus improves the antiaging effects. Importantly, multifunctional modification enhances cartilage penetration ability and extends joint retention time of MSC-sEVs. In both post-traumatic OA mice and naturally aged mice, WPD-sEVssiMDM2 more effectively eliminates senescent chondrocytes and maintained matrix metabolic homeostasis. By using the P53 phosphorylation inhibitor, the essential role MDM2-P53 pathway in the antiaging function of WPD-sEVssiMDM2 on chondrocytes is verified. In ex vivo cultured human OA cartilage explants, it is confirmed that WPD-sEVssiMDM2 alleviates senescent phenotype. Altogether, the findings suggest that WPD-sEVssiMDM2 have promising translational potential for OA treatment.
Collapse
Affiliation(s)
- Kai Feng
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jiashuo Liu
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Liangzhi Gong
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Teng Ye
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhengsheng Chen
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yang Wang
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Qing Li
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Xuetao Xie
- Institute of Microsurgery on ExtremitiesDepartment of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| |
Collapse
|
11
|
Piñeiro-Ramil M, Gómez-Seoane I, Rodríguez-Cendal AI, Fuentes-Boquete I, Díaz-Prado S. Mesenchymal stromal cells-derived extracellular vesicles in cartilage regeneration: potential and limitations. Stem Cell Res Ther 2025; 16:11. [PMID: 39849578 PMCID: PMC11755911 DOI: 10.1186/s13287-025-04135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Articular cartilage injuries can lead to pain, stiffness, and reduced mobility, and may eventually progress to osteoarthritis (OA). Despite substantial research efforts, effective therapies capable of regenerating cartilage are still lacking. Mesenchymal stromal cells (MSCs) are known for their differentiation and immunomodulatory capabilities, yet challenges such as limited survival post-injection and inconsistent therapeutic outcomes hinder their clinical application. Recent evidence suggests that the beneficial effects of MSCs are largely mediated by their secreted small extracellular vesicles (sEVs), which have been shown to promote tissue repair and reduce inflammation. MSC-derived sEVs have shown promise in mitigating cartilage degradation and chondrocyte apoptosis, positioning them as a promising alternative to MSC-based therapies for OA treatment. This review explores the potential and limitations of MSC-derived sEVs in cartilage regeneration. MAIN TEXT This systematic review was conducted following PRISMA guidelines, with a comprehensive search of the Web of Science and Scopus databases for studies published between 2019 and 2024. A total of 223 records were identified, of which 132 articles were assessed for eligibility based on general selection criteria. After full-text screening, 60 articles were initially selected, comprising 58 in vitro studies and 40 in vivo studies. Following further exclusion based on specific criteria, 33 in vitro and 28 in vivo studies from a total of 47 scientific papers were included in the final qualitative synthesis. Most studies indicate that MSC-derived sEVs enhance chondrocyte proliferation, improve cartilage extracellular matrix composition, and reduce matrix-degrading enzymes and inflammation, thereby delaying OA progression. CONCLUSION A growing body of evidence supports the use of MSC-derived sEVs as a therapeutic tool for preventing OA progression, with most studies reporting beneficial effects on cartilage structure and function. However, challenges remain in optimizing and standardizing sEVs isolation, dosage, and delivery methods for clinical application. Further research is necessary to elucidate the mechanisms underlying sEVs-mediated cartilage regeneration and to facilitate their translation into effective OA therapies.
Collapse
Affiliation(s)
- María Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, 15006, Spain
- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña, 15008, Spain
| | - Iván Gómez-Seoane
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain
| | - Ana Isabel Rodríguez-Cendal
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, 15006, Spain
- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña, 15008, Spain
| | - Isaac Fuentes-Boquete
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, 15006, Spain
- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña, 15008, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER- BBN), Madrid, 28029, Spain
| | - Silvia Díaz-Prado
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Fundación Pública Gallega de Investigación Biomédica INIBIC, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, 15006, Spain.
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, 15006, Spain.
- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña, 15008, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER- BBN), Madrid, 28029, Spain.
| |
Collapse
|
12
|
Pulat G, Gökmen O, Özcan Ş, Karaman O. Collagen binding and mimetic peptide-functionalized self-assembled peptide hydrogel enhance chondrogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2025; 113:e37786. [PMID: 39237470 DOI: 10.1002/jbm.a.37786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
The avascular structure and low cell migration to the damaged area due to the low number of cells do not allow spontaneous repair of the articular cartilage tissue. Therefore, functional scaffolds obtained from biomaterials are used for the regeneration of cartilage tissue. Here, we functionalized one of the self-assembling peptide (SAP) scaffolds KLD (KLDLKLDLKLDL) with short bioactive motifs, which are the α1 chain of type II collagen binding peptide WYRGRL (C1) and the triple helical collagen mimetic peptide GFOGER (C2) by direct coupling. Our goal was to develop injectable functional SAP hydrogels with proper mechanical characteristics that would improve chondrogenesis. Scanning electron microscopy (SEM) was used to observe the integration of peptide scaffold structure at the molecular level. To assure the stability of SAPs, the rheological characteristics and degradation profile of SAP hydrogels were assessed. The biochemical study of the DNA, glycosaminoglycan (GAG), and collagen content revealed that the developed bioactive SAP hydrogels greatly increased hMSCs proliferation compared with KLD scaffolds. Moreover, the addition of bioactive peptides to KLD dramatically increased the expression levels of important chondrogenic markers such as aggrecan, SOX-9, and collagen Type II as evaluated by real-time polymerase chain reaction (PCR). We showed that hMSC proliferation and chondrogenic differentiation were encouraged by the developed SAP scaffolds. Although the chondrogenic potentials of WYRGRL and GFOGER were previously investigated, no study compares the effect of the two peptides integrated into 3-D SAP hydrogels in chondrogenic differentiation. Our findings imply that these specifically created bioactive peptide scaffolds might help enhance cartilage tissue regeneration.
Collapse
Affiliation(s)
- Günnur Pulat
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Oğuzhan Gökmen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Şerife Özcan
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
- Bonegraft Biomaterials Co., Ege University Technopolis, İzmir, Turkey
| |
Collapse
|
13
|
Wang P, Zhao H, Chen W, Guo Y, Zhang S, Xing X, Yang S, Wang F, Wang J, Shao Z, Zhang Y. Cell-free osteoarthritis treatment with dual-engineered chondrocyte-targeted extracellular vesicles derived from mechanical loading primed mesenchymal stem cells. J Tissue Eng 2025; 16:20417314241312563. [PMID: 39926048 PMCID: PMC11806476 DOI: 10.1177/20417314241312563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Osteoarthritis (OA) is an age-related chronic inflammatory disease, predominantly characterized by chondrocyte senescence and extracellular matrix (ECM) degradation. Although mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) are promising for promoting cartilage regeneration, their clinical application is limited by inconsistent therapeutic effects and insufficient targeting capabilities. Mechanical loading shows potential to optimize MSC-EVs for OA treatment, while the underlying mechanism is not clear. In this study, EVs derived from mechanical loading-primed MSCs (ML-EVs) demonstrate prominent efficacy in maintaining ECM homeostasis and relieving chondrocyte senescence, thereby mitigating OA. Subsequent miRNA sequencing reveals that ML-EVs exert their effects by delivering miR-27b-3p, which targets ROR1 mRNA in chondrocytes and suppresses downstream NF-κB pathways. By modulating the ROR1/NF-κB axis, miR-27b-3p effectively restrains ECM degradation and chondrocyte senescence. To optimize therapeutic efficacy of EVs, miR-27b-3p is overexpressed within EVs (miROE-EVs), and a chondrocyte-targeted peptide (CTP) is conjugated to their surface, thereby constructing dual-engineered chondrocyte-targeted EVs (CTP/miROE-EVs). CTP/miROE-EVs exhibit excellent ability to specifically target cartilage and ameliorate OA pathology. In conclusion, this study underscores the critical role of mechanical loading in augmenting effectiveness of EVs in mitigating OA and introduces dual-engineered EVs that specifically target chondrocytes, providing a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyue Zhao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- School of Medicine, Nankai University, Tianjin, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhui Guo
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuo Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Xing
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuai Yang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- School of Medicine, Nankai University, Tianjin, China
| | - Fengkun Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- School of Medicine, Nankai University, Tianjin, China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingze Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Zheng L, Chang R, Liang B, Wang Y, Zhu Y, Jia Z, Fan J, Zhang Z, Du B, Kong D. Overcoming drug resistance through extracellular vesicle-based drug delivery system in cancer treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:50. [PMID: 39802949 PMCID: PMC11724354 DOI: 10.20517/cdr.2024.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Drug resistance is a major challenge in cancer therapy that often leads to treatment failure and disease relapse. Despite advancements in chemotherapeutic agents and targeted therapies, cancers often develop drug resistance, making these treatments ineffective. Extracellular vesicles (EVs) have gained attention for their potential applications in drug delivery because of their natural origin, biocompatibility, and ability to cross biological barriers. Using the unique properties of EVs could enhance drug accumulation at target sites, minimize systemic toxicity, and precisely target specific cells. Here, we discuss the characteristics and functionalization of EVs, the mechanisms of drug resistance, and the applications of engineered EVs to overcome drug resistance. This review provides a comprehensive overview of the advancements in EV-based drug delivery systems and their applications in overcoming cancer drug resistance. We highlight the potential of EV-based drug delivery systems to revolutionize cancer therapy and offer promising strategies for more effective treatment modalities.
Collapse
Affiliation(s)
- Long Zheng
- College of Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Authors contributed equally
| | - Ruibai Chang
- College of Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Authors contributed equally
| | - Bingjing Liang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
- Authors contributed equally
| | - Yitong Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yushan Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Zijing Jia
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Jindian Fan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences; Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
15
|
Yu Q, Xiao Y, Guan M, Zhou G, Zhang X, Yu J, Han M, Yang W, Wang Y, Li Z. Regulation of ferroptosis in osteoarthritis and osteoarthritic chondrocytes by typical MicroRNAs in chondrocytes. Front Med (Lausanne) 2024; 11:1478153. [PMID: 39564502 PMCID: PMC11573538 DOI: 10.3389/fmed.2024.1478153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disorder impacting bones and joints, worsened by chronic inflammation, immune dysregulation, mechanical stress, metabolic disturbances, and various other contributing factors. The complex interplay of cartilage damage, loss, and impaired repair mechanisms remains a critical and formidable aspect of OA pathogenesis. At the genetic level, multiple genes have been implicated in the modulation of chondrocyte metabolism, displaying both promotive and inhibitory roles. Recent research has increasingly focused on the influence of non-coding RNAs in the regulation of distinct cell types within bone tissue in OA. In particular, an expanding body of evidence highlights the regulatory roles of microRNAs in OA chondrocytes. This review aims to consolidate the most relevant microRNAs associated with OA chondrocytes, as identified in recent studies, and to elucidate their involvement in chondrocyte metabolic processes and ferroptosis. Furthermore, this study explores the complex regulatory interactions between long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in OA, with an emphasis on microRNA-mediated mechanisms. Finally, critical gaps in the current research are identified, offering strategic insights to advance the understanding of OA pathophysiology and guide therapeutic developments in this field.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Guohui Zhou
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Yang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yan Wang
- Scientific Research Center, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
16
|
Thawanaphong S, Nair A, Volfson E, Nair P, Mukherjee M. IL-18 biology in severe asthma. Front Med (Lausanne) 2024; 11:1486780. [PMID: 39554494 PMCID: PMC11566457 DOI: 10.3389/fmed.2024.1486780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The role of interleukin-18 (IL-18) and inflammasomes in chronic inflammatory airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), has garnered significant attention in recent years. This review aims to provide an overview of the current understanding of IL-18 biology, the associated signaling pathways, and the involvement of inflammasome complexes in airway diseases. We explore the multifaceted role of IL-18 in asthma pathophysiology, including its interactions with other cytokines and contributions to both T2 and non-T2 inflammation. Importantly, emerging evidence highlights IL-18 as a critical player in severe asthma, contributing to chronic airway inflammation, airway hyperresponsiveness (AHR), and mucus impaction. Furthermore, we discuss the emerging evidence of IL-18's involvement in autoimmunity and highlight potential therapeutic targets within the IL-18 and inflammasome pathways in severe asthma patients with evidence of infections and airway autoimmune responses. By synthesizing recent advancements and ongoing research, this review underscores the importance of IL-18 as a potential novel therapeutic target in the treatment of severe asthma and other related conditions.
Collapse
Affiliation(s)
- Sarita Thawanaphong
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Aswathi Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Emily Volfson
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Parameswaran Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Manali Mukherjee
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
17
|
Zhao T, Mu Y, Deng H, Liang K, Zhou F, Lin Q, Cao F, Zhou F, Yang Z. Research hotspots and trends of mesenchymal stem cell-derived extracellular vesicles for drug delivery: a bibliometric and visualization analysis from 2013 to 2023. Front Cell Dev Biol 2024; 12:1412363. [PMID: 39539963 PMCID: PMC11557358 DOI: 10.3389/fcell.2024.1412363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Our study aims to provide a comprehensive overview of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in drug delivery research, focusing on the period between 2013 and 2023. Given the increasing global interest in this field, we utilized bibliometric tools to explore publication trends, key contributors, and thematic research clusters. Methods Data was collected from the Web of Science (WoS) database, and an in-depth bibliometric analysis was conducted using VOSviewer. The analysis encompassed bibliographic coupling, co-citation, co-authorship, and co-occurrence trends, offering a structured insight into global research activity. We also employed Citespace to further analyze thematic clusters in this domain. Results Our analysis revealed a total of 1,045 publications related to MSC-EVs in drug delivery over the past decade, showing a steady increase in research output. China led in publication count, H-index, prolific authors, and research funding, while the United States ranked highest in total citations, average citation counts, and H-index performance. Pharmaceutics emerged as the leading journal by publication volume, with the Journal of Controlled Release having the strongest total link strength. Top institutions driving research included Shanghai Jiao Tong University, Zhejiang University, and Harvard University. VOSviewer analysis identified four major research clusters: tissue engineering, cancer, neurological diseases, and targeted delivery. Citespace analysis refined this further into ten thematic areas, including differentiation, tissue regeneration, and drug resistance. Discussion This bibliometric assessment provides a holistic visualization of the research landscape for MSC-EVs in drug delivery, underlining the significant contributions of China and the United States. Our findings underscore the increasing global importance of MSC-EV research and highlight emerging themes that will likely guide future research directions. The insights from this study offer a foundational framework for identifying nascent frontiers in MSC-EV-based drug delivery.
Collapse
Affiliation(s)
- Tianyuan Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yuhao Mu
- School of Medicine, Nankai University, Tianjin, China
| | - Haobin Deng
- Department of Oncology, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Kaini Liang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Fanfan Zhou
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Qiyuan Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Fuyang Cao
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feifei Zhou
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhen Yang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
18
|
Klyucherev TO, Peshkova MA, Revokatova DP, Serejnikova NB, Fayzullina NM, Fayzullin AL, Ershov BP, Khristidis YI, Vlasova II, Kosheleva NV, Svistunov AA, Timashev PS. The Therapeutic Potential of Exosomes vs. Matrix-Bound Nanovesicles from Human Umbilical Cord Mesenchymal Stromal Cells in Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11564. [PMID: 39519121 PMCID: PMC11545893 DOI: 10.3390/ijms252111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with limited therapeutic options, where inflammation plays a critical role in disease progression. Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) have shown potential as a therapeutic approach for OA by modulating inflammation and alleviating degenerative processes in the joint. This study evaluated the therapeutic effects for the treatment of OA of two types of EV-exosomes and matrix-bound nanovesicles (MBV)-both derived from the human umbilical cord MSC (UC-MSC) via differential ultracentrifugation. Different phenotypes of human monocyte-derived macrophages (MDM) were used to study the anti-inflammatory properties of EV in vitro, and the medial meniscectomy-induced rat model of knee osteoarthritis (MMx) was used in vivo. The study found that both EV reduced pro-inflammatory cytokines IL-6 and TNF-α in MDM. However, exosomes showed superior results, preserving the extracellular matrix (ECM) of hyaline cartilage, and reducing synovitis more effectively than MBVs. Additionally, exosomes downregulated inflammatory markers (TNF-α, iNOS) and increased Arg-1 expression in macrophages and synovial fibroblasts, indicating a stronger anti-inflammatory effect. These results suggest UC-MSC exosomes as a promising therapeutic option for OA, with the potential for modulating inflammation and promoting joint tissue regeneration.
Collapse
Affiliation(s)
- Timofey O. Klyucherev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria P. Revokatova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Natalia B. Serejnikova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nafisa M. Fayzullina
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Digital Microscopic Analysis, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Boris P. Ershov
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yana I. Khristidis
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina I. Vlasova
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nastasia V. Kosheleva
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter S. Timashev
- Institute for Regenerative Medicine, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
19
|
Deng Z, Long D, Li C, Liu H, Li W, Zhong Y, Mo X, Li R, Yang Z, Kang Y, Mao G. IRF1-mediated upregulation of PARP12 promotes cartilage degradation by inhibiting PINK1/Parkin dependent mitophagy through ISG15 attenuating ubiquitylation and SUMOylation of MFN1/2. Bone Res 2024; 12:63. [PMID: 39465252 PMCID: PMC11514270 DOI: 10.1038/s41413-024-00363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 10/29/2024] Open
Abstract
Osteoarthritis (OA) is an age-related cartilage-degenerating joint disease. Mitochondrial dysfunction has been reported to promote the development of OA. Poly (ADP-ribose) polymerase family member 12 (PARP12) is a key regulator of mitochondrial function, protein translation, and inflammation. However, the role of PARP12 in OA-based cartilage degradation and the underlying mechanisms are relatively unknown. Here, we first demonstrated that PARP12 inhibits mitophagy and promotes OA progression in human OA cartilage and a monosodium iodoacetate-induced rat OA model. Using mass spectrometry and co-immunoprecipitation assay, PARP12 was shown to interact with ISG15, upregulate mitofusin 1 and 2 (MFN1/2) ISGylation, which downregulated MFN1/2 ubiquitination and SUMOylation, thereby inhibiting PINK1/Parkin-dependent chondrocyte mitophagy and promoting cartilage degradation. Moreover, inflammatory cytokine-induced interferon regulatory factor 1 (IRF1) activation was required for the upregulation of PARP12 expression, and it directly bound to the PARP12 promoter to activate transcription. XAV-939 inhibited PARP12 expression and suppressed OA pathogenesis in vitro and in vivo. Clinically, PARP12 can be used to predict the severity of OA; thus, it represents a new target for the study of mitophagy and OA progression. In brief, the IRF1-mediated upregulation of PARP12 promoted cartilage degradation by inhibiting PINK1/Parkin-dependent mitophagy via ISG15-based attenuation of MFN1/2 ubiquitylation and SUMOylation. Our data provide new insights into the molecular mechanisms underlying PARP12-based regulation of mitophagy and can facilitate the development of therapeutic strategies for the treatment of OA.
Collapse
Affiliation(s)
- Zengfa Deng
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Dianbo Long
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Changzhao Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hailong Liu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wei Li
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yanlin Zhong
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaolin Mo
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ruiyun Li
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zibo Yang
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Yan Kang
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Guping Mao
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
20
|
Guan M, Yu Q, Zhou G, Wang Y, Yu J, Yang W, Li Z. Mechanisms of chondrocyte cell death in osteoarthritis: implications for disease progression and treatment. J Orthop Surg Res 2024; 19:550. [PMID: 39252111 PMCID: PMC11382417 DOI: 10.1186/s13018-024-05055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by the degeneration, destruction, and excessive ossification of articular cartilage. The prevalence of OA is rising annually, concomitant with the aging global population and increasing rates of obesity. This condition imposes a substantial and escalating burden on individual health, healthcare systems, and broader social and economic frameworks. The etiology of OA is multifaceted and not fully understood. Current research suggests that the death of chondrocytes, encompassing mechanisms such as cellular apoptosis, pyroptosis, autophagy, ferroptosis and cuproptosis, contributes to both the initiation and progression of the disease. These cell death pathways not only diminish the population of chondrocytes but also exacerbate joint damage through the induction of inflammation and other deleterious processes. This paper delineates the morphological characteristics associated with various modes of cell death and summarizes current research results on the molecular mechanisms of different cell death patterns in OA. The objective is to review the advancements in understanding chondrocyte cell death in OA, thereby offering novel insights for potential clinical interventions.
Collapse
Affiliation(s)
- Mengqi Guan
- Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Qingyuan Yu
- Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Guohui Zhou
- Orthopedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Yan Wang
- Sino-Japanese Friendship Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jianan Yu
- Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Wei Yang
- Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
21
|
Xu S, Zhang Y, Zheng Z, Sun J, Wei Y, Ding G. Mesenchymal stem cells and their extracellular vesicles in bone and joint diseases: targeting the NLRP3 inflammasome. Hum Cell 2024; 37:1276-1289. [PMID: 38985391 DOI: 10.1007/s13577-024-01101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.
Collapse
Affiliation(s)
- Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
22
|
Wang F, Xiao J, Li M, He Q, Wang X, Pan Z, Li S, Wang H, Zhou C. Picroside II suppresses chondrocyte pyroptosis through MAPK/NF-κB/NLRP3 signaling pathway alleviates osteoarthritis. PLoS One 2024; 19:e0308731. [PMID: 39208260 PMCID: PMC11361613 DOI: 10.1371/journal.pone.0308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Picroside II (P-II) is the main bioactive constituent of Picrorhiza Kurroa, a traditional Chinese herb of interest for its proven anti-inflammatory properties. Its beneficial effects have been noted across several physiological systems, including the nervous, circulatory, and digestive, capable of treating a wide range of diseases. Nevertheless, the potential of Picroside II to treat osteoarthritis (OA) and the mechanisms behind its efficacy remain largely unexplored. AIM This study aims to evaluate the efficacy of Picroside II in the treatment of osteoarthritis and its potential molecular mechanisms. METHODS In vitro, we induced cellular inflammation in chondrocytes with lipopolysaccharide (LPS) and subsequently treated with Picroside II to assess protective effect on chondrocyte. We employed the Cell Counting Kit-8 (CCK-8) assay to assess the impact of Picroside II on cell viability and select the optimal Picroside II concentration for subsequent experiments. We explored the effect of Picroside II on chondrocyte pyroptosis and its underlying molecular mechanisms by qRT-PCR, Western blot (WB) and immunofluorescence. In vivo, we established the destabilization of the medial meniscus surgery to create an OA mouse model. The therapeutic effects of Picroside II were then assessed through Micro-CT scanning, Hematoxylin-eosin (H&E) staining, Safranin O-Fast Green (S&F) staining, immunohistochemistry and immunofluorescence. RESULTS In in vitro studies, toluidine blue and CCK-8 results showed that a certain concentration of Picroside II had a restorative effect on the viability of chondrocytes inhibited by LPS. Picroside II notably suppressed the expression levels of caspase-1, IL-18, and IL-1β, which consequently led to the reduction of pyroptosis. Moreover, Picroside II was shown to decrease NLRP3 inflammasome activation, via the MAPK/NF-κB signaling pathway. In vivo studies have shown that Picroside II can effectively reduce subchondral bone destruction and osteophyte formation in the knee joint of mice after DMM surgery. CONCLUSIONS Our research suggests that Picroside II can inhibit chondrocyte pyroptosis and ameliorate osteoarthritis progression by modulating the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fanchen Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiacong Xiao
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xintian Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaofeng Pan
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaocong Li
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Laboratory of Orthopedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibin Wang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| |
Collapse
|
23
|
Wang Y, Li Q, Zhou S, Tan P. Contents of exosomes derived from adipose tissue and their regulation on inflammation, tumors, and diabetes. Front Endocrinol (Lausanne) 2024; 15:1374715. [PMID: 39220365 PMCID: PMC11361949 DOI: 10.3389/fendo.2024.1374715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Adipose tissue (AT) serves as an energy-capacitive organ and performs functions involving paracrine- and endocrine-mediated regulation via extracellular vesicles (EVs) secretion. Exosomes, a subtype of EVs, contain various bioactive molecules with regulatory effects, such as nucleic acids, proteins, and lipids. AT-derived exosomes (AT-exos) include exosomes derived from various cells in AT, including adipocytes, adipose-derived stem cells (ADSCs), macrophages, and endothelial cells. This review aimed to comprehensively evaluate the impacts of different AT-exos on the regulation of physiological and pathological processes. The contents and functions of adipocyte-derived exosomes and ADSC-derived exosomes are compared simultaneously, highlighting their similarities and differences. The contents of AT-exos have been shown to exert complex regulatory effects on local inflammation, tumor dynamics, and insulin resistance. Significantly, differences in the cargoes of AT-exos have been observed among diabetes patients, obese individuals, and healthy individuals. These differences could be used to predict the development of diabetes mellitus and as therapeutic targets for improving insulin sensitivity and glucose tolerance. However, further research is needed to elucidate the underlying mechanisms and potential applications of AT-exos.
Collapse
Affiliation(s)
- Yanwen Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangbai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pohching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Yang Y, Feng Z, Luo YH, Chen JM, Zhang Y, Liao YJ, Jiang H, Long Y, Wei B. Exercise-Induced Central Fatigue: Biomarkers, and Non-Medicinal Interventions. Aging Dis 2024:AD.2024.0567. [PMID: 39012671 DOI: 10.14336/ad.2024.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Fatigue, commonly experienced in daily life, is a feeling of extreme tiredness, shortage or lack of energy, exhaustion, and difficulty in performing voluntary tasks. Central fatigue, defined as a progressive failure to voluntarily activate the muscle, is typically linked to moderate- or light-intensity exercise. However, in some instances, high-intensity exercise can also trigger the onset of central fatigue. Exercise-induced central fatigue often precedes the decline in physical performance in well-trained athletes. This leads to a reduction in nerve impulses, decreased neuronal excitability, and an imbalance in brain homeostasis, all of which can adversely impact an athlete's performance and the longevity of their sports career. Therefore, implementing strategies to delay the onset of exercise-induced central fatigue is vital for enhancing athletic performance and safeguarding athletes from the debilitating effects of fatigue. In this review, we discuss the structural basis, measurement methods, and biomarkers of exercise-induced central fatigue. Furthermore, we propose non-pharmacological interventions to mitigate its effects, which can potentially foster improvements in athletes' performances in a healthful and sustainable manner.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhi Feng
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu-Hang Luo
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Jue-Miao Chen
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu Zhang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yi-Jun Liao
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Hui Jiang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yinxi Long
- Department of Neurology, Affiliated Hengyang Hospital of Hunan Normal University &;amp Hengyang Central Hospital, Hengyang, 421001, China
| | - Bo Wei
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| |
Collapse
|
25
|
Xu X, Li J, Lu Y, Shan Y, Shen Z, Sun F, Zhu J, Chen W, Shi H. Extracellular Vesicles in the Repair of Bone and Cartilage Injury: From Macro‐Delivery to Micro‐Modification. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 01/06/2025]
Abstract
AbstractExtracellular vesicles (EVs) are intermediaries in intercellular signal transmission and material exchange and have attracted significant attention from researchers in bone and cartilage repair. These nanoscale vesicles hold immense potential in facilitating bone and cartilage repair and regeneration by regulating the microenvironment at an injury site. However, their in vivo utilization is limited by their self‐clearance and random distribution. Therefore, various delivery platforms have been developed to improve EV targeting and retention rates in target organs while achieving a controlled release of EVs. Additionally, engineering modification of EVs has been proposed to effectively enhance EVs' intrinsic targeting and drug‐loading abilities and further improve their therapeutic effects on bone and cartilage injuries. This review aims to introduce the biogenesis of EVs and their regulatory mechanisms in the microenvironment of bone and cartilage injuries and comprehensively discuss the application of EV‐delivery platforms of different materials and various EV engineering modification methods in treating bone and cartilage injuries. The review's findings can help advance EV research and develop new strategies for improving the therapy of bone and cartilage injuries.
Collapse
Affiliation(s)
- Xiangyu Xu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Jialu Li
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Yi Lu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Yibo Shan
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Zhiming Shen
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Fei Sun
- Department of Thoracic Surgery Taizhou People's Hospital Affiliated to Nanjing Medical University Taizhou 225300 China
| | - Jianwei Zhu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Wenxuan Chen
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Hongcan Shi
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| |
Collapse
|
26
|
Zhou H, Zhang Z, Mu Y, Yao H, Zhang Y, Wang DA. Harnessing Nanomedicine for Cartilage Repair: Design Considerations and Recent Advances in Biomaterials. ACS NANO 2024; 18:10667-10687. [PMID: 38592060 DOI: 10.1021/acsnano.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale. This review presents a comprehensive survey of recent research in nanomedicine for cartilage repair, with a primary focus on biomaterial design considerations and recent advances. The review commences with an introductory overview of the intricate cartilage microenvironment and further delves into key biomaterial design parameters crucial for treating cartilage damage, including microstructure, surface charge, and active targeting. The focal point of this review lies in recent advances in nano drug delivery systems and nanotechnology-enabled 3D matrices for cartilage repair. We discuss the compositions and properties of these nanomaterials and elucidate how these materials impact the regeneration of damaged cartilage. This review underscores the pivotal role of nanotechnology in improving the efficacy of biomaterials utilized for the treatment of cartilage damage.
Collapse
Affiliation(s)
- Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
27
|
Han X, Bai F, Li P, Bai X, Zhang Y, Wang W. Identification of novel potential drugs for the treatment and prevention of osteoarthritis. Biochem Biophys Rep 2024; 37:101647. [PMID: 38304574 PMCID: PMC10830515 DOI: 10.1016/j.bbrep.2024.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives Osteoarthritis (OA) is characterized by a high prevalence, poor prognosis, and a propensity to lead to disability. Despite the availability of standard therapies, they are associated with potential side effects and don't provide a complete cure for patients. Consequently, there is an urgent demand for the development of novel drugs. Method The gene expression profiles (GSE64394, GSE178557 and GSE215039) of normal and OA chondrocytes samples were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by the "LIMMA" R package. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted using the R package clusterProfiler. A protein-protein (PPI) interaction network was performed to identify hub genes by using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Small molecule compounds linked to OA were predicted through the NetworkAnalyst platform. Finally, molecular docking was conducted using AutoDock and Pymol software. Results We identified 98 DEGs primarily implicated in endochondral ossification, extracellular matrix degradation, and Wnt signaling pathways. 23 DEGs were closely associated with OA, and 10 hub genes were found to be potential drug targets for OA. Two new targeted compounds, tetrachlorodibenzodioxin (TCDD) and valproic acid (VPA), were screened. And they both exhibited strong binding affinity to their respective targets. Conclusions Reducing exposure to TCDD could be a crucial strategy in preventing OA, and VPA has gained recognition as a novel drug candidate for OA treatment.
Collapse
Affiliation(s)
- Xiaosong Han
- Department of Osteology, the First People's Hospital of Zunyi, Zunyi, Guizhou, 563099, China
| | - Fan Bai
- Department of Osteology, the First People's Hospital of Zunyi, Zunyi, Guizhou, 563099, China
| | - Peng Li
- Department of Osteology, the First People's Hospital of Zunyi, Zunyi, Guizhou, 563099, China
| | - Xiaojin Bai
- Department of Osteology, the First People's Hospital of Zunyi, Zunyi, Guizhou, 563099, China
| | - Yanli Zhang
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, Zhejiang, 314006, China
| | - Wenmin Wang
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, Zhejiang, 314006, China
| |
Collapse
|
28
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Rheumatoid Arthritis and Osteoarthritis. Cells 2023; 12:2716. [PMID: 38067147 PMCID: PMC10706487 DOI: 10.3390/cells12232716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Cells can communicate with each other through extracellular vesicles (EVs), which are membrane-bound structures that transport proteins, lipids and nucleic acids. These structures have been found to mediate cellular differentiation and proliferation apoptosis, as well as inflammatory responses and senescence, among others. The cargo of these vesicles may include immunomodulatory molecules, which can then contribute to the pathogenesis of various diseases. By contrast, EVs secreted by mesenchymal stem cells (MSCs) have shown important immunosuppressive and regenerative properties. Moreover, EVs can be modified and used as drug carriers to precisely deliver therapeutic agents. In this review, we aim to summarize the current evidence on the roles of EVs in the progression and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which are important and prevalent joint diseases with a significant global burden.
Collapse
Affiliation(s)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
29
|
Sun T, Feng Z, He W, Li C, Han S, Li Z, Guo R. Novel 3D-printing bilayer GelMA-based hydrogel containing BP, β-TCP and exosomes for cartilage-bone integrated repair. Biofabrication 2023; 16:015008. [PMID: 37857284 DOI: 10.1088/1758-5090/ad04fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
The integrated repair of cartilage and bone involves the migration and differentiation of cells, which has always been a difficult problem to be solved. We utilize the natural biomaterial gelatin to construct gelatin methacryloyl (GelMA), a hydrogel scaffold with high cell affinity. GelMA is mixed with different components to print a bi-layer porous hydrogel scaffold with different modulus and composition in upper and lower layers through three-dimensional (3D) printing technology. The upper scaffold adds black phosphorus (BP) and human umbilical cord mesenchymal stem cells (hUMSCs) exosomes (exos) in GelMA, which has a relatively lower elastic modulus and is conducive to the differentiation of BMSCs into cartilage. In the lower scaffold, in addition to BP and hUMSCs exos,β-tricalcium phosphate (β-TCP), which has osteoconductive and osteoinductive effects, is added to GelMA. The addition ofβ-TCP significantly enhances the elastic modulus of the hydrogel scaffold, which is conducive to the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs).In vitroexperiments have confirmed that the bi-layer scaffolds can promote osteogenesis and chondrogenic differentiation respectively. And in the rabbit cartilage-bone injury model, MRI and micro-CT results show that the 3D printed bi-layer GelMA composite scaffold has a repair effect close to normal tissue.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan 528000, People's Republic of China
| | - Zhiqiang Feng
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wenpeng He
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Chufeng Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Songning Han
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|