1
|
Savdenbekova B, Seidulayeva A, Sailau A, Bekissanova Z, Rakhmatullayeva D, Jumagaziyeva A. Investigation of Antibacterial Coatings Based on Chitosan/Polyacrylic Acid/Chlorhexidine for Orthopedic Implants. ACS POLYMERS AU 2024; 4:498-511. [PMID: 39679059 PMCID: PMC11638784 DOI: 10.1021/acspolymersau.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 12/17/2024]
Abstract
Antibacterial coatings on model silicon wafers and implants, based on chitosan (CHI), poly(acrylic acid) (PAA), and the antibacterial agent chlorhexidine digluconate (CHX), were obtained using a layer-by-layer assembly method. The surface roughness and 2D and 3D images of the surfaces of CHI/PAA/CHX coatings obtained from different pH assemblies were investigated by atomic force microscopy, revealing that pH 6 enabled optimal inclusion of CHX in the multilayer film. The structure and elemental composition before and after implementation of CHX into the coating were investigated via scanning electron microscopy and energy-dispersive X-ray spectroscopy. The obtained films exhibited antimicrobial efficacy against Staphylococcus aureus and Staphylococcus epidermidis. The effects of CHX concentration and duration of contact with the coating on bacterial activity were investigated, and the quantitative release of CHX from coated implants in phosphate buffer was determined as a function of the incubation time. The biocompatibility of the PAA/CHI/CHX coatings was investigated using human mononuclear cells (HMNCs) and quantified using an MTT assay. HMNCs demonstrated high viability in eluted solutions obtained from implants coated with PAA/CHI/CHX (0.025%) and PAA/CHI/CHX (0.0125%), while the extract of implants coated with PAA/CHI/CHX (0.05%) induced slight cytotoxicity.
Collapse
Affiliation(s)
- Balzhan Savdenbekova
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Ayazhan Seidulayeva
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Aruzhan Sailau
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Zhanar Bekissanova
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Dilafruz Rakhmatullayeva
- Faculty
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, Almaty 050040, Kazakhstan
- Center
of Physical−Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | | |
Collapse
|
2
|
Zhou Q, Lan W, Xie J. Phenolic acid-chitosan derivatives: An effective strategy to cope with food preservation problems. Int J Biol Macromol 2024; 254:127917. [PMID: 37939754 DOI: 10.1016/j.ijbiomac.2023.127917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a cost-effective and eco-friendly natural polymeric material, possesses excellent film-forming properties. However, it has low solubility and biological activity, which hinders its widespread applications. To overcome these limitations, researchers have developed phenolic acid-chitosan derivatives that greatly enhance the mechanical, antibacterial and antioxidant properties of chitosan, expanding its potential application, particularly in food preservation. This review aims to provide an in-depth understanding of the structure and biological activity of chitosan and phenolic acid, as well as various synthetic techniques employed in their modification. Phenolic acid-chitosan derivatives exhibit improved physicochemical properties, such as enhanced water solubility, thermal stability, rheological properties, and crystallinity, through grafting techniques. Moreover, these derivatives demonstrate significantly enhanced antibacterial and antioxidant activities. Through graft modification, phenolic acid-chitosan derivatives offer promising applications in food preservation for diverse food products, including fruits, vegetables, meat, and aquatic products. Their ability to improve the preservation and quality of these food items makes them an appealing option for the food industry. This review intends to provide a deeper understanding of phenolic acid-chitosan derivatives by delving into their synthetic technology, characterization, and application in the realm of food preservation.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
3
|
Vishnu J, Kesavan P, Shankar B, Dembińska K, Swiontek Brzezinska M, Kaczmarek-Szczepańska B. Engineering Antioxidant Surfaces for Titanium-Based Metallic Biomaterials. J Funct Biomater 2023; 14:344. [PMID: 37504839 PMCID: PMC10381466 DOI: 10.3390/jfb14070344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Prolonged inflammation induced by orthopedic metallic implants can critically affect the success rates, which can even lead to aseptic loosening and consequent implant failure. In the case of adverse clinical conditions involving osteoporosis, orthopedic trauma and implant corrosion-wear in peri-implant region, the reactive oxygen species (ROS) activity is enhanced which leads to increased oxidative stress. Metallic implant materials (such as titanium and its alloys) can induce increased amount of ROS, thereby critically influencing the healing process. This will consequently affect the bone remodeling process and increase healing time. The current review explores the ROS generation aspects associated with Ti-based metallic biomaterials and the various surface modification strategies developed specifically to improve antioxidant aspects of Ti surfaces. The initial part of this review explores the ROS generation associated with Ti implant materials and the associated ROS metabolism resulting in the formation of superoxide anion, hydroxyl radical and hydrogen peroxide radicals. This is followed by a comprehensive overview of various organic and inorganic coatings/materials for effective antioxidant surfaces and outlook in this research direction. Overall, this review highlights the critical need to consider the aspects of ROS generation as well as oxidative stress while designing an implant material and its effective surface engineering.
Collapse
Affiliation(s)
- Jithin Vishnu
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Praveenkumar Kesavan
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana 690525, India
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Chen H, Feng R, Xia T, Wen Z, Li Q, Qiu X, Huang B, Li Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023; 9:gels9050423. [PMID: 37233014 DOI: 10.3390/gels9050423] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Although titanium and titanium alloys have become the preferred materials for various medical implants, surface modification technology still needs to be strengthened in order to adapt to the complex physiological environment of the human body. Compared with physical or chemical modification methods, biochemical modification, such as the introduction of functional hydrogel coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides, or nucleotides on the surface of the implants, so that they can directly participate in biological processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the biological activity on the surface of the implants. This review begins with a look at common substrate materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen, gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide, polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel coating (electrochemical method, sol-gel method and layer-by-layer self-assembly method) are introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis, macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize the latest research progress and point out the future research direction. After searching, no previous relevant literature reporting this information was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
5
|
Xing L, Song H, Wei J, Wang X, Yang Y, Zhe P, Luan M, Xu J. Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance. Molecules 2023; 28:molecules28104120. [PMID: 37241863 DOI: 10.3390/molecules28104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Thin oxide layers form easily on the surfaces of titanium (Ti) components, with thicknesses of <100 nm. These layers have excellent corrosion resistance and good biocompatibility. Ti is susceptible to bacterial development on its surface when used as an implant material, which reduces the biocompatibility between the implant and the bone tissue, resulting in reduced osseointegration. In the present study, Ti specimens were surface-negatively ionized using a hot alkali activation method, after which polylysine and polydopamine layers were deposited on them using a layer-by-layer self-assembly method, then a quaternary ammonium salt (QAS) (EPTAC, DEQAS, MPA-N+) was grafted onto the surface of the coating. In all, 17 such composite coatings were prepared. Against Escherichia coli and Staphylococcus aureus, the bacteriostatic rates of the coated specimens were 97.6 ± 2.0% and 98.4 ± 1.0%, respectively. Thus, this composite coating has the potential to increase the osseointegration and antibacterial performance of implantable Ti devices.
Collapse
Affiliation(s)
- Lei Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongyang Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250100, China
| | - Xue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaozhen Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Pengbo Zhe
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Yu CH, Betrehem UM, Ali N, Khan A, Ali F, Nawaz S, Sajid M, Yang Y, Chen T, Bilal M. Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. CHEMOSPHERE 2022; 306:135656. [PMID: 35820475 DOI: 10.1016/j.chemosphere.2022.135656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Inorganic nanoparticles (NPs) have a tunable shape, size, surface morphology, and unique physical properties like catalytic, magnetic, electronic, and optical capabilities. Unlike inorganic nanomaterials, organic polymers exhibit excellent stability, biocompatibility, and processability with a tailored response to external stimuli, including pH, heat, light, and degradation properties. Nano-sized assemblies derived from inorganic and polymeric NPs are combined in a functionalized composite form to import high strength and synergistically promising features not reflected in their part as a single constituent. These new properties of polymer/inorganic functionalized materials have led to emerging applications in a variety of fields, such as environmental remediation, drug delivery, and imaging. This review spotlights recent advances in the design and construction of polymer/inorganic functionalized materials with improved attributes compared to single inorganic and polymeric materials for environmental sustainability. Following an introduction, a comprehensive review of the design and potential applications of polymer/inorganic materials for removing organic pollutants and heavy metals from wastewater is presented. We have offered valuable suggestions for piloting, and scaling-up polymer functionalized nanomaterials using simple concepts. This review is wrapped up with a discussion of perspectives on future research in the field.
Collapse
Affiliation(s)
- Chun-Hao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Uwase Marie Betrehem
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Tiantian Chen
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
7
|
Pandey LM. Design of Biocompatible and Self-antibacterial Titanium Surfaces for Biomedical Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|