1
|
Liu MJ, Xu ZP, Guan YQ, Wang YY, Wen XS, Li GH, Wang XN, Shen T. Ethyl acetate fraction of Thesium chinense Turcz. alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis mediated by activating Nrf2/SLC7A11/GPX4 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118776. [PMID: 39222758 DOI: 10.1016/j.jep.2024.118776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thesium chinense Turcz., a traditional Chinese herbal medicine, displays good therapeutic efficiency against respiratory diseases (e.g. pneumonia, pharyngitis) in clinical applications, however, its effects on COPD and the mechanism of action are still unclear. AIM OF THE STUDY This study aims to investigate the therapeutic effect of the ethyl acetate fraction of Thesium chinense Turcz. (TCEA) on COPD and reveal the underlying mechanism. MATERIALS AND METHODS A cigarette smoke (CS)-induced mouse COPD model was established, and the efficacy of TCEA was evaluated using peripheral blood testing, HE and Masson staining, qRT-PCR and ELISA assays. TCEA was analyzed for chemical composition by LC-MS/MS and HPLC. Prediction of major signaling pathways and potential targets was performed by network pharmacology. The molecular mechanism of TCEA was explored by immunoblotting, immunofluorescence staining, flow cytometry, and ubiquitination assay. Finally, potential active small molecules in TCEA were identified by molecular virtual screening. RESULTS TCEA treatment significantly inhibited the secretion of pro-inflammatory factors and attenuated pathological emphysema. The main chemical constituents of TCEA were identified as flavonoids by UPLC-MS/MS. Network pharmacology analysis enriched the Nrf2 signaling pathway closely related to oxidative stress. Our results suggested that TCEA inhibited ferroptosis by activating Nrf2/SLC7A11/GPX4 axis and inhibiting lipid metabolism-related proteins, ACSL4, ALOX5 and COX2 in vivo and in vitro. Noteworthily, the beneficial impact of TCEA on regulation of SLC7A11 and GPX4 vanished after silencing Nrf2. Moreover, Nrf2 ubiquitination was inhibited by TCEA treatment. Finally, several flavonoids modulating Nrf2 were identified by molecular virtual screening. CONCLUSIONS TCEA significantly alleviated COPD progression by inhibiting ferroptosis primarily through activation of Nrf2/SLC7A11/GPX4 signaling. Flavonoids are the main active components that exert their effects. These findings shed light on the mechanism of action of TCEA and its potential active components, providing a feasible approach for the treatment of COPD.
Collapse
Affiliation(s)
- Ming-Jie Liu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhen-Peng Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yue-Qin Guan
- Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, People's Republic of China
| | - Ying-Yue Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xue-Sen Wen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Guo-Hui Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Department of Pharmacy, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
2
|
Pan T, Huang Y, Wei J, Lai C, Chen Y, Nan K, Wu W. Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration through modulating inhibitory microenvironment. J Nanobiotechnology 2024; 22:683. [PMID: 39506841 PMCID: PMC11542345 DOI: 10.1186/s12951-024-02962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Optic nerve regeneration remains challenging worldwide due to the limited intrinsic regenerative capacity of retinal ganglion cells (RGCs) and the inhibitory microenvironment. Oxidative stress, induced by excessive reactive oxygen species (ROS) following optic nerve injury, is associated with prolonged neuroinflammation, resulting in a secondary injury of RGCs and the impairment of axon regeneration. Herein, we developed a bionic nanocomposite scaffold (GA@PDA) with immunoregulatory ability for enhanced optic nerve regeneration. The ice-templating method was employed to fabricate biopolymer-based scaffolds with a directional porous structure, mimicking the optic nerve, which effectively guided the oriented growth of neuronal cells. The incorporation of bioinspired polydopamine nanoparticles (PDA NPs) further confers excellent ROS scavenging ability, thereby modulating the phenotype transformation of microglia/macrophages from pro-inflammatory M1 to anti-inflammatory M2. In a rat optic nerve crush model, the implantation of GA@PDA scaffold enhanced survival of RGCs and promoted axonal regeneration. Our study offers novel insights and holds promising potential for the advancement of engineered biomaterials in facilitating optic nerve regeneration.
Collapse
Affiliation(s)
- Tonghe Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yate Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jinfei Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chen Lai
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, PKU-HKUST ShenZhen- HongKong Institution, Shenzhen, 518057, Guangdong, China
| | - Yangjun Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
3
|
Reboussin É, Bastelica P, Benmessabih I, Cordovilla A, Delarasse C, Réaux-Le Goazigo A, Brignole-Baudouin F, Olmière C, Baudouin C, Buffault J, Mélik Parsadaniantz S. Evaluation of Rho kinase inhibitor effects on neuroprotection and neuroinflammation in an ex-vivo retinal explant model. Acta Neuropathol Commun 2024; 12:150. [PMID: 39300576 PMCID: PMC11412021 DOI: 10.1186/s40478-024-01859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Glaucoma is a leading cause of blindness, affecting retinal ganglion cells (RGCs) and their axons. By 2040, it is likely to affect 110 million people. Neuroinflammation, specifically through the release of proinflammatory cytokines by M1 microglial cells, plays a crucial role in glaucoma progression. Indeed, in post-mortem human studies, pre-clinical models, and ex-vivo models, RGC degeneration has been consistently shown to be linked to inflammation in response to cell death and tissue damage. Recently, Rho kinase inhibitors (ROCKis) have emerged as potential therapies for neuroinflammatory and neurodegenerative diseases. This study aimed to investigate the potential effects of three ROCKis (Y-27632, Y-33075, and H-1152) on retinal ganglion cell (RGC) loss and retinal neuroinflammation using an ex-vivo retinal explant model. METHODS Rat retinal explants underwent optic nerve axotomy and were treated with Y-27632, Y-33075, or H-1152. The neuroprotective effects on RGCs were evaluated using immunofluorescence and Brn3a-specific markers. Reactive glia and microglial activation were studied by GFAP, CD68, and Iba1 staining. Flow cytometry was used to quantify day ex-vivo 4 (DEV 4) microglial proliferation and M1 activation by measuring the number of CD11b+, CD68+, and CD11b+/CD68+ cells after treatment with control solvent or Y-33075. The modulation of gene expression was measured by RNA-seq analysis on control and Y-33075-treated explants and glial and pro-inflammatory cytokine gene expression was validated by RT-qPCR. RESULTS Y-27632 and H-1152 did not significantly protect RGCs. By contrast, at DEV 4, 50 µM Y-33075 significantly increased RGC survival. Immunohistology showed a reduced number of Iba1+/CD68+ cells and limited astrogliosis with Y-33075 treatment. Flow cytometry confirmed lower CD11b+, CD68+, and CD11b+/CD68+ cell numbers in the Y-33075 group. RNA-seq showed Y-33075 inhibited the expression of M1 microglial markers (Tnfα, Il-1β, Nos2) and glial markers (Gfap, Itgam, Cd68) and to reduce apoptosis, ferroptosis, inflammasome formation, complement activation, TLR pathway activation, and P2rx7 and Gpr84 gene expression. Conversely, Y-33075 upregulated RGC-specific markers, neurofilament formation, and neurotransmitter regulator expression, consistent with its neuroprotective effects. CONCLUSION Y-33075 demonstrates marked neuroprotective and anti-inflammatory effects, surpassing the other tested ROCKis (Y-27632 and H-1152) in preventing RGC death and reducing microglial inflammatory responses. These findings highlight its potential as a therapeutic option for glaucoma.
Collapse
Affiliation(s)
- Élodie Reboussin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Paul Bastelica
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Faculty of Pharmacy of Paris, University Paris Cité, 75006, Paris, France
| | - Ilyes Benmessabih
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Arnaud Cordovilla
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Cécile Delarasse
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Annabelle Réaux-Le Goazigo
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Françoise Brignole-Baudouin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- Laboratoire, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Faculty of Pharmacy of Paris, University Paris Cité, 75006, Paris, France
| | | | - Christophe Baudouin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, 75012, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, UVSQ, Paris Saclay University, 91190, Gif-sur-Yvette, France
| | - Juliette Buffault
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, 75012, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, UVSQ, Paris Saclay University, 91190, Gif-sur-Yvette, France
| | - Stéphane Mélik Parsadaniantz
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France.
| |
Collapse
|
4
|
Zhou S, Li W, Lv R, Zhang M, Liu W. Neuroprotective effects and mechanisms of action of artemisinin in retinal ganglion cells in a mouse model of traumatic optic neuropathy. Heliyon 2024; 10:e31378. [PMID: 38828288 PMCID: PMC11140598 DOI: 10.1016/j.heliyon.2024.e31378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Traumatic optic neuropathy is known to be a critical condition that can cause blindness; however, the specific mechanism underlying optic nerve injury is unclear. Recent studies have reported that artemisinin, considered vital in malaria treatment, can also be used to treat neurodegenerative diseases; however, its precise role and mechanism of action remain unknown. Therefore, in this study, we aimed to investigate the impact and probable mechanism of action of artemisinin in retinal ganglion cells (RGCs) in a mouse model of traumatic optic neuropathy induced by optic nerve crush (ONC). Methods ONC was induced in the left eye of mice by short-term clamping of the optic nerve; oral artemisinin was administered daily. The neuroprotective effect of the drug was assessed using Tuj-1 staining in RGCs. In addition, the inflammatory response and the expression levels of phosphorylated tau protein and tau oligomers were observed using RT-qPCR, TUNEL assay, and fluorescence staining to investigate the underlying mechanisms. Results Artemisinin increased the survival rate of RGCs 14 days after ONC. Artemisinin significantly reduced the levels of inflammatory factors such as CXCL10, CXCR3, and IL-1β in the retina and decreased the apoptosis of RGCs. Moreover, downregulation of the phosphorylation of tau proteins and the expression of tau oligomers were observed after artemisinin treatment. Conclusion Our results suggest that artemisinin can increase the survival rate of RGCs after ONC and reduce their apoptosis. This effect may be achieved by inhibiting the inflammatory response it triggers and downregulating tau protein phosphorylation and tau oligomer expression. These findings suggest the potential application of artemisinin as a therapeutic agent for neuropathy.
Collapse
Affiliation(s)
- Shirui Zhou
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangzi Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruohan Lv
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - MingChang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Huang QF, Li YH, Huang ZJ, Jun M, Wang W, Chen XL, Wang GH. Artesunate carriers induced ferroptosis to overcome biological barriers for anti-cancer. Eur J Pharm Biopharm 2023; 190:284-293. [PMID: 37532638 DOI: 10.1016/j.ejpb.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Artesunate (ART) has potent anticancer activity but it suffers from poor stability and low bioavailability in vivo due to the special endoperoxide moiety in the molecules. In this work, we fabricated programmable enzyme/reactive oxygen species (ROS) responsive ART complex carriers with size and charge adaptive regulation in order to improve stability and overcome biochemical hurdles of solid tumor. The complex carries (ART/AA-PAMAM@HA) were created by electrostatic interaction between dendrimer-ART/arachidonic acid (AA) (ART/AA-PAMAM) and hyaluronic acid (HA), which can proactively penetrate deeply into tumors and selective drug release. Specifically, ART induced Fenton reaction and produced a mass of ROS and lipid peroxides (LPO), leading to the depressing of GSH level and glutathione peroxidase 4 (GPX4) activity. Meanwhile, exogenous AA further promoted the accumulation of LPO by cascade regulating ferroptosis pathway. In the anti-tumor efficacy in vivo, the tumor inhibition ratio was achieved to 46.92%. This work shows a new anti-tumor strategy triggering ferroptosis via regulating redox homeostasis.
Collapse
Affiliation(s)
- Qun-Fa Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710, Dongguan, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Hong Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710, Dongguan, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zeng-Jin Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710, Dongguan, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Mei Jun
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wei Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Li Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
| | - Guan-Hai Wang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710, Dongguan, China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
6
|
Wang D, Huang B, Zhu C, Wang L, Jin J, Tan J, Li Q, Xiang S, Nan K, Lin S. Efficiency Encapsulation of FK506 with New Dual Self-Assembly Multi-Hydrophobic-Core Nanoparticles for Preventing Keratoplasty Rejection. Adv Healthc Mater 2023; 12:e2203242. [PMID: 37171892 DOI: 10.1002/adhm.202203242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/29/2023] [Indexed: 05/14/2023]
Abstract
Nanoparticles self-assembled by amphiphilic copolymers for loading hydrophobic molecules are intensively investigated. However, their hydrophobic molecule-loading capacity is low due to the limitation of hydrophobic groups in these copolymers. In this regard, new lysine oligomer-based multi-hydrophobic side chain polymers (MHCPs) are synthesized by polymerization of γ-benzyl-l glutamate N-carboxy anhydride initiated by side-chain primary amino groups in lysine oligomer. Each hydrophobic side chain in MHCPs can be self-assembled by hydrophobic interaction to form multi-hydrophobic-core nanoparticles (MHC-NPs) with silkworm cocoon-, grape cluster-, and butterfly-like shapes (depending on hydrophobic-side-chains lengths). To increase their stability, MHC-NPs are dually self-assembled with polyethylene glycol-polyglutamic acid through charge interaction. Each hydrophobic core in MHC-NPs serves as a carrier for hydrophobic molecules, endowing their nanostructure with high loading capacity. MHC-NPs are employed to load tacrolimus (also known as FK506), and the loading amount is 18% and the loading efficiency is 80%, which are higher than those of previously reported nanomicelles self-assembled by linear amphiphilic copolymers. Topical administration of FK506-loaded nanoparticle (FK506-NP) can significantly prolong retention of FK506 on the eye surface. FK506-NP exhibits higher in vivo immunosuppressive effects than free FK506 and commercial FK506 eye drop, as well as a better protective effect against immunotoxicity in the corneal grafts after keratoplasty.
Collapse
Affiliation(s)
- Dongmei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Baoshan Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenchen Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, UCAS, Wenzhou, Zhejiang, 325000, China
| | - Jiahui Jin
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingyang Tan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, UCAS, Wenzhou, Zhejiang, 325000, China
| | - Shengjin Xiang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Sen Lin
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, UCAS, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
7
|
Wu KY, Tan K, Akbar D, Choulakian MY, Tran SD. A New Era in Ocular Therapeutics: Advanced Drug Delivery Systems for Uveitis and Neuro-Ophthalmologic Conditions. Pharmaceutics 2023; 15:1952. [PMID: 37514137 PMCID: PMC10385446 DOI: 10.3390/pharmaceutics15071952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The eye's intricate anatomical barriers pose significant challenges to the penetration, residence time, and bioavailability of topically applied medications, particularly in managing uveitis and neuro-ophthalmologic conditions. Addressing this issue, polymeric nano-based drug delivery systems (DDS) have surfaced as a promising solution. These systems enhance drug bioavailability in hard-to-reach target tissues, extend residence time within ocular tissues, and utilize biodegradable and nanosized polymers to reduce undesirable side effects. Thus, they have stimulated substantial interest in crafting innovative treatments for uveitis and neuro-ophthalmologic diseases. This review provides a comprehensive exploration of polymeric nano-based DDS used for managing these conditions. We discuss the present therapeutic hurdles posed by these diseases and explore the potential role of various biopolymers in broadening our treatment repertoire. Our study incorporates a detailed literature review of preclinical and clinical studies from 2017 to 2023. Owing to advancements in polymer science, ocular DDS has made rapid strides, showing tremendous potential to revolutionize the treatment of patients with uveitis and neuro-ophthalmologic disorders.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Kenneth Tan
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mazen Y Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
8
|
Cheng F, Huang QF, Li YH, Huang ZJ, Wu QX, Wang W, Liu Y, Wang GH. Combined chemo and photo therapy of programmable prodrug carriers to overcome delivery barriers against nasopharyngeal carcinoma. BIOMATERIALS ADVANCES 2023; 151:213451. [PMID: 37150081 DOI: 10.1016/j.bioadv.2023.213451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.
Collapse
Affiliation(s)
- Fan Cheng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qun-Fa Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Hong Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zeng-Jin Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Quan-Xin Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wei Wang
- Scientific Research Service Center, Guangdong Medical University, Dongguan 523808, China
| | - Yun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Guan-Hai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Sun Yet-Sen University, Guangzhou 510275, China.
| |
Collapse
|
9
|
Zhao P, Song H, Gao F, Chen L, Qiu J, Jin J, Pan C, Tang Y, Chen M, Pan Y, Li Y, Huang L, Yang J, Hao X. A Novel Derivative of Curcumol, HCL-23, Inhibits the Malignant Phenotype of Triple-Negative Breast Cancer and Induces Apoptosis and HO-1-Dependent Ferroptosis. Molecules 2023; 28:molecules28083389. [PMID: 37110625 PMCID: PMC10142363 DOI: 10.3390/molecules28083389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype of breast cancer. Curcumol, as a natural small molecule compound, has potential anti-breast cancer activity. In this study, we chemically synthesized a derivative of curcumol, named HCL-23, by structural modification and explored its effect on and underlying mechanism regarding TNBC progression. MTT and colony formation assays demonstrated that HCL-23 significantly inhibited TNBC cells proliferation. HCL-23 induced G2/M phase cell cycle arrest and repressed the capability of migration, invasion, and adhesion in MDA-MB-231 cells. RNA-seq results identified 990 differentially expressed genes including 366 upregulated and 624 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that these differentially expressed genes were obviously enriched in adhesion, cell migration, apoptosis, and ferroptosis. Furthermore, HCL-23 induced apoptosis via the loss of mitochondrial membrane potential and the activation of the caspase family in TNBC cells. In addition, HCL-23 was verified to trigger ferroptosis through increasing cellular reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation levels. Mechanistically, HCL-23 markedly upregulated the expression of heme oxygenase 1 (HO-1), and the knockdown of HO-1 could attenuate ferroptosis induced by HCL-23. In animal experiments, we found that HCL-23 inhibited tumor growth and weight. Consistently, the upregulation of Cleaved Caspase-3, Cleaved PARP, and HO-1 expression was also observed in tumor tissues treated with HCL-23. In summary, the above results suggest that HCL-23 can promote cell death through activating caspases-mediated apoptosis and HO-1-dependent ferroptosis in TNBC. Therefore, our findings provide a new potential agent against TNBC.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Futian Gao
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Liang Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Jianfei Qiu
- Key Laboratory of Modern Pathogen Biology and Characteristics, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Jun Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yang Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
10
|
Lou Q, Pan L, Xiang S, Li Y, Jin J, Tan J, Huang B, Nan K, Lin S. Suppression of NLRP3/Caspase-1/GSDMD Mediated Corneal Epithelium Pyroptosis Using Melatonin-Loaded Liposomes to Inhibit Benzalkonium Chloride-Induced Dry Eye Disease. Int J Nanomedicine 2023; 18:2447-2463. [PMID: 37192892 PMCID: PMC10182801 DOI: 10.2147/ijn.s403337] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction Benzalkonium chloride (BAC) is widely employed as a preservative in eye drops, which will cause the death of corneal epithelial cells due to ROS production, DNA strand breakage, and mitochondrial dysfunction, resulting in dry eye disease (DED)-like changes in ocular surface tissues. In this study, Melatonin (MT) liposomes (TAT-MT-LIPs) designed by loading MT into TAT-modified liposomes have been developed, characterized, and used for inhibiting BAC-induced DED (BAC-DED). Methods The TAT was chemically grafted onto the Mal-PEG2000-DSPE by Michael's addition between the sulfhydryl group in TAT and the maleimide group in Mal-PEG2000-DSPE. TAT-MT-LIPs were prepared using film dispersion followed by the extrusion method and topically treated in rats once a day. BAC-DED was induced in rats by topical administration with 0.2% BAC twice daily. Defects, edema, and inflammation of the corneas, as well as IOP, were examined. Histologic analyses of corneas were performed to assess the change of mitochondrial DNA oxidation and NLRP3/Caspase-1/GSDMD signaling transduction. Results After topical administration, TAT-MT-LIPs significantly alleviated DED-clinical symptoms of experimental animals by inhibiting tissue inflammation and preventing the loss of the corneal epithelium and conjunctival goblet cells. Our data suggested continuous ocular surface exposure of BAC-induced NLRP3/Caspase-1/GSDMD mediated corneal epithelium pyroptosis, which was not reported before. BAC caused substantial mt-DNA oxidation, which promoted the transduction of NLRP3/Caspase-1/GSDMD and consequent corneal epithelium pyroptosis. TAT-MT-LIPs could efficiently suppress the BAC-induced corneal epithelium pyroptosis and inflammation by inhibiting mt-DNA oxidation and the subsequent signal transmission. Conclusion NLRP3/Caspase-1/GSDMD mediated corneal epithelium pyroptosis is involved in the development of BAC-DED. The present study provided new insights into the adverse effects of BAC, which can serve as a new target for protecting corneal epithelium when applying BAC as a preservative in eye drops. The developed TAT-MT-LIPs can efficiently inhibit BAC-DED and give great potential to be developed as a new DED treatment.
Collapse
Affiliation(s)
- Qi Lou
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Lu Pan
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Shengjin Xiang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Yueting Li
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Jiahui Jin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Jingyang Tan
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Baoshan Huang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- Correspondence: Kaihui Nan; Sen Lin, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China, Tel +86-577-88067962, Email ;
| | - Sen Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| |
Collapse
|