1
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
2
|
Synchronized delivery of dual-drugs for potentiating combination chemotherapy based on smart triple-responsive polymeric micelles. BIOMATERIALS ADVANCES 2023; 147:213344. [PMID: 36841112 DOI: 10.1016/j.bioadv.2023.213344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Here, we combined reversible addition-fragmentation chain transfer (RAFT) polymerization and amide coupling reaction to develop a novel drug-polymer conjugate using poly(AMA-co-IMMA)-b-poly(OEGMA) (termed as PAIPO) as nanocarriers. In order to enhance cellular uptake and obtain subsequent endo/lysosomal escape capacity, the dual-drugs-conjugated prodrug was then coupled with 2,3-dimethylmaleimide (DA) moieties and implanted with imidazolyl groups, respectively. Paclitaxel (PTX) was conjugated to PAIPO via 3,3'-dithiodipropionic acid (DPA) to construct a GSH-responsive moiety, while doxorubicin (DOX) was conjugated to PAIPO via 4-formyl benzoic acid to construct a pH-responsive moiety, which synergistically enabled a synchronized and precise drug delivery. The micelles self-assembled from DOX/PTX@PAIPODA showed an ideal average diameter (163.2-178.3 nm), contributing to passive targeting by the EPR effect. Moreover, a switch of the surface Zeta potential of micelles from steady negatively charged (- 9.74 ± 0.54 mV) at pH 7.4 to positively charged (+ 6.33 ± 1.25 mV) at pH 6.5, facilitated the long blood circulation and cellular endocytosis of micelles, respectively. More importantly, in vitro studies confirmed that DAM(DOXn/PTX) exhibited a strong synergism against tumor cells, and under slightly acidic conditions (pH 6.5), the combination index (CI) values for DAM(DOX1/PTX) on HeLa and Skov-3 cells were estimated to be 0.47 and 0.49 (previous to be 0.50 and 0.56 at pH 7.4), respectively. And in vivo results showed effective tumor accumulation potential, remarkable biosafety, and biocompatibility. Combined, such synchronized delivery approach based on multi-responsive micelles might potentiate the efficacy of combination chemotherapy in clinical cancer treatment.
Collapse
|