1
|
Qin Y, Wang Y, Huang Y, Xiao S, Cui R, Yuan M, Brennan M, Brennan C. Preparation and characterization of Ag@MOF-eugenol/ poly (lactic acid) composite films for zucchini preservation. Int J Biol Macromol 2024; 282:136809. [PMID: 39447799 DOI: 10.1016/j.ijbiomac.2024.136809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The rising demand for premium quality fruits and vegetables has resulted in an increased necessity for the advancement in active food packaging. This study aimed to develop eugenol-loaded Ag@MOF/poly(lactic acid) (Ag@MOF-EU/PLA) composite films to assess their efficacy in preserving zucchini. The results revealed that Ag@MOF-EU can be uniformly distributed within the PLA matrix, which significantly enhanced the tensile strength, hydrophobicity, and UV-blocking capacity of PLA films, and at the same time had no significant effect on the thermal properties and WVP of the PLA films. Moreover, the resulting Ag@MOF-EU/PLA films exhibited no cytotoxicity. In a food simulant (50 % ethanol), the release behavior of the EU demonstrated a sustained release over 20 days. Furthermore, Ag@MOF-EU/PLA had an enhanced antimicrobial activity and DPPH scavenging activity, compared to PLA films. The preservation experiment involving zucchini elucidated that the Ag@MOF-EU/PLA composite film could extend the shelf life of zucchini by maintaining color, reducing weight loss, delaying the decline in firmness, and inhibiting the growth of total viable colonies. These findings indicated that the Ag@MOF-EU/PLA films developed within the scope of this research possess the potential to serve as effective food-active packaging materials.
Collapse
Affiliation(s)
- Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yurou Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yiwei Huang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Shanshan Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Rui Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia.
| |
Collapse
|
2
|
Yao L, Mei X, Zhi J, Wang W, Li Q, Jiang D, Chen X, Chen Z. A novel electrochemiluminescent sensor based on AgMOF@N-CD composites for sensitive detection of trilobatin. Analyst 2024; 149:5265-5276. [PMID: 39264159 DOI: 10.1039/d4an01102c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this study, a novel electrochemiluminescent (ECL) sensor for highly sensitive detection of trilobatin (Tri) was developed based on silver metal-organic frameworks (AgMOFs) and nitrogen-doped carbon quantum dots (N-CDs). N-CDs exhibited high ECL intensity but poor ECL stability, while AgMOFs had a large specific surface area, high porosity, and good adsorption properties. Compositing both of them not only improved the ECL stability of N-CDs, but also enhanced the ECL strength of materials, so AgMOF@N-CD composites were used as the luminophore of the sensor. Under the optimized conditions, the ECL sensor showed a linear range of 1.0 × 10-7 M to 1.0 × 10-3 M for the detection of Tri, and the detection limit was as low as 5.99 × 10-8 M (S/N = 3). In addition, the sensor had excellent reproducibility, stability, and anti-interference ability. It could be utilized for the detection of Tri in real samples with recoveries of 95.78-102.26%, indicating that the constructed ECL sensor for detecting Tri possessed better application prospects.
Collapse
Affiliation(s)
- Longmei Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xue Mei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Jiajia Zhi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, China
| | - Qingyi Li
- Changzhou High-Tech Industry Development Zone Sanwei Industrial Technology Research Instit. Co., Ltd, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
3
|
Sogukomerogullari HG, Akkoc S. COPPER(II) COMPLEXES WITH THIOETHER BASED SNS PINCER LIGAND: SYNTHESIS, CHARACTERIZATION AND ANTIPROLIFERATIVE ACTIVITY. J STRUCT CHEM+ 2023. [DOI: 10.1134/s0022476623010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|