1
|
Lan Z, Chen R, Zou D, Zhao CX. Microfluidic Nanoparticle Separation for Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411278. [PMID: 39632600 DOI: 10.1002/advs.202411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
A deeper understanding of disease heterogeneity highlights the urgent need for precision medicine. Microfluidics, with its unique advantages, such as high adjustability, diverse material selection, low cost, high processing efficiency, and minimal sample requirements, presents an ideal platform for precision medicine applications. As nanoparticles, both of biological origin and for therapeutic purposes, become increasingly important in precision medicine, microfluidic nanoparticle separation proves particularly advantageous for handling valuable samples in personalized medicine. This technology not only enhances detection, diagnosis, monitoring, and treatment accuracy, but also reduces invasiveness in medical procedures. This review summarizes the fundamentals of microfluidic nanoparticle separation techniques for precision medicine, starting with an examination of nanoparticle properties essential for separation and the core principles that guide various microfluidic methods. It then explores passive, active, and hybrid separation techniques, detailing their principles, structures, and applications. Furthermore, the review highlights their contributions to advancements in liquid biopsy and nanomedicine. Finally, it addresses existing challenges and envisions future development spurred by emerging technologies such as advanced materials science, 3D printing, and artificial intelligence. These interdisciplinary collaborations are anticipated to propel the platformization of microfluidic separation techniques, significantly expanding their potential in precision medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rui Chen
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Da Zou
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Venkatesan J, Murugan D, Lakshminarayanan K, Smith AR, Vasanthakumari Thirumalaiswamy H, Kandhasamy H, Zender B, Zheng G, Rangasamy L. Powering up targeted protein degradation through active and passive tumour-targeting strategies: Current and future scopes. Pharmacol Ther 2024; 263:108725. [PMID: 39322067 DOI: 10.1016/j.pharmthera.2024.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a prominent and vital strategy for therapeutic intervention of cancers and other diseases. One such approach involves the exploration of proteolysis targeting chimeras (PROTACs) for the selective elimination of disease-causing proteins through the innate ubiquitin-proteasome pathway. Due to the unprecedented achievements of various PROTAC molecules in clinical trials, researchers have moved towards other physiological protein degradation approaches for the targeted degradation of abnormal proteins, including lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagosome-tethering compounds (ATTECs), molecular glue degraders, and other derivatives for their precise mode of action. Despite numerous advantages, these molecules face challenges in solubility, permeability, bioavailability, and potential off-target or on-target off-tissue effects. Thus, an urgent need arises to direct the action of these degrader molecules specifically against cancer cells, leaving the proteins of non-cancerous cells intact. Recent advancements in TPD have led to innovative delivery methods that ensure the degraders are delivered in a cell- or tissue-specific manner to achieve cell/tissue-selective degradation of target proteins. Such receptor-specific active delivery or nano-based passive delivery of the PROTACs could be achieved by conjugating them with targeting ligands (antibodies, aptamers, peptides, or small molecule ligands) or nano-based carriers. These techniques help to achieve precise delivery of PROTAC payloads to the target sites. Notably, the successful entry of a Degrader Antibody Conjugate (DAC), ORM-5029, into a phase 1 clinical trial underscores the therapeutic potential of these conjugates, including LYTAC-antibody conjugates (LACs) and aptamer-based targeted protein degraders. Further, using bispecific antibody-based degraders (AbTACs) and delivering the PROTAC pre-fused with E3 ligases provides a solution for cell type-specific protein degradation. Here, we highlighted the current advancements and challenges associated with developing new tumour-specific protein degrader approaches and summarized their potential as single agents or combination therapeutics for cancer.
Collapse
Affiliation(s)
- Janarthanan Venkatesan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India; School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kalaiarasu Lakshminarayanan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Alexis R Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India; Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hariprasath Kandhasamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Boutheina Zender
- Department of Biomedical Engineering, Bahçeşehir University, Istanbul 34353, Turkey
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
3
|
Fu L, Wu J, Li P, Zheng Y, Zhang Z, Yuan X, Ding Z, Ning C, Sui X, Liu S, Shi S, Guo Q, Lin Y. A novel mesenchymal stem cell-targeting dual-miRNA delivery system based on aptamer-functionalized tetrahedral framework nucleic acids: Application to endogenous regeneration of articular cartilage. Bioact Mater 2024; 40:634-648. [PMID: 39253616 PMCID: PMC11381621 DOI: 10.1016/j.bioactmat.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Articular cartilage injury (ACI) remains one of the key challenges in regenerative medicine, as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage. Enhancing endogenous repair via microRNAs (miRNAs) shows promise as a regenerative therapy. miRNA-140 and miRNA-455 are two key and promising candidates for regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, we innovatively synthesized a multifunctional tetrahedral framework in which a nucleic acid (tFNA)-based targeting miRNA codelivery system, named A-T-M, was used. With tFNAs as vehicles, miR-140 and miR-455 were connected to and modified on tFNAs, while Apt19S (a DNA aptamer targeting MSCs) was directly integrated into the nanocomplex. The relevant results showed that A-T-M efficiently delivered miR-140 and miR-455 into MSCs and subsequently regulated MSC chondrogenic differentiation through corresponding mechanisms. Interestingly, a synergistic effect between miR-140 and miR-455 was revealed. Furthermore, A-T-M successfully enhanced the endogenous repair capacity of articular cartilage in vivo and effectively inhibited hypertrophic chondrocyte formation. A-T-M provides a new perspective and strategy for the regeneration of articular cartilage, showing strong clinical application value in the future treatment of ACI.
Collapse
Affiliation(s)
- Liwei Fu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Jiang Wu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
| | - Yazhe Zheng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zhichao Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Xun Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zhengang Ding
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Chao Ning
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
4
|
Chen Y, Yang J, Wang C, Wang T, Zeng Y, Li X, Zuo Y, Chen H, Zhang C, Cao Y, Sun C, Wang M, Cao X, Ge X, Liu Y, Zhang G, Deng Y, Peng C, Lu A, Lu J. Aptamer-functionalized triptolide with release controllability as a promising targeted therapy against triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:207. [PMID: 39054545 PMCID: PMC11270970 DOI: 10.1186/s13046-024-03133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Targeted delivery and precise release of toxins is a prospective strategy for the treatment of triple-negative breast cancer (TNBC), yet the flexibility to incorporate both properties simultaneously remains tremendously challenging in the X-drug conjugate fields. As critical components in conjugates, linkers could flourish in achieving optimal functionalities. Here, we pioneered a pH-hypersensitive tumor-targeting aptamer AS1411-triptolide conjugate (AS-TP) to achieve smart release of the toxin and targeted therapy against TNBC. The multifunctional acetal ester linker in the AS-TP site-specifically blocked triptolide toxicity, quantitatively sustained aptamer targeting, and ensured the circulating stability. Furthermore, the aptamer modification endowed triptolide with favorable water solubility and bioavailability and facilitated endocytosis of conjugated triptolide by TNBC cells in a nucleolin-dependent manner. The integrated superiorities of AS-TP promoted the preferential intra-tumor triptolide accumulation in xenografted TNBC mice and triggered the in-situ triptolide release in the weakly acidic tumor microenvironment, manifesting striking anti-TNBC efficacy and virtually eliminated toxic effects beyond clinical drugs. This study illustrated the therapeutic potential of AS-TP against TNBC and proposed a promising concept for the development of nucleic acid-based targeted anticancer drugs.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jirui Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chuanqi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianbao Wang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hongyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong Province, China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Ge
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu, 611137, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 999077, China.
| |
Collapse
|
5
|
He Y, Zhang M, Gong X, Liu X, Zhou F, Yang B. Diselenide-Bridged Mesoporous Silica-Based Nanoplatform with a Triple ROS-Scavenging Effect for Intracerebral Hemorrhage Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39047081 DOI: 10.1021/acsami.4c08726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Oxidative stress (OS) is a major mediator of secondary brain injury following intracerebral hemorrhage (ICH). Thus, antioxidant therapy is emerging as an attractive strategy to combat ICH. To achieve both reactive oxygen species (ROS) scavenging ability and on-demand drug release ability, we constructed a novel polydopamine (PDA)-coated diselenide-bridged mesoporous silica nanoparticle (DSeMSN) drug delivery system (PDA-DSeMSN). Edaravone (Eda) was blocked in the pores of DSeMSN by covering the pores with PDA as a gatekeeper. The drug maintained nearly "zero release" before reaching the lesion site, while in the ROS-enriched circumstances, the PDA shell went through degradation and the doped diselenide bonds broke up, triggering the disintegration of nanoparticles and leading to Eda release. Interestingly, the ROS-degradable property of the PDA shell and diselenide bond endowed the system with enhanced ROS-eliminating capacity. The synergistic effect of ROS-responsive drug delivery and ROS-scavenging PDA-DSeMSN showed efficient antioxidative and mitochondria protective performance without apparent toxicity in vitro. Importantly, PDA-DSeMSN@Eda through intravenous administration specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model through antioxidative and antiapoptotic effects with high biological safety. Thus, the PDA-DSeMSN platform holds tremendous potential as an excellent carrier for on-demand delivery of drugs and provides a new and effective strategy for the clinical treatment of ICH.
Collapse
Affiliation(s)
- Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Meiru Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiyu Gong
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Xiaoxuan Liu
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Fangfang Zhou
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Binbin Yang
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Fang L, Jin J, Zhang Z, Yu S, Tian C, Luo F, Long M, Zuo H, Lou S. Antidote-controlled DNA aptamer modulates human factor IXa activity. Bioorg Chem 2024; 148:107463. [PMID: 38776649 DOI: 10.1016/j.bioorg.2024.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Thrombosis leads to elevated mortality rates and substantial medical expenses worldwide. Human factor IXa (HFIXa) protease is pivotal in tissue factor (TF)-mediated thrombin generation, and represents a promising target for anticoagulant therapy. We herein isolated novel DNA aptamers that specifically bind to HFIXa through systematic evolution of ligands by exponential enrichment (SELEX) method. We identified two distinct aptamers, seq 5 and seq 11, which demonstrated high binding affinity to HFIXa (Kd = 74.07 ± 2.53 nM, and 4.93 ± 0.15 nM, respectively). Computer software was used for conformational simulation and kinetic analysis of DNA aptamers and HFIXa binding. These aptamers dose-dependently prolonged activated partial thromboplastin time (aPTT) in plasma. We further rationally optimized the aptamers by truncation and site-directed mutation, and generated the truncated forms (Seq 5-1t, Seq 11-1t) and truncated-mutated forms (Seq 5-2tm, Seq 11-2tm). They also showed good anticoagulant effects. The rationally and structurally designed antidotes (seq 5-2b and seq 11-2b) were competitively bound to the DNA aptamers and effectively reversed the anticoagulant effect. This strategy provides DNA aptamer drug-antidote pair with effective anticoagulation and rapid reversal, developing advanced therapies by safe, regulatable aptamer drug-antidote pair.
Collapse
Affiliation(s)
- Liang Fang
- Department of Hematology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jin Jin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Fukang Luo
- Department of Laboratory Medicine, The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Mengfei Long
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shifeng Lou
- Department of Hematology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
7
|
Zhang J, Shang J, Tang X, Xu X. TfR Aptamer-Functionalized MSNs for Enhancing Targeted Cellular Uptake and Therapy of Cancer Cells. ACS OMEGA 2023; 8:48975-48983. [PMID: 38162791 PMCID: PMC10753727 DOI: 10.1021/acsomega.3c06562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
Mesoporous silica nanoparticles (MSNs), as novel nanocarriers for drug delivery in cancer treatment, have attracted widespread concern because of their rich pore structure, large pore capacity, ease of modification, and biocompatibility. However, the limitation of nontargeting and low uptake efficiency hindered their further application. Considering the overexpression of the transferrin receptor (TfR) on most cancer cell membranes, herein, we propose a strategy to effectively enhance the cellular internalization of MSNs by arming them with the TfR aptamer. Cellular fluorescent imaging and flow cytometry analysis demonstrated that TfR aptamer-functionalized MSNs exhibited superior cellular internalization compared to unmodified or random sequence-modified MSNs toward three different cancer cell lines, including MCF-7, HeLa, and A549. Furthermore, TfR aptamer-functionalized MSNs displayed enhanced drug delivery efficiency compared with MSNs at equivalent doses and incubation times. These results suggested that TfR aptamer-functionalized MSNs have the potential for enhanced delivery of therapeutic agents into TfR-positive cancer cells to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Jiajia Zhang
- School
of Nursing and Health Management, Wuhan
Donghu University, Wuhan 430212, China
- Key
Laboratory for Green Chemical Process of Ministry of Education, Hubei
Key Lab of Novel Reaction & Green Chemical Technology, School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, Wuhan 430205, China
| | - Jing Shang
- Key
Laboratory for Green Chemical Process of Ministry of Education, Hubei
Key Lab of Novel Reaction & Green Chemical Technology, School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, Wuhan 430205, China
| | - Xiuhui Tang
- School
of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xuemei Xu
- Key
Laboratory for Green Chemical Process of Ministry of Education, Hubei
Key Lab of Novel Reaction & Green Chemical Technology, School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, Wuhan 430205, China
| |
Collapse
|
8
|
Danquah MK. Editorial to the IJMS Special Issue "Aptamer-Mediated Cancer Theranostics". Int J Mol Sci 2023; 24:ijms24087253. [PMID: 37108416 PMCID: PMC10138950 DOI: 10.3390/ijms24087253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Aptamers have emerged as a new generation of bioaffinity probes with enhanced target binding specificity and selectivity [...].
Collapse
Affiliation(s)
- Michael K Danquah
- Department of Chemical Engineering, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA
| |
Collapse
|
9
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
10
|
He S, Du Y, Tao H, Duan H. Advances in aptamer-mediated targeted delivery system for cancer treatment. Int J Biol Macromol 2023; 238:124173. [PMID: 36965552 DOI: 10.1016/j.ijbiomac.2023.124173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Aptamers with high affinity and specificity for certain targets have rapidly become a novel class of targeted ligands applicated in drug delivery. Based on the excellent characteristics of aptamers, different aptamer-mediated drug delivery systems have been developed, including aptamer-drug conjugate (ApDC), aptamer-siRNA, and aptamer-functionalized nanoparticle systems for the effective treatment of cancer, which can reduce potential toxicity and improve therapeutic efficacy. In this review, we summarize the recent progress of aptamer-mediated delivery systems in cancer therapy, and discuss the application prospects and existing problems of innovative approaches based on aptamer therapy. Overall, this review aims to better understand the current aptamer-based targeted delivery applications through in-depth analysis to improve efficacy and develop new therapeutic methods which can ultimately improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyu Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Biao L, Liu J, Hu X, Xiang W, Hou W, Li C, Wang J, Yao K, Tang J, Long Z, Long W, Liu J. Recent advances in aptamer-based therapeutic strategies for targeting cancer stem cells. Mater Today Bio 2023; 19:100605. [PMID: 36969696 PMCID: PMC10034522 DOI: 10.1016/j.mtbio.2023.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer stem cells (CSCs) are believed to be the main cause of chemotherapy resistance and tumor relapse. Various therapeutic strategies to eliminate CSCs have been developed recently. Aptamers, also called "chemical antibodies", can specifically bind with their molecular targets through special tertiary structures. The advantages of aptamers, such as lower immunogenicity and smaller size, make them superior to conventional antibodies. Therefore, aptamers have been used widely as targeting ligands for CSC-targeted therapeutic strategies in different tumor types. To date, various therapeutic cargoes have been conjugated to aptamers to kill CSCs, such as chemotherapy drugs, small interfering RNAs, and microRNAs. Aptamer-based targeted therapies for CSCs have made great progress in recent years, especially the development of multifunctional aptamer-based therapeutic strategies. Besides, cell-systematic evolution of ligands by exponential enrichment has been applied to screen new aptamers that might have a higher binding ability for CSCs. In this review, we focus on recent advances and introduce some new modalities of aptamer-drug conjugates against CSCs. Some considerations of the advantages and limitations of different aptamer-based targeted therapies for CSCs are also discussed.
Collapse
|
12
|
Nanostructures as Photothermal Agents in Tumor Treatment. Molecules 2022; 28:molecules28010277. [PMID: 36615470 PMCID: PMC9822183 DOI: 10.3390/molecules28010277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Traditional methods of tumor treatment such as surgical resection, chemotherapy, and radiation therapy have certain limitations, and their treatment effects are not always satisfactory. As a new tumor treatment method, photothermal therapy based on nanostructures has attracted the attention of researchers due to its characteristics of minimally invasive, low side effects, and inhibition of cancer metastasis. In recent years, there has been a variety of inorganic or organic nanostructures used in the field of photothermal tumor treatment, and they have shown great application prospects. In this paper, the advantages and disadvantages of a variety of nanomaterials/nanostructures as photothermal agents (PTAs) for photothermal therapy as well as their research progress are reviewed. For the sake of clarity, the recently reported nanomaterials/nanostructures for photothermal therapy of tumor are classified into five main categories, i.e., carbon nanostructures, noble metal nanostructures, transition metal sulfides, organic polymer, and other nanostructures. In addition, future perspectives or challenges in the related field are discussed.
Collapse
|