1
|
Yang Y, Wang T, Xiao M, Hou Z, Liu Y, Zhang K, Yang L, Sun S. Polysaccharides as submucosal injection materials (SIMs) in endoscopic resection: A comprehensive review. Carbohydr Polym 2025; 355:123360. [PMID: 40037734 DOI: 10.1016/j.carbpol.2025.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Submucosal injection materials (SIMs) play a vital role in the endoscopic treatment of benign and early malignant gastrointestinal lesions by effectively elevating lesions while significantly reducing the risks of thermal injury and bleeding. However, the traditional use of normal saline (NS) presents challenges due to its rapid absorption, which necessitates frequent reapplications and complicates procedural efficiency. Therefore, there is a pressing need for ideal SIMs that are cost-effective, readily available, and suitable for personalized therapy, while also demonstrating excellent biocompatibility and physicochemical stability. Recent advancements have highlighted the potential of polysaccharide-based natural polymers, such as sodium hyaluronate, cellulose, starch derivatives, chitosan, and sodium alginate, due to their superior biocompatibility and biodegradability. These polysaccharides have exhibited enhanced operational characteristics and therapeutic efficacy in animal and clinical studies. Nevertheless, ongoing research must address several challenges, including optimizing cost-effectiveness, improving mechanical strength and bioactivity, and mitigating intraoperative and postoperative complications. This review systematically examines the progress of polysaccharide-based natural polymers in SIMs, evaluates their current status and challenges in both research and clinical applications, and proposes future directions to enhance their utilization in gastrointestinal endoscopic therapy.
Collapse
Affiliation(s)
- Yaochen Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tingting Wang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Miaomiao Xiao
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Liu
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Siyu Sun
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Zhou T, Liu Z, Xu L, Mao X, Jin H, Xiong Y, Chen G, Lv Y, Cen L, Wang C, Zhang Y, Ye K, Shen Q, Zhou J, Lv B, Dai J, Yu C, Shen Z. Konjac glucomannan/sodium alginate/ε-poly-l-lysine hydrogel promotes esophageal and colonic wound healing. Int J Biol Macromol 2025; 306:141146. [PMID: 39986528 DOI: 10.1016/j.ijbiomac.2025.141146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Endoscopic submucosal dissection (ESD) is widely used to treat gastrointestinal mucosal and submucosal lesions. However, it may cause bleeding, perforation, and stricture. Although these complications can be avoided by introducing materials such as polyglycolic acid and carboxymethyl cellulose sheets, such approaches are expensive and time-consuming. Herein, we report a hydrogel prepared by combining a colloidal solution composed of konjac glucomannan (KGM) and sodium alginate (SA) and a fixative solution containing ε-poly-l-lysine (ε-PLL) and calcium chloride. The two solutions were mixed on the wound surface to form the KGM/SA/ε-PLL hydrogel through hydrogen bonds, coordination bonds, and electrostatic attraction. The effectiveness and convenience of applying the KGM/SA/ε-PLL hydrogel to promote wound healing in the esophagus and colon were assessed in vitro and in vivo. We found that the hydrogel stimulated epithelial proliferation, reduced inflammation, promoted recapillarization, and inhibited fibrosis in the esophagus and colon. Therefore, the KGM/SA/ε-PLL hydrogel is an effective and convenient agent that can promote post-ESD wound healing and is recommended for ulcer bed protection in daily clinical practice.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Zhaoxue Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Lei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Taizhou 318000, Zhejiang, China
| | - Haifeng Jin
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Yangyang Xiong
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Guangwu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Yong Lv
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350000, Fujian, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Chunren Wang
- National Institutes for Food and Drug Control, Beijing 100101, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang, China
| | - Kexin Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Qien Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jiaming Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Bin Lv
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Jianying Dai
- Department of Research and Development, Hangzhou Yingjian Bioscience and Technology Co., Ltd, Hangzhou 310000, Zhejiang, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
3
|
Qin G, Wu R, Wang Q, Sun M, Li Y, Duan S, Xu FJ. Injectable Hyaluronic Acid-Based Hydrogels for Rapid Endoscopic Submucosal Dissection. ACS Biomater Sci Eng 2024; 10:7657-7666. [PMID: 39563065 DOI: 10.1021/acsbiomaterials.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Endoscopic submucosal dissection (ESD) is a widely used procedure for the treatment of early and precancerous gastrointestinal lesions and has become the standard treatment. In this procedure, the commonly used materials have a short retention time and a limited lifting capacity, which will prolong the duration of the ESD procedure. Furthermore, these liquids tend to diffuse after ESD surgery, failing to adequately protect the wound. Therefore, we designed and developed injectable hydrogels based on hyaluronic acid. A series of oxidized hyaluronic acid (OHA) and hydrazide hyaluronic acid (AHA) were synthesized, and 16 kinds of injectable hydrogels were fabricated to investigate the effects of molecular structures on the properties of the hydrogels. Among these, the O1A3 hydrogel exhibited a suitable injection performance, gelation time, and mechanical properties, along with good blood and cell compatibility in vitro. Subsequently, in a porcine model of the ESD procedure, the results demonstrated that the O1A3 hydrogel exhibited a good retention time and lifting performance while also significantly reducing the operation time from 1-2 h to ∼10 min. Furthermore, the adhesive property of the O1A3 hydrogel on small bleeding spots and wounds could be observed, which was beneficial in protecting the wound from the complex environment of the gastrointestinal tract. The present work of injectable hyaluronic acid-based hydrogels could be promising to improve the efficiency of ESD surgery.
Collapse
Affiliation(s)
- Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ruonan Wu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianqian Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Meizhou Sun
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Liu S, Ju R, Zhang Z, Jiang Z, Cui J, Liu W, Han B, Wang S. Temperature-sensitive injectable chitosan-based hydrogel for endoscopic submucosal dissection. Int J Biol Macromol 2024; 282:136566. [PMID: 39414205 DOI: 10.1016/j.ijbiomac.2024.136566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Endoscopic submucosal dissection (ESD) is an effective treatment for polyps and early gastrointestinal cancers, but requires a high level of operator skill. Injecting submucosal materials (SIM) helps create a fluid cushion between the mucosal and muscular layers, making the procedure easier and reducing associated risks. However, SIMs commonly used in current clinical practice tend to spread quickly and fail to provide long-lasting submucosal fluid cushions (SFC). Thus, there is a critical need for a material that is easy to inject while also maintaining a durable barrier. We prepared succinylated hydroxybutyl chitosan (HBC-SA) by adding succinic anhydride (SA) to hydroxybutyl chitosan (HBC). The hydrogel had excellent temperature-sensitive properties and was able to be injected via an endoscopic injection needle even after gel formation. In vitro and in vivo studies showed that it has satisfactory biocompatibility. Functional experiments showed that the submucosal lifting properties of this hydrogel were significantly better than that of normal saline (NS) and sodium hyaluronate (SH), two commonly used clinical materials. In addition, the hydrogel possessed excellent hemostatic properties. Based on these results, HBC-SA is a promising candidate for submucosal injection during ESD.
Collapse
Affiliation(s)
- Shourui Liu
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Ruibao Ju
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Zhenguo Zhang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Zhen Jiang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Jingzhao Cui
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China, 266003, PR China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China, 266003, PR China.
| | - Shuo Wang
- College of Marine Life Sciences, Ocean University of China, 266003, PR China.
| |
Collapse
|
5
|
Liu Y, Lang C, Zhang K, Feng L, Li J, Wang T, Sun S, Sun G. Injectable chitosan-polyvinylpyrrolidone composite thermosensitive hydrogels with sustained submucosal lifting for endoscopic submucosal dissection. Int J Biol Macromol 2024; 276:133165. [PMID: 38901518 DOI: 10.1016/j.ijbiomac.2024.133165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
To develop a submucosal injection material with sustained submucosal lifting for endoscopic submucosal dissection (ESD), this study designed and prepared a novel composite thermosensitive hydrogel system with high pH chitosan-polyvinylpyrrolidone-β-glycerophosphate (HpHCS-PVP-GP). HpHCS improved the injectability of the hydrogels and retained the rapid gelation ability at low concentrations. The modification of PVP significantly improved the stability of low-temperature hydrogel precursor solutions and the integrity of hydrogels formed at 37 °C through hydrogen bonds between PVP and HpHCS. A mathematical model was established using response surface methodology (RSM) to evaluate the synergistic effect of HpHCS, GP, and PVP concentrations on gelation time. This RSM model and submucosal lifting evaluation using in vitro pig esophageal models were used to determine the optimal formula of HpHCS-PVP-GP hydrogels. Although the higher PVP concentration (5 % (w/v)) prolonged gelation time, it improved hydrogel mechanical strength, resulting in better submucosal lifting performance. The experiments of Bama mini pigs showed that the heights of the cushions elevated by the HpHCS-5%PVP-GP hydrogel remained about 80 % 1 h after injection. Repeated injections were avoided, and the hydrogel had no cytotoxicity after electric cutting. Therefore, the HpHCS-PVP-GP thermosensitive hydrogel might be a promising submucosal injection material for ESD.
Collapse
Affiliation(s)
- Yang Liu
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China
| | - Chuang Lang
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China
| | - Kai Zhang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China
| | - Linlin Feng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China
| | - Junying Li
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China
| | - Tingting Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China
| | - Siyu Sun
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China.
| | - Guangwei Sun
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, People's Republic of China.
| |
Collapse
|
6
|
Huang L, Jiang Y, Zhang P, Li M, Liu B, Tang K. Injectable Modified Sodium Alginate Microspheres for Enhanced Operative Efficiency and Safety in Endoscopic Submucosal Dissection. Biomacromolecules 2024; 25:2953-2964. [PMID: 38652682 DOI: 10.1021/acs.biomac.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Endoscopic submucosal dissection (ESD) is an effective method for resecting early-stage tumors in the digestive system. To achieve a low injection pressure of the injected fluid and continuous elevation of the mucosa following injection during the ESD technique, we introduced an innovative injectable sodium-alginate-based drug-loaded microsphere (Cipro-ThSA) for ESD surgery, which was generated through an emulsion reaction involving cysteine-modified sodium alginate (ThSA) and ciprofloxacin. Cipro-ThSA microspheres exhibited notable adhesiveness, antioxidant activity, and antimicrobial properties, providing a certain level of postoperative wound protection. In vitro cell assays confirmed the decent biocompatibility of the material. Lastly, according to animal experiments involving submucosal elevation of porcine colons, Cipro-ThSA microspheres ensure surgically removable lift height while maintaining the mucosa for approximately 246% longer than saline, which could effectively reduce surgical risks while providing sufficient time for operation. Consequently, the Cipro-ThSA microsphere holds great promise as a novel submucosal injection material, in terms of enhancing the operational safety and effectiveness of ESD surgery.
Collapse
Affiliation(s)
- Luzhan Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongchao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Pengcheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Muhan Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingrong Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Wang Y, Su Y, Zhu Y, Ni P, Yu T, Yuan T, Sun X, Shan J. Research on triamcinolone-loaded thermosensitive chitosan hydrogels for preventing esophageal stricture induced by endoscopic submucosal dissection. Int J Biol Macromol 2024; 261:129679. [PMID: 38286381 DOI: 10.1016/j.ijbiomac.2024.129679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Early-stage esophageal cancer is primarily treated by endoscopic submucosal dissection (ESD). However, extensive mucosal dissection creates a significant risk of postoperative esophageal stricture. Clinically, postoperative stricture can be prevented by glucocorticoids; however, there are drawbacks to both systemic and local administration of glucocorticoids, and improving drug administration methods is crucial. In this study, we developed a chitosan-based thermosensitive hydrogel for triamcinolone (TA) delivery. Our results indicated that the hydrogel remains liquid at low temperatures and can be injected into the esophageal wound site through an endoscopic biopsy channel. Upon reaching body temperature, the hydrogel undergoes spontaneous gelation and firmly adheres to the wound surface. The liquid phase enables convenient and precise delivery, while the gel phase achieves remarkable adhesion, tensile strength, and resistance to degradation. Moreover, the hydrogel exhibited an extended release duration of >10 days when loaded with a 10 mg dose. In vitro studies revealed that the hydrogel suppresses the proliferation and fibrogenesis of human scar fibroblasts (HKF). In a rat skin dermal defect model, the hydrogel attenuated keloid formation during the healing process. Consequently, the chitosan-based thermosensitive hydrogel developed in this study for triamcinolone delivery may be an effective tool for preventing post-ESD esophageal stricture.
Collapse
Affiliation(s)
- Yi Wang
- North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yang Su
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Department of Gastroenterology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yuchun Zhu
- North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Panxianzhi Ni
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China; Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan 610064, China
| | - Tai Yu
- North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China; Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan 610064, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jing Shan
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
8
|
Swetha Menon NP, Kamaraj M, Anish Sharmila M, Govarthanan M. Recent progress in polysaccharide and polypeptide based modern moisture-retentive wound dressings. Int J Biol Macromol 2024; 256:128499. [PMID: 38048932 DOI: 10.1016/j.ijbiomac.2023.128499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Wounds were considered as defects in the tissues of the human skin and wound healing is said to be a tedious process as there are possibilities of infection or inflammation due to microorganisms. Modern moisture-retentive wound dressing (MMRWD) is opening a new window toward wound therapy. It comprises different types of wound dressing that has classified based on their functionality. Selective polysaccharide-polypeptide fiber composite materials such as hydrogels, hydrocolloids, hydro fibers, transparent-film dressing, and alginate dressing are discussed in this review as a type of MMRWD. The highlight of this polysaccharide and polypeptide based MMRWD is that it supports and enhances the healing of different types of wounds by moisture absorption thus preventing infection. This study has given enlightenment on the application of selected polysaccharide and polypeptide based MMRWD that enhances wound healing actions still it has been observed that the composite wound healing dressing is more effective than the single one. The nano-sized materials (synthetic nano drugs and phyto drugs) were found to increase the efficiency of healing action while coated in the wound dressing material. Future research is required to find out more possibilities of the different composite types of wound dressing in the healing action.
Collapse
Affiliation(s)
- N P Swetha Menon
- Department of Fashion Designing, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram, Chennai 600089, Tamil Nadu, India; Department of Fashion Design and Arts, Hindustan Institute of Technology and Science, Deemed to be University, Chennai 603103, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram, Chennai 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia.
| | - M Anish Sharmila
- Department of Fashion Design and Arts, Hindustan Institute of Technology and Science, Deemed to be University, Chennai 603103, Tamil Nadu, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| |
Collapse
|
9
|
Guo H, Shen H, Ma J, Wang P, Yao Z, Zhang W, Tan X, Chi B. Versatile Injectable Carboxymethyl Chitosan Hydrogel for Immediate Hemostasis, Robust Tissue Adhesion Barrier, and Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922211 DOI: 10.1021/acsami.3c12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Iatrogenic ulcers resulting from endoscopic submucosal dissection surgery remain a significant clinical concern due to the risk of uncontrolled bleeding. Herein, we have developed an injectable shear-thinning hydrogel cross-linked through electrostatic interactions and hydrogen bonding. The hydrogel underwent comprehensive characterization, focusing on rheological behavior, injectability, microstructure, film-forming capability, adhesion, swelling behavior, degradation kinetics, antibacterial efficacy, hemostatic performance, and biocompatibility. The incorporation of poly(vinyl alcohol) notably enhanced the internal structural stability and injection pressure, while the Laponite content influenced self-healing ability, modulus, and viscosity. Additionally, the hydrogel exhibited pH sensitivity, appropriate degradation, and swelling rates and displayed favorable film-forming and adhesion properties. Notably, it demonstrated excellent resistance against Escherichia coli and Staphylococcus aureus, highlighting its potential to create an optimal wound environment. In vivo studies further confirmed the hydrogel's exceptional hemostatic performance, positioning it as an optimal material for endoscopic submucosal dissection (ESD) surgery. Moreover, cell experiments and hemolysis tests revealed high biocompatibility, supporting their potential to facilitate the healing of iatrogenic ulcers post-ESD surgery. In conclusion, our hydrogels hold great promise as endoscopic treatment materials for ESD-induced ulcers given their outstanding properties.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haifeng Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Juping Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Yao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, P. R. China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|