1
|
Desai K, Sankaran S, del Campo A, Trujillo S. A screening setup to streamline in vitro engineered living material cultures with the host. Mater Today Bio 2025; 30:101437. [PMID: 39850240 PMCID: PMC11755081 DOI: 10.1016/j.mtbio.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Engineered living materials (ELMs), which usually comprise bacteria, fungi, or animal cells entrapped in polymeric matrices, offer limitless possibilities in fields like drug delivery or biosensing. Determining the conditions that sustain ELM performance while ensuring compatibility with ELM hosts is essential before testing them in vivo. This is critical to reduce animal experimentation and can be achieved through in vitro investigations. Currently, there are no standards that ensure ELM compatibility with host tissues. Towards this goal, we designed a 96-well plate-based screening method to streamline ELM growth across culture conditions and determine their compatibility potential in vitro. We showed proliferation of three bacterial species encapsulated in hydrogels over time and screened six different cell culture media. We fabricated ELMs in bilayer and monolayer formats and tracked bacterial leakage as a measure of ELM biocontainment. After screening, an appropriate medium was selected that sustained growth of an ELM, and it was used to study cytocompatibility in vitro. ELM cytotoxicity on murine fibroblasts and human monocytes was studied by adding ELM supernatants and measuring cell membrane integrity and live/dead staining, respectively, proving ELM cytocompatibility. Our work illustrates a simple setup to streamline the screening of compatible environmental conditions of ELMs with the host.
Collapse
Affiliation(s)
- Krupansh Desai
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
- Chemistry Department, Saarland University, Saarbrücken, 66123, Germany
| | | | - Aránzazu del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
- Chemistry Department, Saarland University, Saarbrücken, 66123, Germany
| | - Sara Trujillo
- INM - Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
- Saarland University, Pharma Science Hub (PSH), 66123 Saarbrucken, Germany
| |
Collapse
|
2
|
Dey S, Sankaran S. Engineered bacterial therapeutics with material solutions. Trends Biotechnol 2024; 42:1663-1676. [PMID: 39030122 DOI: 10.1016/j.tibtech.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Recent advances in engineered bacterial therapeutics underscore their potential in treating diseases via targeted, live interventions. Despite their promising performance in early clinical phases, no engineered therapeutic bacteria have yet received approval, primarily due to challenges in proving efficacy while ensuring biosafety. Material science innovations, particularly the encapsulation of bacteria within hydrogels, present a promising avenue to enhance bacterial survival, efficacy, and safety in therapeutic applications. This review discusses this interdisciplinary approach to develop living therapeutic materials. Hydrogels not only safeguard the bacteria from harsh physiological conditions but also enable controlled therapeutic release and prevent unintended bacterial dissemination. The strategic use of encapsulation materials could redefine the delivery and functionality of engineered bacterial therapeutics, facilitating their clinical translation.
Collapse
Affiliation(s)
- Sourik Dey
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | | |
Collapse
|
3
|
Dey S, Seyfert CE, Fink-Straube C, Kany AM, Müller R, Sankaran S. Thermo-amplifier circuit in probiotic E. coli for stringently temperature-controlled release of a novel antibiotic. J Biol Eng 2024; 18:66. [PMID: 39533331 PMCID: PMC11559228 DOI: 10.1186/s13036-024-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Peptide drugs have seen rapid advancement in biopharmaceutical development, with over 80 candidates approved globally. Despite their therapeutic potential, the clinical translation of peptide drugs is hampered by challenges in production yields and stability. Engineered bacterial therapeutics is a unique approach being explored to overcome these issues by using bacteria to produce and deliver therapeutic compounds at the body site of use. A key advantage of this technology is the possibility to control drug delivery within the body in real time using genetic switches. However, the performance of such genetic switches suffers when used to control drugs that require post-translational modifications or are toxic to the host. In this study, these challenges were experienced when attempting to establish a thermal switch for the production of a ribosomally synthesized and post-translationally modified peptide antibiotic, darobactin, in probiotic E. coli. These challenges were overcome by developing a thermo-amplifier circuit that combined the thermal switch with a T7 RNA Polymerase. Due to the orthogonality of the Polymerase, this strategy overcame limitations imposed by the host transcriptional machinery. This circuit enabled production of pathogen-inhibitory levels of darobactin at 40 °C while maintaining leakiness below the detection limit at 37 °C. Furthermore, the thermo-amplifier circuit sustained gene expression beyond the thermal induction duration such that with only 2 h of induction, the bacteria were able to produce pathogen-inhibitory levels of darobactin. This performance was maintained even in physiologically relevant simulated conditions of the intestines that include bile salts and low nutrient levels.
Collapse
Affiliation(s)
- Sourik Dey
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Carsten E Seyfert
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Claudia Fink-Straube
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Rolf Müller
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Brunswick, Germany
| | - Shrikrishnan Sankaran
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
4
|
Bhusari S, Hoffmann M, Herbeck-Engel P, Sankaran S, Wilhelm M, Del Campo A. Rheological behavior of Pluronic/Pluronic diacrylate hydrogels used for bacteria encapsulation in engineered living materials. SOFT MATTER 2024; 20:1320-1332. [PMID: 38241053 DOI: 10.1039/d3sm01119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Pluronic (Plu) hydrogels mixed with variable fractions of Pluronic diacrylate (PluDA) have become popular matrices to encapsulate bacteria and control their growth in engineered living materials. Here we study the rheological response of 30 wt% Plu/PluDA hydrogels with PluDA fraction between 0 and 1. We quantify the range of viscoelastic properties that can be covered in this system by varying in the PluDA fraction. We present stress relaxation and creep-recovery experiments and describe the variation of the critical yield strain/stress, relaxation and recovery parameters of Plu/PluDA hydrogels as function of the covalent crosslinking degree using the Burgers and Weilbull models. The analyzed hydrogels present two stress relaxations with different timescales which can be tuned with the covalent crosslinking degree. We expect this study to help users of Plu/PluDA hydrogels to estimate the mechanical properties of their systems, and to correlate them with the behaviour of bacteria in future Plu/PluDA devices of similar composition.
Collapse
Affiliation(s)
- Shardul Bhusari
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Maxi Hoffmann
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Petra Herbeck-Engel
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| | | | - Manfred Wilhelm
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Zhong C, Sankaran S. Programmable living materials joint special issue editorial. BIOMATERIALS ADVANCES 2023; 155:213665. [PMID: 37897944 DOI: 10.1016/j.bioadv.2023.213665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Affiliation(s)
- Chao Zhong
- Center for Materials Synthetic Biology, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Shrikrishnan Sankaran
- Bioprogrammable Materials, INM - Leibniz-Institute for New Materials: Saarbrücken, Saarland, DE, Germany.
| |
Collapse
|