1
|
Nematollahi S, Maghsoudian S, Motasadizadeh H, Nouri Z, Azad K, Fatahi Y, Samadi N, Mahmoudieh M, Shaabani A, Dinarvand R. Polyhexamethylene biguanidine coated silver nanoparticles embedded into chitosan thiourea/PVA nanofibers as wound healing mats: In vitro and in vivo studies. Carbohydr Polym 2025; 347:122704. [PMID: 39486945 DOI: 10.1016/j.carbpol.2024.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
Burn injuries are prone to infection, leading to significant public health concerns and economic implications. There is a growing demand to develop innovative wound dressings with antibacterial activity. In this study, silver nanoparticles coated with polyhexamethylene biguanidine (Ag/PHMBG) were embedded into chitosan thiourea (CST) nanofibers as a novel multifunctional wound healing mat for treating second-degree burn wounds. Structural, mechanical, and biological properties of nanofibers were investigated using FE-SEM, XRD, ATR-FTIR, and In vitro degradation. The animal study was performed to investigate the suitability of the polymeric mats as a wound healing/dressing system. FE-SEM analysis revealed that the average diameter of the obtained uniform and bead-less Ag/PHMBG-loaded CST nanofibers was around 75 nm. CST-based nanofibers with 3 wt% Ag/PHMBG (PCT3) demonstrated notable antimicrobial efficacy against both S. aureus and P. aeruginosa, achieving 95 % growth inhibition within 3 days while exhibiting no cytotoxic effects on normal fibroblast cells. In addition, CST nanofibers have good breathability with a water vapor transmittance rate of 2.9 ± 0.41-4.4 ± 0.47 kg/m2. d. The animal studies showed that the wound healing and tissue regeneration process by PCT3 nanofibers were faster than the other groups. In conclusion, CST-based nanofibers are a potentially promising substitute for conventional wound dressings in clinical applications.
Collapse
Affiliation(s)
- Saeed Nematollahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Azad
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mahmoudieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
2
|
Khederzadeh A, Ebrahimnejad P, Seyedabadi M, Babaei A, Amiri FT, Aslani N, Mojarad-Jabali S, Mohammadi H. Synergistic effect of curcumin and Piperine loaded Niosomal nanoparticles on acute pulmonary toxicity induced by Paraquat in mice. Toxicol Res (Camb) 2024; 13:tfae181. [PMID: 39507590 PMCID: PMC11537766 DOI: 10.1093/toxres/tfae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/16/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Objective Paraquat (PQ), a widely used non-selective herbicide, induces severe lung toxicity by promoting cell death and tissue necrosis through the generation of reactive oxygen species (ROS) and free radicals. This study aimed to develop and evaluate novel niosomal nanoparticles (NPs) encapsulating curcumin and piperine to mitigate PQ-induced acute pulmonary toxicity in Balb/c mice. Methods The NPs were prepared using non-ionic surfactants and cholesterol via the thin film hydration method. Results Characterization revealed high encapsulation efficiency (>85%), proper particle sizes (264-286 nm), narrow polydispersity index (PDI) (0.19 ± 0.04 to 0.23 ± 0.02), and good stability over 90 days. Thermal analysis confirmed successful encapsulation of curcumin and piperine within the niosomal NPs. In vivo studies showed that PQ exposure significantly elevated ROS, lipid peroxidation (LPO), and protein carbonylation (PC) levels, while reducing glutathione (GSH) levels and impairing mitochondrial function (P < 0.001). However, co-treatment with curcumin- and piperine-loaded niosomal NPs effectively reversed these effects (P < 0.001), improving mitochondrial function. Conclusion The combined formulation of curcumin and piperine in niosomal NPs offers a promising therapeutic strategy for treating PQ-induced pulmonary toxicity, likely due to enhanced bioavailability and potent antioxidant activity.
Collapse
Affiliation(s)
- Aram Khederzadeh
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Mohammad Seyedabadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Nasim Aslani
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Solmaz Mojarad-Jabali
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Faculty of Pharmacy, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Mazandaran Province, Farah Abad Road, P3MV+78R, PO Box- 48175/861, Sari, Iran
| |
Collapse
|
3
|
Mahdieh A, Motasadizadeh H, Maghsoudian S, Sabzevari A, Khalili F, Yeganeh H, Nyström B. Novel polyurethane-based ionene nanoparticles electrostatically stabilized with hyaluronic acid for effective gene therapy. Colloids Surf B Biointerfaces 2024; 236:113802. [PMID: 38382225 DOI: 10.1016/j.colsurfb.2024.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Gene therapy is considered to be a valuable strategy for effective cancer treatment. However, the development of effective delivery systems that can specifically deliver gene materials, such as siRNA to tumor tissues plays a critical role in cancer therapy. In the present study, we have developed a novel complex that is based on an electrostatic interaction between cationic polyurethane ionene (CPUI) nanoparticles and an anti-signal transducer and activator of transcription 3 (STAT3) siRNA. For active targeting, hyaluronic acid (HA) was used to coat the complexes, which significantly reduced the cytotoxicity of the blank nanocarriers while demonstrating high transport efficiency of the siRNA via the CD44-mediated endocytosis pathway in MCF-7 breast cancer cells. The targeted nanocarriers (HA/CPUI/siRNA) showed significantly higher cellular internalization in flow cytometry and confocal microscopy compared with the non-targeted system (CPUI/siRNA). In addition, the incorporation of HA on the surface of the complexes resulted in significantly greater suppression of the STAT3 gene compared to the corresponding non-targeted formulation. Whole-body fluorescence images showed more significant tumor accumulation of the targeted nanocarriers in 4T1 breast tumor-bearing mice. Therefore, HA/CPUI/siRNA nanocarriers are an interesting option for the siRNA-targeted treatment of breast cancer cells.
Collapse
Affiliation(s)
- Athar Mahdieh
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sabzevari
- Polymer Faculty, Biomedical Engineering Department, Meybod University, Meybod, Yazd, Iran; Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fereshte Khalili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway.
| |
Collapse
|