1
|
Zhang S, Wang Z, Zhang Y, Dong X, Zhu Q, Yuan C, Lu G, Gong W, Bi Y, Wang Y. LASP1 inhibits the formation of NETs and alleviates acute pancreatitis by stabilizing F-actin polymerization in neutrophils. Biochem Biophys Res Commun 2025; 744:151134. [PMID: 39708397 DOI: 10.1016/j.bbrc.2024.151134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) play a significant role in the development of acute pancreatitis (AP). The actin-binding protein LASP1 regulates proteins associated with the cytoskeleton, yet its precise involvement in NETs and AP remains to be elucidated. METHODS To investigate the role of LASP1 in NETs and AP, several bioinformatics methods, such as weighted gene co-expression network analysis (WGCNA), differential analysis, and least absolute shrinkage and selection operator (LASSO) regression, were utilized to screen for feature genes based on the Gene Expression Omnibus (GEO) dataset. To further assess the impact of LASP1, both an in vitro model of 12-myristic-13-acetate phobolol (PMA)-induced NETs and a caerulein-induced AP model were employed. RESULTS Through WGCNA, AP-related module genes were screened, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted to identify enriched pathways and functions. Six characteristic genes were identified through LASSO regression screening, with LASP1 being the most distinct. LASP1 reduces the generation of NETs induced by PMA in vitro. Mechanistically, LASP1 may increase F-actin protein levels by inhibiting the depolymerization of F-actin. Furthermore, our study utilizing a mouse AP model demonstrated that the LSAP1 recombinant protein effectively alleviated pancreatic necrosis in mice afflicted with AP. CONCLUSION LASP1 inhibits the formation of NETs and may alleviate AP by increasing the level of F-actin protein.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Yangzhou University, Kunshan, Suzhou, Jiangsu, China; Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhihao Wang
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuyan Zhang
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowu Dong
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingtian Zhu
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenchen Yuan
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guotao Lu
- Department of Gastroenterology, Pancreatic Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weijuan Gong
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yawei Bi
- Department of Gastroenterology, Chinese PLA General Hospital First Medical Center, Beijing, China
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Yangzhou University, Kunshan, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Xia CC, Chen HT, Deng H, Huang YT, Xu GQ. Reactive oxygen species and oxidative stress in acute pancreatitis: Pathogenesis and new therapeutic interventions. World J Gastroenterol 2024; 30:4771-4780. [PMID: 39649547 PMCID: PMC11606378 DOI: 10.3748/wjg.v30.i45.4771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/13/2024] Open
Abstract
Acute pancreatitis (AP) is a common acute gastrointestinal disorder affecting approximately 20% of patients with systemic inflammatory responses that may cause pancreatic and peripancreatic fat necrosis. This condition often progresses to multiple organ failure, significantly increasing morbidity and mortality. Oxidative stress, characterized by an imbalance between the body's reactive oxygen species (ROS) and antioxidants, activates the inflammatory signaling pathways. Although the pathogenesis of AP is not fully understood, ROS are increasingly recognized as critical in the disease's progression and development. Modulating the oxidative stress pathway has shown efficacy in mitigating the progression of AP. Despite numerous basic studies examining this pathway, comprehensive reviews of recent research remain sparse. This systematic review offers an in-depth examination of the critical role of oxidative stress in the pathogenesis and progression of AP and evaluates the therapeutic potential of antioxidant interventions in its management.
Collapse
Affiliation(s)
- Chuan-Chao Xia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Tan Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hao Deng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Ting Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Guo-Qiang Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
3
|
Bi YW, Li LS, Ru N, Zhang B, Lei X. Nicotinamide adenine dinucleotide phosphate oxidase in pancreatic diseases: Mechanisms and future perspectives. World J Gastroenterol 2024; 30:429-439. [PMID: 38414585 PMCID: PMC10895600 DOI: 10.3748/wjg.v30.i5.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/17/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Pancreatitis and pancreatic cancer (PC) stand as the most worrisome ailments affecting the pancreas. Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases, yet their true nature continues to elude their grasp. Within this realm, oxidative stress is often believed to play a causal and contributory role in the development of pancreatitis and PC. Excessive accumulation of reactive oxygen species (ROS) can cause oxidative stress, and the key enzyme responsible for inducing ROS production in cells is nicotinamide adenine dinucleotide phosphate hydrogen oxides (NOX). NOX contribute to pancreatic fibrosis and inflammation by generating ROS that injure acinar cells, activate pancreatic stellate cells, and mediate macrophage polarization. Excessive ROS production occurs during malignant transformation and pancreatic carcinogenesis, creating an oxidative microenvironment that can cause abnormal apoptosis, epithelial to mesenchymal transition and genomic instability. Therefore, understanding the role of NOX in pancreatic diseases contributes to a more in-depth exploration of the exact pathogenesis of these diseases. In this review, we aim to summarize the potential roles of NOX and its mechanism in pancreatic disorders, aiming to provide novel insights into understanding the mechanisms underlying these diseases.
Collapse
Affiliation(s)
- Ya-Wei Bi
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Long-Song Li
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Nan Ru
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiao Lei
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Zhao D, Yu W, Xie W, Ma Z, Hu Z, Song Z. Bone marrow-derived mesenchymal stem cells ameliorate severe acute pancreatitis by inhibiting oxidative stress in rats. Mol Cell Biochem 2022; 477:2761-2771. [PMID: 35622186 DOI: 10.1007/s11010-022-04476-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/06/2022] [Indexed: 12/17/2022]
Abstract
To investigate whether bone marrow mesenchymal stem cells (BMSCs) attenuate pancreatic injury via mediating oxidative stress in severe acute pancreatitis (SAP). The SAP model was established in rats. Phosphate buffered saline (PBS) or BMSCs were injected into the rats by tail veins. ML385 was used to down-regulate Nrf2 expression in rats. Pancreatic pathological score was used to evaluated pancreatic injury. Inflammatory-associated cytokines, serum lipase and amylase, levels of myeloperoxidase, malondialdehyde, reactive oxygen species and superoxide dismutase, as well as catalase activity were measured for injury severity evaluation. ML385 aggravates oxidative stress in SAP + ML385 group, compared with SAP + PBS group. BMSCs transplantation alleviated pancreatic injury and enhance antioxidant tolerance in SAP + BMSCs group, while ML385 administration weakened this efficacy in SAP + BMSCs + ML385 group. In addition, BMSCs promoted Nrf2 nuclear translocation via PI3K/AKT signaling pathway. Besides, BMSCs reduced inflammatory response by inhibiting NF-κB signaling pathway in SAP. BMSCs can inhibit oxidative stress and reduce pancreatic injury via inducing Nrf2 nuclear translocation in SAP.
Collapse
Affiliation(s)
- Dongbo Zhao
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Weidi Yu
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhilong Ma
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhengyu Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai, 200072, People's Republic of China.
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
5
|
Endothelial NOX5 Expression Modulates Thermogenesis and Lipolysis in Mice Fed with a High-Fat Diet and 3T3-L1 Adipocytes through an Interleukin-6 Dependent Mechanism. Antioxidants (Basel) 2021; 11:antiox11010030. [PMID: 35052534 PMCID: PMC8772862 DOI: 10.3390/antiox11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is a global health issue associated with the development of metabolic syndrome, which correlates with insulin resistance, altered lipid homeostasis, and other pathologies. One of the mechanisms involved in the development of these pathologies is the increased production of reactive oxygen species (ROS). One of the main producers of ROS is the family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, among which NOX5 is the most recently discovered member. The aim of the present work is to describe the effect of endothelial NOX5 expression on neighboring adipose tissue in obesity conditions by using two systems. An in vivo model based on NOX5 conditional knock-in mice fed with a high-fat diet and an in vitro model developed with 3T3-L1 adipocytes cultured with conditioned media of endothelial NOX5-expressing bEnd.3 cells, previously treated with glucose and palmitic acid. Endothelial NOX5 expression promoted the expression and activation of specific markers of thermogenesis and lipolysis in the mesenteric and epididymal fat of those mice fed with a high-fat diet. Additionally, the activation of these processes was derived from an increase in IL-6 production as a result of NOX5 activity. Accordingly, 3T3-L1 adipocytes treated with conditioned media of endothelial NOX5-expressing cells, presented higher expression of thermogenic and lipolytic genes. Moreover, endothelial NOX5-expressing bEnd.3 cells previously treated with glucose and palmitic acid also showed interleukin (IL-6) production. Finally, it seems that the increase in IL-6 stimulated the activation of markers of thermogenesis and lipolysis through phosphorylation of STAT3 and AMPK, respectively. In conclusion, in response to obesogenic conditions, endothelial NOX5 activity could promote thermogenesis and lipolysis in the adipose tissue by regulating IL-6 production.
Collapse
|
6
|
Li C, Cui L, Zhang L, Yang L, Zhuo Y, Cui J, Cui N, Zhang S. Saikosaponin D Attenuates Pancreatic Injury Through Suppressing the Apoptosis of Acinar Cell via Modulation of the MAPK Signaling Pathway. Front Pharmacol 2021; 12:735079. [PMID: 34744719 PMCID: PMC8566544 DOI: 10.3389/fphar.2021.735079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chronic pancreatitis (CP) is a progressive fibro-inflammatory syndrome. The damage of acinar cells is the main cause of inflammation and the activation of pancreatic stellate cells (PSCs), which can thereby possibly further aggravate the apoptosis of more acinar cells. Saikosaponind (SSd), a major active ingredient derived from Chinese medicinal herb bupleurum falcatum, which exerted multiple pharmacological effects. However, it is not clear whether SSd protects pancreatic injury of CP via regulating the apoptosis of pancreatic acinar cells. This study systematically investigated the effect of SSd on pancreatic injury of CP in vivo and in vitro. The results revealed that SSd attenuate pancreatic damage, decrease the apoptosis and suppress the phosphorylation level of MAPK family proteins (JNK1/2, ERK1/2, and p38 MAPK) significantly in the pancreas of CP rats. In addition, SSd markedly reduced the apoptosis and inflammation of pancreatic acinar AR42J cells induced by cerulein, a drug induced CP, or Conditioned Medium from PSCs (PSCs-CM) or the combination of PSCs-CM and cerulein. Moreover, SSd significantly inhibited the activated phosphorylation of JNK1/2, ERK1/2, and p38 MAPK induced by cerulein or the combination of PSCs-CM and cerulein in AR42J cells. Furthermore, SSd treatment markedly decreased the protein levels of p-JNK and p-p38 MAPK caused by PSCs-CM alone. In conclusion, SSd ameliorated pancreatic injury, suppressed AR42J inflammation and apoptosis induced by cerulein, interrupted the effect of PSCs-CM on AR42J cells inflammation and apoptosis, possibly through MAPK pathway.
Collapse
Affiliation(s)
- Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Jialin Cui
- The Clinical Medicine, Tianjin Medical University, Tianjin, China
| | - Naiqiang Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Shukun Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Astaxanthin Inhibits Interleukin-6 Expression in Cerulein/Resistin-Stimulated Pancreatic Acinar Cells. Mediators Inflamm 2021; 2021:5587297. [PMID: 34349610 PMCID: PMC8328718 DOI: 10.1155/2021/5587297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis is a common clinical condition with increasing the proinflammatory mediators, including interleukin-6 (IL-6). Obesity is a negative prognostic factor in acute pancreatitis. Obese patients with acute pancreatitis have a higher systemic inflammatory response rate. Levels of serum resistin, an adipocytokine secreted by fat tissues, increase with obesity. Cerulein, a cholecystokinin analog, induces calcium (Ca2+) overload, oxidative stress, and IL-6 expression in pancreatic acinar cells, which are hallmarks of acute pancreatitis. A recent study showed that resistin aggravates the expression of inflammatory cytokines in cerulein-stimulated pancreatic acinar cells. We aimed to investigate whether resistin amplifies cerulein-induced IL-6 expression and whether astaxanthin (ASX), an antioxidant carotenoid with anti-inflammatory properties, inhibits ceruelin/resistin-induced IL-6 expression in pancreatic acinar AR42J cells. We found that resistin enhanced intracellular Ca2+ levels, NADPH oxidase activity, intracellular reactive oxygen species (ROS) production, NF-κB activity, and IL-6 expression in cerulein-stimulated AR42J cells, which were inhibited by ASX in a dose-dependent manner. The calcium chelator BAPTA-AM inhibited cerulein/resistin-induced NADPH oxidase activation and ROS production. Antioxidant N-acetyl cysteine (NAC) and ML171, a specific NADPH oxidase 1 inhibitor, suppressed cerulein/resistin-induced ROS production, NF-κB activation, and IL-6 expression. In conclusion, ASX inhibits IL-6 expression, by reducing Ca2+ overload, NADPH oxidase-mediated ROS production, and NF-κB activity in cerulein/resistin-stimulated pancreatic acinar cells. Consumption of ASX-rich foods could be beneficial for preventing or delaying the incidence of obesity-associated acute pancreatitis.
Collapse
|
8
|
Jimenez AG, Downs CJ, Lalwani S, Cipolli W. Cellular metabolism and IL-6 concentrations during stimulated inflammation in primary fibroblasts from small and large dog breeds as they age. J Exp Biol 2021; 224:jeb233734. [PMID: 33257435 DOI: 10.1242/jeb.233734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
The immune system undergoes marked changes during aging characterized by a state of chronic, low-grade inflammation termed 'inflammaging'. We explore this phenomenon in domestic dogs, which are the most morphologically and physiologically diverse group of mammals, with the widest range in body sizes for a single species. Additionally, smaller dogs tend to live significantly longer than larger dogs across all breeds. Body size is intricately linked to mass-specific metabolism and aging rates, which suggests that dogs are exemplary for studies in inflammaging. Dermal fibroblast cells play an important role in skin inflammation, making them a good model for inflammatory patterns across dog breed, body sizes and ages. Here, we examined aerobic and glycolytic cellular metabolism, and IL-6 concentrations in primary fibroblast cells isolated from small and large dog breeds, that were either recently born puppies or old dogs after death. We found no differences in cellular metabolism when isolated fibroblasts were treated with lipopolysaccharide (LPS) from Escherichia coli to stimulate an inflammatory phenotype. Unlike responses observed in mice and humans, there was a less drastic amplification of IL-6 concentration after LPS treatment in the geriatric population of dogs compared with recently born dogs. In young dogs, we also found evidence that untreated fibroblasts from large breeds had significantly lower IL-6 concentrations than observed for smaller breeds. This implies that the patterns of inflammaging in dogs may be distinct and different from other mammals commonly studied.
Collapse
Affiliation(s)
| | - Cynthia J Downs
- State University of New York College of Environmental Science and Forestry, Department of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, NY 13210, USA
| | - Sahil Lalwani
- Colgate University, Department of Mathematics, 13 Oak Dr., Hamilton, NY 13346, USA
| | - William Cipolli
- Colgate University, Department of Mathematics, 13 Oak Dr., Hamilton, NY 13346, USA
| |
Collapse
|
9
|
Lee J, Lim JW, Kim H. Lycopene Inhibits Oxidative Stress-Mediated Inflammatory Responses in Ethanol/Palmitoleic Acid-Stimulated Pancreatic Acinar AR42J Cells. Int J Mol Sci 2021; 22:ijms22042101. [PMID: 33672594 PMCID: PMC7924044 DOI: 10.3390/ijms22042101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
High alcohol intake results in the accumulation of non-oxidative ethanol metabolites such as fatty acid ethyl esters (FAEEs) in the pancreas. High FAEE concentrations mediate pancreatic acinar cell injury and are associated with alcoholic pancreatitis. Treatment with ethanol and the fatty acid palmitoleic acid (EtOH/POA) increased the levels of palmitoleic acid ethyl ester and induced zymogen activation and cytokine expression in pancreatic acinar cells. EtOH/POA induces nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species (ROS) production and pancreatic acinar cell injury. Lycopene, a bright-red carotenoid, is a potent antioxidant due to its high number of conjugated double bands. This study aimed to investigate whether lycopene inhibits the EtOH/POA-induced increase in ROS production, zymogen activation, and expression of the inflammatory cytokine IL-6 in EtOH/POA-stimulated pancreatic acinar AR42J cells. EtOH/POA increased the ROS levels, NADPH oxidase and NF-κB activities, zymogen activation, IL-6 expression, and mitochondrial dysfunction, which were inhibited by lycopene. The antioxidant N-acetylcysteine and NADPH oxidase 1 inhibitor ML171 suppressed the EtOH/POA-induced increases in ROS production, NF-κB activation, zymogen activation, and IL-6 expression. Therefore, lycopene inhibits EtOH/POA-induced mitochondrial dysfunction, zymogen activation, and IL-6 expression by suppressing NADPH oxidase-mediated ROS production in pancreatic acinar cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
10
|
McCarty MF, Assanga SI, Lujan LL. Age-adjusted mortality from pancreatic cancer increased NINE-FOLD in japan from 1950 to 1995 - Was a low-protein quasi-vegan diet a key factor in their former low risk? Med Hypotheses 2021; 149:110518. [PMID: 33582316 DOI: 10.1016/j.mehy.2021.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
During the last half of the twentieth century, age-adjusted mortality from pancreatic cancer in Japan rose about nine-fold in both sexes. Well-characterized risk factors such as smoking, obesity/metabolic syndrome, and heavy alcohol use appear to explain only a modest part of this rise. It is proposed that a diet relatively low in protein, and particularly low in animal protein, was a key determinant of the low risk for pancreatic cancer in mid-century Japan. It is further proposed that pancreatic acinar cells, owing to their extraordinarily high rate of protein synthesis, are at high risk for ER stress; that such stress plays a fundamental role in the induction of most pancreatic cancers; and that low-protein diets help to offset such stress by modulating activities of the kinases GCN2 and mTORC1 while increasing autocrine and systemic production of fibroblast growth factor 21. This model appears to clarify the role of various risk factors and protective factors in pancreatic cancer induction. A vegan or quasi-vegan low-protein diet may have broader potential for decreasing risk for a range of common "Western" cancers.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA, United States.
| | | | | |
Collapse
|
11
|
Pitfalls in AR42J-model of cerulein-induced acute pancreatitis. PLoS One 2021; 16:e0242706. [PMID: 33493150 PMCID: PMC7833168 DOI: 10.1371/journal.pone.0242706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background AR42J are immortalized pancreatic adenocarcinoma cells that share similarities with pancreatic acinar cells. AR42J are often used as a cell-culture model of cerulein (CN)-induced acute pancreatitis (AP). Nevertheless, it is controversial how to treat AR42J for reliable induction of AP-like processes. Gene knockout and/or overexpression often remain challenging, as well. In this study, we demonstrate conditions for a reliable induction of proinflammatory markers upon CN treatment in AR42J and high transfection efficacy using Glyoxalase-I (Glo-I) as a target of interest. Methods Effects of dexamethasone (dexa) and CN on cell morphology and amylase secretion were analyzed via ELISA of supernatant. IL-6, TNF-α and NF-κB-p65 were measured via qRT-PCR, ELISA and Western Blot (WB). Transfection efficacy was determined by WB, qRT-PCR and immune fluorescence of pEGFP-N1-Glo-I-Vector and Glo-I-siRNA. Results Treatment of AR42J with 100 nm dexa is mandatory for differentiation to an acinar-cell-like phenotype and amylase production. CN resulted in secretion of amylase but did not influence amylase production. High levels of CN-induced amylase secretion were detected between 3 and 24 hours of incubation. Treatment with LPS alone or in combination with CN did not influence amylase release compared to control or CN. CN treatment resulted in increased TNF-α production but not secretion and did not influence IL-6 mRNA. CN-induced stimulation of NF-κB was found to be highest on protein levels after 6h of incubation. Transient transfection was able to induce overexpression on protein and mRNA levels, with highest effect after 12 to 24 hours. Gene-knockdown was achieved by using 30 pmol of siRNA leading to effective reduction of protein levels after 72 hours. CN did not induce amylase secretion in AR42J cell passages beyond 35. Conclusion AR42J cells demonstrate a reliable in-vitro model of CN-induced AP but specific conditions are mandatory to obtain reproducible data.
Collapse
|
12
|
Ahn YJ, Lim JW, Kim H. Docosahexaenoic Acid Induces Expression of NAD(P)H: Quinone Oxidoreductase and Heme Oxygenase-1 through Activation of Nrf2 in Cerulein-Stimulated Pancreatic Acinar Cells. Antioxidants (Basel) 2020; 9:antiox9111084. [PMID: 33158207 PMCID: PMC7694300 DOI: 10.3390/antiox9111084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major risk factor for acute pancreatitis. Reactive oxygen species (ROS) mediate expression of inflammatory cytokines such as interleukin-6 (IL-6) which reflects the severity of acute pancreatitis. The nuclear factor erythroid-2-related factor 2 (Nrf2) pathway is activated to induce the expression of antioxidant enzymes such as NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) as a cytoprotective response to oxidative stress. In addition, binding of Kelch-like ECH-associated protein 1 (Keap1) to Nrf2 promotes degradation of Nrf2. Docosahexaenoic acid (DHA)—an omega-3 fatty acid—exerts anti-inflammatory and antioxidant effects. Oxidized omega-3 fatty acids react with Keap1 to induce Nrf2-regulated gene expression. In this study, we investigated whether DHA reduces ROS levels and inhibits IL-6 expression via Nrf2 signaling in pancreatic acinar (AR42J) cells stimulated with cerulein, as an in vitro model of acute pancreatitis. The cells were pretreated with or without DHA for 1 h and treated with cerulein (10−8 M) for 1 (ROS levels, protein levels of NQO1, HO-1, pNrf2, Nrf2, and Keap1), 6 (IL-6 mRNA expression), and 24 h (IL-6 protein level in the medium). Our results showed that DHA upregulates the expression of NQO1 and HO-1 in cerulein-stimulated AR42J cells by promoting phosphorylation and nuclear translocation of Nrf2. DHA increased interaction between Keap1 and Nrf2 in AR42J cells, which may increase Nrf2 activity by inhibiting Keap1-mediated sequestration of Nrf2. In addition, DHA-induced expression of NQO1 and HO-1 is related to reduction of ROS and IL-6 levels in cerulein-stimulated AR42J cells. In conclusion, DHA inhibits ROS-mediated IL-6 expression by upregulating Nrf2-mediated expression of NQO1 and HO-1 in cerulein-stimulated pancreatic acinar cells. DHA may exert positive modulatory effects on acute pancreatitis by inhibiting oxidative stress and inflammatory cytokine production by activating Nrf2 signaling in pancreatic acinar cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
13
|
Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. Particulate Matter Induces Tissue OxInflammation: From Mechanism to Damage. Antioxid Redox Signal 2020; 33:308-326. [PMID: 32443938 DOI: 10.1089/ars.2019.8015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress and oxidative damage are central hypothetical mechanisms for the adverse effects of airborne particulate matter (PM). Activation of inflammatory cells capable of generating reactive oxygen and nitrogen species is another proposed damage pathway. Understanding the interplay between these responses can help us understand the adverse health effects attributed to breathing polluted air. Recent Advances: The consequences of PM exposure on different organs are oxidative damage, decreased function, and inflammation, which can lead to the development/exacerbation of proinflammatory disorders. Mitochondrial damage is also an important event in PM-induced cytotoxicity. Critical Issues: Reactive oxygen species (ROS) are generated during phagocytosis of the particles, leading to enhancement of oxidative stress and triggering the inflammatory response. The activation of inflammatory signaling pathways results in the release of cytokines and other mediators, which can further induce ROS production by activating endogenous enzymes, leading to a positive feedback loop, which can aggravate the effects triggered by PM exposure. Future Directions: Further research is required to elucidate the exact mechanisms by which PM exposure results in adverse health effects, in terms of the relationship between the redox responses triggered by the presence of the particles and the inflammation observed in the different organs, so the development/exacerbation of PM-associated health problems can be prevented.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA.,Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Brittany Woodby
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sandra María Ferreira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Xia D, Halder B, Godoy C, Chakraborty A, Singla B, Thomas E, Shuja JB, Kashif H, Miller L, Csanyi G, Sabbatini ME. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis. Free Radic Biol Med 2020; 147:139-149. [PMID: 31837426 PMCID: PMC7227077 DOI: 10.1016/j.freeradbiomed.2019.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory disorders of the pancreas are divided into acute (AP) and chronic (CP) forms. Both states of pancreatitis are a result of pro-inflammatory mediators, including reactive oxygen species (ROS). One of the sources of ROS is NADPH oxidase (Nox). The rodent genome encodes Nox1-4, Duox1 and Duox2. Our purpose was to assess the extent to which Nox enzymes contribute to the pathogenesis of both AP and CP using Nox-deficient mice. Using RT-PCR, Nox1 was found in both isolated mouse pancreatic acini and pancreatic stellate cells (PaSCs). Subsequently, mice with genetically deleted Nox1 were further studied and showed that the histo-morphologic characteristics of caerulein-induced CP, but not caerulein-induced AP, was ameliorated in Nox1 KO mice. We also found that the lack of Nox1 impaired caerulein-induced ROS generation in PaSCs. Using Western blotting, we found that AKT mediates the fibrotic effect of Nox1 in a mouse model of CP. We also found a decrease in phospho-ERK and p38MAPK levels in Nox1 KO mice with CP, but not with AP. Both CP-induced TGF-β up-regulation and NF-ĸB activation were impaired in pancreas from Nox1 KO mice. Western blotting indicated increases in proteins involved in fibrosis and acinar-to-ductal metaplasia in WT mice with CP. No change in those proteins were observed in Nox1 KO mice. The lack of Nox1 lowered mRNA levels of CP-induced matrix metalloproteinase MMP-9 and E-cadherin repressor Twist in PaSCs. CONCLUSION: Nox1-derived ROS in PaSCs mediate the fibrotic process of CP by activating the downstream redox-sensitive signaling pathways AKT and NF-ĸB, up-regulating MMP-9 and Twist, and producing α-smooth muscle actin and collagen I and III.
Collapse
Affiliation(s)
- Di Xia
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Catalina Godoy
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | | | - Bhupesh Singla
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Eyana Thomas
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Jasim B Shuja
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Hisham Kashif
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Laurence Miller
- Department of Psychological Sciences, Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| |
Collapse
|
15
|
Magnani ND, Marchini T, Calabró V, Alvarez S, Evelson P. Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes. Front Endocrinol (Lausanne) 2020; 11:568305. [PMID: 33071976 PMCID: PMC7538663 DOI: 10.3389/fendo.2020.568305] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is associated with the release of soluble mediators that drive cellular activation and migration of inflammatory leukocytes to the site of injury, together with endothelial expression of adhesion molecules, and increased vascular permeability. It is a stepwise tightly regulated process that has been evolved to cope with a wide range of different inflammatory stimuli. However, under certain physiopathological conditions, the inflammatory response overwhelms local regulatory mechanisms and leads to systemic inflammation that, in turn, might affect metabolism in distant tissues and organs. In this sense, as mitochondria are able to perceive signals of inflammation is one of the first organelles to be affected by a dysregulation in the systemic inflammatory response, it has been associated with the progression of the physiopathological mechanisms. Mitochondria are also an important source of ROS (reactive oxygen species) within most mammalian cells and are therefore highly involved in oxidative stress. ROS production might contribute to mitochondrial damage in a range of pathologies and is also important in a complex redox signaling network from the organelle to the rest of the cell. Therefore, a role for ROS generated by mitochondria in regulating inflammatory signaling was postulated and mitochondria have been implicated in multiple aspects of the inflammatory response. An inflammatory condition that affects mitochondrial function in different organs is the exposure to air particulate matter (PM). Both after acute and chronic pollutants exposure, PM uptake by alveolar macrophages have been described to induce local cell activation and recruitment, cytokine release, and pulmonary inflammation. Afterwards, inflammatory mediators have been shown to be able to reach the bloodstream and induce a systemic response that affects metabolism in distant organs different from the lung. In this proinflammatory environment, impaired mitochondrial function that leads to bioenergetic dysfunction and enhanced production of oxidants have been shown to affect tissue homeostasis and organ function. In the present review, we aim to discuss the latest insights into the cellular and molecular mechanisms that link systemic inflammation and mitochondrial dysfunction in different organs, taking the exposure to air pollutants as a case model.
Collapse
Affiliation(s)
- Natalia D. Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Silvia Alvarez
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina
- Universidad de Buenos, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- *Correspondence: Pablo Evelson
| |
Collapse
|
16
|
Harikrishnan H, Jantan I, Alagan A, Haque MA. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacology 2019; 28:1-18. [PMID: 31792765 DOI: 10.1007/s10787-019-00671-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
The causal and functional connection between inflammation and cancer has become a subject of much research interest. Modulation of cell signaling pathways, such as those involving mitogen activated protein kinases (MAPKs), nuclear factor kappa β (NF-κB), phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt), and Wnt, and their outcomes play a fundamental role in inflammation and cancer. Activation of these cell signaling pathways can lead to various aspects of cancer-related inflammation. Hence, compounds able to modulate inflammation-related molecular targets are sought after in anticancer drug development programs. In recent years, plant extracts and their metabolites have been documented with potential in the prevention and treatment of cancer and inflammatory ailments. Plants possessing anticancer and anti-inflammatory properties due to their bioactive constituents have been reported to modulate the molecular and cellular pathways which are related to inflammation and cancer. In this review we focus on the flavonoids (astragalin, kaempferol, quercetin, rutin), lignans (phyllanthin, hypophyllanthin, and niranthin), tannins (corilagin, geraniin, ellagic acid, gallic acid), and triterpenes (lupeol, oleanolic acid, ursolic acid) of Phyllanthus amarus, which exert various anticancer and anti-inflammatory activities via perturbation of the NF-κB, MAPKs, PI3K/Akt, and Wnt signaling networks. Understanding the underlying mechanisms involved may help future research to develop drug candidates for prevention and new treatment for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hemavathy Harikrishnan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ibrahim Jantan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, 47500, Subang Jaya, Selangor, Malaysia. .,Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Akilandeshwari Alagan
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| |
Collapse
|
17
|
Cho SO, Lim JW, Kim H. Oxidative stress induces apoptosis via calpain- and caspase-3-mediated cleavage of ATM in pancreatic acinar cells. Free Radic Res 2019; 54:799-809. [PMID: 31401888 DOI: 10.1080/10715762.2019.1655145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress-induced DNA cleavage and apoptosis in pancreatic acinar cells has been implicated in the pathogenesis of acute pancreatitis. Thus, an efficient DNA repair process is key to prevention of apoptotic pancreatic acinar cell death. Ataxia telangiectasia mutated (ATM), a sensor of DNA breaks, functions by recruiting DNA repair proteins to initiate the DNA repair process. In the present study, we investigated whether H2O2 produced by the action of glucose oxidase on α-D-glucose (G/GO) induces apoptosis in pancreatic acinar AR42J cells through an alteration of the level of ATM. As a result, G/GO induced apoptosis by promoting a loss of cell viability, increase in Bax, decrease in Bcl-2, cleavage of poly (ADP-ribose) polymerase (PARP) and fragmentation of DNA. In addition, ATM cleavage along with elevated levels of calpain and caspase-3 activity was induced by G/GO. By using ATM siRNA, we demonstrated that reduction in ATM levels enhanced G/GO-induced apoptosis. Moreover, inhibition of calpain activity by calpeptin or calpastatin, or by inhibition of caspase-3 with z-DEVD, suppressed G/GO-induced apoptosis and ATM cleavage. Collectively, these findings suggest that proteolysis of ATM is the underlying mechanism of apoptosis of pancreatic acinar cells caused by exposure to oxidative stress.
Collapse
Affiliation(s)
- Soon Ok Cho
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, BK 21 Plus Project, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK 21 Plus Project, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Effect of Docosahexaenoic Acid on Ca 2+ Signaling Pathways in Cerulein-Treated Pancreatic Acinar Cells, Determined by RNA-Sequencing Analysis. Nutrients 2019; 11:nu11071445. [PMID: 31248019 PMCID: PMC6682875 DOI: 10.3390/nu11071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
Intracellular Ca2+ homeostasis is commonly disrupted in acute pancreatitis. Sustained Ca2+ release from internal stores in pancreatic acinar cells (PACs), mediated by inositol triphosphate receptor (IP3R) and the ryanodine receptor (RyR), plays a key role in the initiation and propagation of acute pancreatitis. Pancreatitis induced by cerulein, an analogue of cholecystokinin, causes premature activation of digestive enzymes and enhanced accumulation of cytokines and Ca2+ in the pancreas and, as such, it is a good model of acute pancreatitis. High concentrations of the omega-3 fatty acid docosahexaenoic acid (DHA) inhibit inflammatory signaling pathways and cytokine expression in PACs treated with cerulein. In the present study, we determined the effect of DHA on key regulators of Ca2+ signaling in cerulein-treated pancreatic acinar AR42 J cells. The results of RNA-Sequencing (RNA-Seq) analysis showed that cerulein up-regulates the expression of IP3R1 and RyR2 genes, and that pretreatment with DHA blocks these effects. The results of real-time PCR confirmed that DHA inhibits cerulein-induced IP3R1 and RyR2 gene expression, and demonstrated that DHA pre-treatment decreases the expression of the Relb gene, which encodes a component of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activator complex, and the c-fos gene, which encodes a component of activator protein-1 (AP-1) transcriptional activator complex. Taken together, DHA inhibits mRNA expression of IP3R1, RyR2, Relb, and c-fos, which is related to Ca2+ network in cerulein-stimulated PACs.
Collapse
|
19
|
Seo JY, Pandey RP, Lee J, Sohng JK, Namkung W, Park YI. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:40-49. [PMID: 30668442 DOI: 10.1016/j.phymed.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND PURPOSE Glycosylation of phenolic compounds has been reported to increase water-solubility, reduce toxicity, and sometimes give improved or novel pharmacological activities. Present study was aimed to evaluate and compare the beneficial effects of quercetin aglycone (Quer) and its glycosylated derivative, quercetin 3-O-xyloside (Quer-Xyl), against acute pancreatitis (AP). METHODS The cellular acute pancreatitis model was established by treating the rat pancreatic acinar cells (AR42J) with lipopolysaccharide (10 µg/ml) and cerulein (10-7 M). The cytotoxicity of Quer or Quer-Xyl on AR42J cells was assessed by MTT assay. Calcium and ROS levels were fluorometrically determined. The ER stress levels (PERK, GRP78), expression levels of amylase and lipase, and apoptotic markers (caspase-3 and -9) were measured by RT-PCR, western blotting, or fluorometric assay. RESULTS While Quer increased the mRNA expressions of AP marker enzymes, amylase and lipase, Quer-Xyl dose-dependently reversed their expressions. Quer-Xyl suppressed intracellular ROS production and both mRNA and protein levels of GRP78 and PERK, which were significantly elevated in cerulein and LPS-treated AR42J cells. Further, RT-PCR and fluorescence assay revealed that Quer-Xyl dose-dependently augmented the mRNA expressions and activities of caspase-3 and -9. CONCLUSION These results showed that Quer-Xyl, but not Quer, has a significant anti-pancreatitis activity through attenuating intracellular ROS production and ER stress response and enhancing apoptotic cell death, suggesting that it might be useful as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat AP.
Collapse
Affiliation(s)
- Jeong Yeon Seo
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, Asan, Chungnam 31460, Republic of Korea
| | - Wan Namkung
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 21983, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
20
|
Ma Z, Song G, Liu D, Qian D, Wang Y, Zhou J, Gong J, Meng H, Zhou B, Yang T, Song Z. N-Acetylcysteine enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation in rats with severe acute pancreatitis. Pancreatology 2019; 19:258-265. [PMID: 30660392 DOI: 10.1016/j.pan.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a high mortality disease, for which there is a lack of effective therapies. Previous research has demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs), which have immunomodulatory and antioxidant properties, have potential for the treatment of SAP. It remains unclear, however, whether the free radical scavenger N-acetylcysteine (NAC) can enhance the therapeutic efficacy of BMSC transplantation in SAP. In this study, we investigated the effect of combining treatment with NAC and BMSCs in a rat model of SAP. METHODS SAP was induced by injection of sodium taurocholate into the pancreatic duct and, after successful induction of SAP, the rats were treated with BMSCs and NAC, either singly or in combination. RESULTS After 3 days, serum levels of amylase, proinflammatory factors, malondialdehyde, and reactive oxygen species were significantly decreased in animals treated with BMSCs or NAC, compared with vehicle-treated animals. In contrast, total glutathione, superoxide dismutase and catalase were markedly increased after treatment with BMSCs or NAC. However, oxidative stress markers and inflammatory factors were significantly improved in the SAP + BMSCs + NAC group compared with those in the SAP + NAC group and the SAP + BMSCs group. CONCLUSIONS Combined NAC and BMSC therapy was found to alleviate oxidative stress damage to the pancreas and to inhibit the inflammatory response to a significantly greater extent than single therapy with either BMSCs or NAC. Because NAC enhances the therapeutic efficacy of BMSC transplantation in a rat model of SAP, combined therapy may provide a promising new approach for the treatment of SAP.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dalu Liu
- Shanghai Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Daohai Qian
- Department of Hepatobiliary Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Yuxiang Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
21
|
Bone marrow-derived mesenchymal stromal cells ameliorate severe acute pancreatitis in rats via hemeoxygenase-1-mediated anti-oxidant and anti-inflammatory effects. Cytotherapy 2018; 21:162-174. [PMID: 30600195 DOI: 10.1016/j.jcyt.2018.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS It has been previously verified that mesenchymal stromal cells (MSCs) have a good therapeutic effect on severe acute pancreatitis (SAP) and the potential for regeneration of damaged pancreatic tissue, but the exact molecular mechanism remains unclear. In this study, we demonstrated the therapeutic effect of bone morrow MSCs (BMSCs) on SAP, probably by targeting heme oxygenase-1 (HO-1). METHODS Six hours after SAP induction, either phosphate-buffered saline (PBS) or BMSCs were transfused into the caudal vein of rats, zinc protoporphyrin (ZnPP) was administered intraperitoneally. Pancreatic pathological scoring, serum levels of amylase and inflammatory factors, as well as levels of reactive oxygen species (ROS), malondialdehyde (MDA) and myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) activity in the pancreas were evaluated. RESULTS Our data showed that BMSCs significantly reduce inflammation and oxidative stress, reduce apoptosis and promote angiogenesis of damaged pancreas. Moreover, BMSCs increased the level of HO-1 in the serum and pancreatic tissue in rats with SAP. In addition, the protective effect of BMSCs was partially neutralized by the HO-1 activity inhibitor ZnPP, suggesting a key role of HO-1 in the therapeutic effect of BMSCs on SAP. CONCLUSIONS BMSCs ameliorated SAP, probably by inducing expression of HO-1, which can exert anti-inflammatory and anti-oxidant effects, reduce apoptosis and promote angiogenesis.
Collapse
|
22
|
Pharmacological stimulation of NQO1 decreases NADPH levels and ameliorates acute pancreatitis in mice. Cell Death Dis 2018; 10:5. [PMID: 30584237 PMCID: PMC6315021 DOI: 10.1038/s41419-018-1252-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) regulates the activation of inflammatory cascades and tissue damage in acute pancreatitis. NADPH oxidase (NOX) is upregulated in pancreatitis and is one of the major enzymes involved in ROS production using NADPH as a general rate-limiting substrate. Dunnione, a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), reduces the ratio of cellular NADPH/NADP+ through the enzymatic action of NQO1. This study assessed whether a reduction in cellular NADPH/NADP+ ratio can be used to regulate caerulein-induced pancreatic damage associated with NOX-induced ROS production in animal models. Dunnione treatment significantly reduced the cellular NADPH/NADP+ ratio and NOX activity through the enzymatic action of NQO1 in the pancreas of the caerulein-injection group. Similar to these results, total ROS production and expressions of mRNA and protein for NOX subunits Nox1, p27phox, p47phox, and p67phox also decreased in the dunnione-treated group. In addition, caerulein-induced pancreatic inflammation and acinar cell injury were significantly reduced by dunnione treatment. This study is the first to demonstrate that modulation of the cellular NADPH:NADP+ ratio by enzymatic action of NQO1 protects acute pancreatitis through the regulation of NOX activity. Furthermore, these results suggest that modulation of the NADPH:NADP+ ratio in cells by NQO1 may be a novel therapeutic strategy for acute pancreatitis.
Collapse
|
23
|
Lasagni Vitar RM, Tau J, Janezic NS, Tesone AI, Hvozda Arana AG, Reides CG, Berra A, Ferreira SM, Llesuy SF. Diesel exhaust particles (DEP) induce an early redox imbalance followed by an IL-6 mediated inflammatory response on human conjunctival epithelial cells. Exp Eye Res 2018. [DOI: 10.1016/j.exer.2018.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Jeong YK, Lee S, Lim JW, Kim H. Docosahexaenoic Acid Inhibits Cerulein-Induced Acute Pancreatitis in Rats. Nutrients 2017; 9:E744. [PMID: 28704954 PMCID: PMC5537858 DOI: 10.3390/nu9070744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an important regulator in the pathogenesis of acute pancreatitis (AP). Reactive oxygen species induce activation of inflammatory cascades, inflammatory cell recruitment, and tissue damage. NF-κB regulates inflammatory cytokine gene expression, which induces an acute, edematous form of pancreatitis. Protein kinase C δ (PKCδ) activates NF-κB as shown in a mouse model of cerulein-induced AP. Docosahexaenoic acid (DHA), an ω-3 fatty acid, exerts anti-inflammatory and antioxidant effects in various cells and tissues. This study investigated whether DHA inhibits cerulein-induced AP in rats by assessing pancreatic edema, myeloperoxidase activity, levels of lipid peroxide and IL-6, activation of NF-κB and PKCδ, and by histologic observation. AP was induced by intraperitoneal injection (i.p.) of cerulein (50 μg/kg) every hour for 7 h. DHA (13 mg/kg) was administered i.p. for three days before AP induction. Pretreatment with DHA reduced cerulein-induced activation of NF-κB, PKCδ, and IL-6 in pancreatic tissues of rats. DHA suppressed pancreatic edema and decreased the abundance of lipid peroxide, myeloperoxidase activity, and inflammatory cell infiltration into the pancreatic tissues of cerulein-stimulated rats. Therefore, DHA may help prevent the development of pancreatitis by suppressing the activation of NF-κB and PKCδ, expression of IL-6, and oxidative damage to the pancreas.
Collapse
Affiliation(s)
- Yoo Kyung Jeong
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Sle Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
25
|
Song EA, Lim JW, Kim H. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 2017; 88:60-68. [PMID: 28483666 DOI: 10.1016/j.biocel.2017.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells.
Collapse
Affiliation(s)
- Eun Ah Song
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
26
|
Deng W, Abliz A, Xu S, Sun R, Guo W, Shi Q, Yu J, Wang W. Severity of pancreatitis‑associated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin. Mol Med Rep 2016; 14:3525-34. [PMID: 27573037 PMCID: PMC5042780 DOI: 10.3892/mmr.2016.5678] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Recent studies demonstrated that apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) inhibitor, significantly decreased acute pancreatitis-associated inflammatory and oxidative stress parameters. In addition, apocynin was able to reduce ischemic reperfusion injury-associated damage; however, the exact effects of apocynin on acute pancreatitis-associated intestinal mucosal injury have yet to be fully clarified. The present study aimed to investigate the protective effects of apocynin on intestinal mucosal injury in a rat model of severe acute pancreatitis (SAP). A total of 60 male Sprague Dawley rats were randomly divided into four groups (n=15/group): Sham operation group (SO), SAP group, apocynin treatment (APO) group and drug control (APO-CON) group. SAP was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. Apocynin was administered 30 min prior to SAP induction in the APO group. All rats were sacrificed 12 h after SAP induction. Intestinal integrity was assessed by measuring diamine oxidase (DAO) levels. Morphological alterations to intestinal tissue were determined under light and transmission electron microscopy. NOX2, p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB expression levels were detected in the intestine by immunohistochemical staining. Oxidative stress was detected by measuring intestinal malondialdehyde (MDA) and superoxide dismutase content. In addition, blood inflammatory cytokines, and amylase (AMY) and lipase (LIP) levels were evaluated. The results demonstrated that apocynin attenuated the following: i) Serum AMY, LIP and DAO levels; ii) pancreatic and intestinal pathological injury; iii) intestinal MDA content; iv) intestinal ultrastructural alterations; v) serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels; and vi) NOX2, p38 MAPK and NF-κB expression in intestinal tissues. These results suggested that apocynin may attenuate intestinal barrier dysfunction in sodium taurocholate-induced SAP, presumably via its role in the prevention of reactive oxygen species generation and inhibition of p38 MAPK and NF-κB pathway activation. These findings provide novel insight suggesting that pharmacological inhibition of NOX by apocynin may be considered a novel therapeutic method for the treatment of intestinal injury in SAP.
Collapse
Affiliation(s)
- Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ablikim Abliz
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Xu
- Department of General Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Rongze Sun
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
27
|
Tempol, a Membrane-Permeable Radical Scavenger, Exhibits Anti-Inflammatory and Cardioprotective Effects in the Cerulein-Induced Pancreatitis Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:4139851. [PMID: 26770650 PMCID: PMC4685139 DOI: 10.1155/2016/4139851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022]
Abstract
To date, it remains unclear whether mild form of acute pancreatitis (AP) may cause myocardial damage which may be asymptomatic for a long time. Pathogenesis of AP-related cardiac injury may be attributed in part to ROS/RNS overproduction. The aim of the present study was to evaluate the oxidative stress changes in both the pancreas and the heart and to estimate the protective effects of 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (tempol) at the early phase of AP. Cerulein-induced AP led to the development of acute edematous pancreatitis with a significant decrease in the level of sulfhydryl (–SH) groups (oxidation marker) both in heart and in pancreatic tissues as well as a substantial increase in plasma creatine kinase isoenzyme (CK-MB) activity (marker of the heart muscle lesion) which confirmed the role of oxidative stress in the pathogenesis of cardiac damage. The tempol treatment significantly reduced the intensity of inflammation and oxidative damage and decreased the morphological evidence of pancreas injury at early AP stages. Moreover, it markedly attenuated AP-induced cardiac damage revealed by normalization of the –SH group levels and CK-MB activity. On the basis of these studies, it is possible to conclude that tempol has a profound protective effect against cardiac and pancreatic damage induced by AP.
Collapse
|
28
|
Rebamipide does not interfere with the antitumor effect of radiotherapy or chemotherapy in human oral tumor-bearing nude mice. J Pharmacol Sci 2015; 129:18-25. [PMID: 26320673 DOI: 10.1016/j.jphs.2015.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022] Open
|
29
|
Chvanov M, Huang W, Jin T, Wen L, Armstrong J, Elliot V, Alston B, Burdyga A, Criddle DN, Sutton R, Tepikin AV. Novel lipophilic probe for detecting near-membrane reactive oxygen species responses and its application for studies of pancreatic acinar cells: effects of pyocyanin and L-ornithine. Antioxid Redox Signal 2015; 22:451-64. [PMID: 24635199 PMCID: PMC4323130 DOI: 10.1089/ars.2013.5589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS The aim of this study was to develop a fluorescent reactive oxygen species (ROS) probe, which is preferentially localized in cellular membranes and displays a strong change in fluorescence upon oxidation. We also aimed to test the performance of this probe for detecting pathophysiologically relevant ROS responses in isolated cells. RESULTS We introduced a novel lipophilic ROS probe dihydrorhodamine B octadecyl ester (H2RB-C18). We then applied the new probe to characterize the ROS changes triggered by inducers of acute pancreatitis in pancreatic acinar cells. We resolved ROS changes produced by L-ornithine, L-arginine, cholecystokinin-8, acetylcholine, taurolithocholic acid 3-sulfate, palmitoleic acid ethyl ester, and the bacterial toxin pyocyanin. Particularly prominent ROS responses were induced by pyocyanin and L-ornithine. These ROS responses were accompanied by changes in cytosolic Ca(2+)concentration ([Ca(2+)]i), mitochondrial membrane potential (ΔΨ), and NAD(P)H concentration. INNOVATION The study describes a novel sensitive lipophilic ROS probe. The probe is particularly suitable for detecting ROS in near-membrane regions and therefore for reporting the ROS environment of plasma membrane channels and pumps. CONCLUSIONS In our experimental conditions, the novel probe was more sensitive than 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein (CM-H2DCF) and dihydrorhodamine123 (H2R123) and allowed us to resolve ROS responses to secretagogues, pyocyanin, and L-ornithine. Changes in the fluorescence of the new probe were particularly prominent in the peripheral plasma membrane-associated regions. Our findings suggest that the new probe will be a useful tool in studies of the contribution of ROS to the pathophysiology of exocrine pancreas and other organs/tissues.
Collapse
Affiliation(s)
- Michael Chvanov
- 1 Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
OBJECTIVES In this study, we identified the protein kinases that play the most distinct roles in the occurrence of acute pancreatitis (AP). METHODS Gene expression profile data were downloaded from Gene Expression Omnibus database (GSE3644). The sample was from caerulein-induced AP mice. The intersection of the differentially expressed genes in AP mice taken from a protein kinase database was obtained for screening of the protein kinase encoded genes that were differentially expressed. Database for annotation, visualization, and integrated discovery was used for the functional enrichment analysis. Kinase inhibitors that regulated these kinases were retrieved from PubMed through text mining. RESULTS Twenty-nine differentially expressed kinase encoded genes were identified through screening. The functional enrichment analysis demonstrated that the functions of these genes were primarily enriched in "mitogen-activated protein kinase signaling pathway," followed by "extracellular regulated protein kinases pathway," "neurotrophin signaling pathway," "adherens junction," and "gap junction." SRC and epidermal growth factor receptor (EGFR) were related to extracellular regulated protein kinases pathway and also related to adherens junction as well as gap junction. On the basis of the regulated kinases, the kinase inhibitors reported in the literature were classified into multiple groups. CONCLUSIONS EGFR and SRC may be coexpressed in AP. The kinase inhibitors working together in SRC and EGFR may play better efficacy in the treatment of AP.
Collapse
|
31
|
Yu JH, Kim H. Oxidative stress and inflammatory signaling in cerulein pancreatitis. World J Gastroenterol 2014; 20:17324-17329. [PMID: 25516643 PMCID: PMC4265590 DOI: 10.3748/wjg.v20.i46.17324] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/26/2014] [Accepted: 09/19/2014] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is considered to be an important regulator of the pathogenesis of acute pancreatitis. Reactive oxygen species (ROS) regulate the activation of inflammatory cascades, the recruitment of inflammatory cells and tissue damage in acute pancreatitis. A hallmark of the inflammatory response in pancreatitis is the induction of cytokine expression, which is regulated by a number of signaling molecules including oxidant-sensitive transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinases (MAPKs). Cross-talk between ROS and pro-inflammatory cytokines is mediated by NF-κB, AP-1, STAT3, and MAPKs; this crosstalk amplifies the inflammatory cascade in acute pancreatitis. Therapeutic studies have shown that antioxidants and natural compounds can have beneficial effects for patients with pancreatitis and can also influence the expression of proinflammatory cytokines in cerulein-induced pancreatitis. Since oxidative stress may activate inflammatory signaling pathways and contribute to the development of pancreatitis, antioxidant therapy may alleviate the symptoms or prevent the development of pancreatitis. Since chronic administration of high doses of antioxidants may have deleterious effects, dosage levels and duration of antioxidant treatment should be carefully determined.
Collapse
|
32
|
Cao WL, Xiang XH, Chen K, Xu W, Xia SH. Potential role of NADPH oxidase in pathogenesis of pancreatitis. World J Gastrointest Pathophysiol 2014; 5:169-177. [PMID: 25133019 PMCID: PMC4133516 DOI: 10.4291/wjgp.v5.i3.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/25/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Studies have demonstrated that reactive oxygen species (ROS) are closely related to inflammatory disorders. Nicotinamide adenine dinucleotide phosphate oxidase (NOX), originally found in phagocytes, is the main source of ROS in nonphagocytic cells. Besides directly producing the detrimental highly reactive ROS to act on biomolecules (lipids, proteins, and nucleic acids), NOX can also activate multiple signal transduction pathways, which regulate cell growth, proliferation, differentiation and apoptosis by producing ROS. Recently, research on pancreatic NOX is no longer limited to inflammatory cells, but extends to the aspect of pancreatic acinar cells and pancreatic stellate cells, which are considered to be potentially associated with pancreatitis. In this review, we summarize the literature on NOX protein structure, activation, function and its role in the pathogenesis of pancreatitis.
Collapse
|
33
|
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 2014; 20:2873-89. [PMID: 24156355 PMCID: PMC4026372 DOI: 10.1089/ars.2013.5603] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) promote genomic instability, altered signal transduction, and an environment that can sustain tumor formation and growth. The NOX family of NADPH oxidases, membrane-bound epithelial superoxide and hydrogen peroxide producers, plays a critical role in the maintenance of immune function, cell growth, and apoptosis. The impact of NOX enzymes in carcinogenesis is currently being defined and may directly link chronic inflammation and NOX ROS-mediated tumor formation. RECENT ADVANCES Increased interest in the function of NOX enzymes in tumor biology has spurred a surge of investigative effort to understand the variability of NOX expression levels in tumors and the effect of NOX activity on tumor cell proliferation. These initial efforts have demonstrated a wide variance in NOX distribution and expression levels across numerous cancers as well as in common tumor cell lines, suggesting that much remains to be discovered about the unique role of NOX-related ROS production within each system. Progression from in vitro cell line studies toward in vivo tumor tissue screening and xenograft models has begun to provide evidence supporting the importance of NOX expression in carcinogenesis. CRITICAL ISSUES A lack of universally available, isoform-specific antibodies and animal tumor models of inducible knockout or over-expression of NOX isoforms has hindered progress toward the completion of in vivo studies. FUTURE DIRECTIONS In vivo validation experiments and the use of large, existing gene expression data sets should help define the best model systems for studying the NOX homologues in the context of cancer.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- 1 Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cerulein-induced acute pancreatitis is associated with c-Jun NH(2)-terminal kinase 1-dependent ferritin degradation and iron-dependent free radicals formation. Pancreas 2013; 42:1070-7. [PMID: 23921964 DOI: 10.1097/mpa.0b013e318287d097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The main goal of this work was to get insight into the mechanism of cerulein-induced reactive oxygen species (ROS) formation and impact of c-Jun NH(2)-terminal kinase (JNK) on this process. METHODS The study was performed on Wistar rats and on a cellular model of acute pancreatitis (AP) using AR42J cell line. RESULTS First of all, we observed that during AP, the iron storage protein ferritin in the rat pancreas undergoes degradation accompanied by an increased formation of protein carbonyls. Pancreatic acinar AR42J cells stimulated by cerulein showed increased labile iron pool that was accompanied by a decrease in the cellular ferritin-L level and an increase in the ROS formation. The changes in the ferritin-L level were inversely correlated with the ROS formation. The cells expressing inactive JNK1 mutant were completely resistant to cerulein-induced ferritin degradation. CONCLUSIONS Our data showed that cerulein-induced AP in rats and on cellular model is accompanied by JNK1-dependent ferritin degradation, increases labile iron pool and ROS formation.
Collapse
|
35
|
Abstract
OBJECTIVES This study aimed to search for protein kinases that play a role in acute pancreatitis and analyze their potential connection with each other. METHODS Information of human protein kinases were collected in protein kinase database, and then a systematic search was performed using PubMed for studies addressing the association between these kinases and acute pancreatitis. Gene Ontology Annotations were used to build interactions network for acute pancreatitis-associated protein kinases. RESULTS A total of 570 human protein kinases were found, in which 28 kinases play a role in acute pancreatitis. Among the 28 kinases, RIPK1, JAK2, SRC, EGFR, FYN, MET, JAK1, TYK2, and MTOR were annotated in Gene Ontology database. A gene ontology interactions network was built to visualize the common biological process these kinases participated in. CONCLUSIONS This study provides observations that protein kinases participate in all the sequential events in the exocrine pancreas in acute pancreatitis and that protein kinases are potential therapeutical target for acute pancreatitis.
Collapse
|
36
|
Wu Y, Lu J, Antony S, Juhasz A, Liu H, Jiang G, Meitzler JL, Hollingshead M, Haines DC, Butcher D, Roy K, Doroshow JH. Activation of TLR4 is required for the synergistic induction of dual oxidase 2 and dual oxidase A2 by IFN-γ and lipopolysaccharide in human pancreatic cancer cell lines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1859-72. [PMID: 23296709 PMCID: PMC3563939 DOI: 10.4049/jimmunol.1201725] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatitis is associated with release of proinflammatory cytokines and reactive oxygen species and plays an important role in the development of pancreatic cancer. We recently demonstrated that dual oxidase (Duox)2, an NADPH oxidase essential for reactive oxygen species-related, gastrointestinal host defense, is regulated by IFN-γ-mediated Stat1 binding to the Duox2 promoter in pancreatic tumor lines. Because LPS enhances the development and invasiveness of pancreatic cancer in vivo following TLR4-related activation of NF-κB, we examined whether LPS, alone or combined with IFN-γ, regulated Duox2. We found that upregulation of TLR4 by IFN-γ in BxPC-3 and CFPAC-1 pancreatic cancer cells was augmented by LPS, resulting in activation of NF-κB, accumulation of NF-κB (p65) in the nucleus, and increased binding of p65 to the Duox2 promoter. TLR4 silencing with small interfering RNAs, as well as two independent NF-κB inhibitors, attenuated LPS- and IFN-γ-mediated Duox2 upregulation in BxPC-3 cells. Induction of Duox2 expression by IFN-γ and LPS may result from IFN-γ-related activation of Stat1 acting in concert with NF-κB-related upregulation of Duox2. Sustained extracellular accumulation of H(2)O(2) generated by exposure to both LPS and IFN-γ was responsible for an ∼50% decrease in BxPC-3 cell proliferation associated with a G(1) cell cycle block, apoptosis, and DNA damage. We also demonstrated upregulation of Duox expression in vivo in pancreatic cancer xenografts and in patients with chronic pancreatitis. These results suggest that inflammatory cytokines can interact to produce a Duox-dependent pro-oxidant milieu that could increase the pathologic potential of pancreatic inflammation and pancreatic cancer cells.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiamo Lu
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Smitha Antony
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Agnes Juhasz
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Han Liu
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Guojian Jiang
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer L. Meitzler
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Melinda Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Diana C. Haines
- Pathology/Histotechnology Laboratory, SAIC Frederick, Inc./Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, SAIC Frederick, Inc./Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - James H. Doroshow
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
Kim DS, An JM, Lee HG, Seo SR, Kim SS, Kim JY, Kang JW, Bae YS, Seo JT. Activation of Rac1-dependent redox signaling is critically involved in staurosporine-induced neurite outgrowth in PC12 cells. Free Radic Res 2012; 47:95-103. [PMID: 23153365 DOI: 10.3109/10715762.2012.748193] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Staurosporine, a non-specific protein kinase inhibitor, has been shown to induce neurite outgrowth in PC12 cells, but the mechanism by which staurosporine induces neurite outgrowth is still obscure. In the present study, we investigated whether the activation of Rac1 was responsible for the neurite outgrowth triggered by staurosporine. Staurosporine caused rapid neurite outgrowth independent of the ERK signaling pathways. In contrast, neurite outgrowth in response to staurosporine was accompanied by activation of Rac1, and the Rac1 inhibitor NSC23766 attenuated the staurosporine-induced neurite outgrowth in a concentration-dependent manner. In addition, suppression of Rac1 activity by expression of the dominant negative mutant Rac1N17 also blocked the staurosporine-induced morphological differentiation of PC12 cells. Staurosporine caused an activation of NADPH oxidase and increased the production of reactive oxygen species (ROS), which was prevented by NSC23766 and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Staurosporine-induced neurite outgrowth was attenuated by pretreatment with DPI and exogenous addition of sublethal concentration of H2O2 accelerated neurite outgrowth triggered by staurosporine. These results indicate that activation of Rac1, which leads to ROS generation, is required for neurite outgrowth induced by staurosporine in PC12 cells.
Collapse
Affiliation(s)
- Du Sik Kim
- Department of Oral Biology, BK 21 Project for Yonsei Dental Sciences, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tsuji Y, Watanabe T, Kudo M, Arai H, Strober W, Chiba T. Sensing of commensal organisms by the intracellular sensor NOD1 mediates experimental pancreatitis. Immunity 2012; 37:326-38. [PMID: 22902233 PMCID: PMC3523885 DOI: 10.1016/j.immuni.2012.05.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/13/2012] [Accepted: 05/12/2012] [Indexed: 12/18/2022]
Abstract
The intracellular sensor NOD1 has important host-defense functions relating to a variety of pathogens. Here, we showed that this molecule also participates in the induction of a noninfectious pancreatitis via its response to commensal organisms. Pancreatitis induced by high-dose cerulein (a cholecystokinin receptor agonist) administration depends on NOD1 stimulation by gut microflora. To analyze this NOD1 activity, we induced pancreatitis by simultaneous administration of a low dose of cerulein (that does not itself induce pancreatitis) and FK156, an activator of NOD1 that mimics the effect of gut bacteria that have breached the mucosal barrier. The pancreatitis was dependent on acinar cell production of the chemokine MCP-1 and the intrapancreatic influx of CCR2(+) inflammatory cells. Moreover, MCP-1 production involved activation of the transcription factors NF-κB and STAT3, each requiring complementary NOD1 and cerulein signaling. These studies indicate that gut commensals enable noninfectious pancreatic inflammation via NOD1 signaling in pancreatic acinar cells.
Collapse
Affiliation(s)
- Yoshihisa Tsuji
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kinki University Graduate School of Medicine
| | - Hidenori Arai
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine
| |
Collapse
|
39
|
Yu JH, Kim H. Role of janus kinase/signal transducers and activators of transcription in the pathogenesis of pancreatitis and pancreatic cancer. Gut Liver 2012; 6:417-22. [PMID: 23170143 PMCID: PMC3493719 DOI: 10.5009/gnl.2012.6.4.417] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/11/2012] [Accepted: 01/21/2012] [Indexed: 12/22/2022] Open
Abstract
In the pathogenesis of pancreatitis, oxidative stress is involved in the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway and cytokine expression. High serum levels of cholecystokinin (CCK) have been reported in patients with acute pancreatitis, and treatment with cerulein, a CCK analogue, induces acute pancreatitis in a rodent model. Recent studies have shown that cerulein-activated nicotinamide adenine dinucleotide phosphate oxidase elicits reactive oxygen species, which trigger the phosphorylation of the JAK1, STAT1, and STAT3 proteins and induce the production of inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, in pancreatic acinar cells. The JAK/STAT pathway also stimulates cell proliferation and malignant transformation and inhibits apoptosis in the pancreas. This review discusses the possible role of the JAK/STAT pathway in the pathogenesis of pancreatitis and pancreatic cancer in response to oxidative stress.
Collapse
Affiliation(s)
- Ji Hoon Yu
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
40
|
Chan YC, Leung PS. The Renin-angiotensin system and reactive oxygen species: implications in pancreatitis. Antioxid Redox Signal 2011; 15:2743-55. [PMID: 21644836 DOI: 10.1089/ars.2011.4071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The renin-angiotensin system (RAS) is a circulating hormonal system involved in the regulation of blood pressure and circulating fluid electrolytes. Recent findings have revealed that locally generated angiotensin (Ang) II plays a pivotal role in normal physiology as well as pathophysiology in various tissues and organs, including the pancreas. This review article summarizes current progress that has been made in elucidating the putative roles of Ang II in both acute and chronic pancreatitis. RECENT ADVANCES A convergence of evidence suggests that the underlying mechanism may involve reactive oxygen species (ROS)-generating systems, such as nicotinamide adenine dinucleotide phosphate oxidase, and subsequent elevation of proinflammatory and profibrogenic gene expression as well as protein activity. More importantly, Ang II-induced ROS interacts with other ROS-generating systems to positively feed-forward the ROS-induced signaling. CRITICAL ISSUES AND FUTURE DIRECTIONS Advances in basic research indicate that RAS blockers may provide potential therapeutic role for the management of pancreatic inflammation and, more importantly, pancreatitis-associated complications. Genetic alterations resulting from a malfunction in the epigenetic control of pancreatic RAS could be a causative factor in the development of pancreatitis.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin New Teritories, Hong Kong, China
| | | |
Collapse
|
41
|
Fujimori N, Oono T, Igarashi H, Ito T, Nakamura T, Uchida M, Coy DH, Jensen RT, Takayanagi R. Vasoactive intestinal peptide reduces oxidative stress in pancreatic acinar cells through the inhibition of NADPH oxidase. Peptides 2011; 32:2067-76. [PMID: 21924308 DOI: 10.1016/j.peptides.2011.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 12/16/2022]
Abstract
Vasoactive intestinal peptide (VIP) attenuates experimental acute pancreatitis (AP) by inhibition of cytokine production from inflammatory cells. It has been suggested that reactive oxygen species (ROS) as well as cytokines play pivotal roles in the early pathophysiology of AP. This study aimed to clarify the effect of VIP on the oxidative condition in pancreas, especially pancreatic acinar cells (acini). Hydrogen peroxide (H(2)O(2))-induced intracellular ROS, assessed with CM-H(2)DCFDA, increased time- and dose-dependently in acini isolated from rats. Cell viability due to ROS-induced cellular damage, evaluated by MTS assay, was decreased with ≥100 μmol/L H(2)O(2). VIP significantly inhibited ROS production from acini and increased cell viability in a dose-dependent manner. Expression of antioxidants including catalase, glutathione reductase, superoxide dismutase (SOD) 1 and glutathione peroxidase was not altered by VIP except for SOD2. Furthermore, Nox1 and Nox2, major components of NADPH oxidase, were expressed in pancreatic acini, and significantly increased after H(2)O(2) treatment. Also, NADPH oxidase activity was provoked by H(2)O(2). VIP decreased NADPH oxidase activity, which was abolished by PKA inhibitor H89. These results suggested that VIP affected the mechanism of ROS production including NADPH oxidase through induction of a cAMP/PKA pathway. In conclusion, VIP reduces oxidative stress in acini through the inhibition of NADPH oxidase. These results combined with findings of our previous study suggest that VIP exerts its protective effect in pancreatic damage, not only through an inhibition of cytokine production, but also through a reduction of the injury caused by oxidative stress.
Collapse
Affiliation(s)
- Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
SUMO1 attenuates stress-induced ROS generation by inhibiting NADPH oxidase 2. Biochem Biophys Res Commun 2011; 410:555-62. [PMID: 21683690 DOI: 10.1016/j.bbrc.2011.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 11/23/2022]
Abstract
Small ubiquitin-like modifier 1 (SUMO1) is a member of the superfamily of ubiquitin-like proteins. Despite its structural similarity with ubiquitin, SUMO1 does not seem to play any role in protein degradation and its precise biological function is poorly understood. During our studies on heat-shock responses, we found that heat-shock stress increased SUMO1 conjugation in a dose-dependent manner. Intriguingly, SUMO1 conjugation resulted in decrease of intracellular ROS generation and protection cells from death under heat-shock stress. We showed that NADPH oxidase 2 (NOX2) is a target protein of sumoylation by SUMO1 using immunoprecipitation and is colocalized with SUMO1 at plasma membrane. Additionally, we demonstrated that the attenuation in intracellular ROS generation resulted from inhibition of NADPH oxidase complex (NOX) activity. These results suggested that SUMO1 plays an important role in modulation of NOX activity required for ROS generation.
Collapse
|
43
|
Ju KD, Lim JW, Kim KH, Kim H. Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-β1 in the pathophysiology of acute pancreatitis. Inflamm Res 2011; 60:791-800. [PMID: 21509626 DOI: 10.1007/s00011-011-0335-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/07/2011] [Accepted: 04/03/2011] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE NADPH oxidase is potentially associated with acute pancreatitis by producing reactive oxygen species (ROS). We investigated whether NADPH oxidase mediates the activation of Janus kinase (Jak)2/signal transducers and activators of transcription (Stat)3 and mitogen-activated protein kinases (MAPKs) to induce the expression of transforming growth factor-β1 (TGF-β1) in cerulein-stimulated pancreatic acinar cells. TREATMENT AR42J cells were treated with an NADPH oxidase inhibitor diphenyleneiodonium (DPI) or a Jak2 inhibitor AG490. Other cells were transfected with antisense or sense oligonucleotides (AS or S ODNs) for NADPH oxidase subunit p22(phox) or p47(phox). METHODS TGF-β1 was determined by enzyme-linked immonosorbent assay. STAT3-DNA binding activity was measured by electrophoretic mobility shift assay. Levels of MAPKs as well as total and phospho-specific forms of Jak1/Stat3 were assessed by Western blot analysis. RESULTS Cerulein induced increases in TGF-β1, Stat3-DNA binding activity and the activation of MAPKs in AR42J cells. AG490 suppressed these cerulein-induced changes, similar to inhibition by DPI. Cerulein-induced activation of Jak2/Stat3 and increases in MAPKs and TGF-β1 levels were inhibited in the cells transfected with AS ODN for p22(phox) and p47(phox) compared to S ODN controls. CONCLUSION Inhibition of NADPH oxidase may be beneficial for prevention and treatment of pancreatitis by suppressing Jak2/Stat3 and MAPKs and expression of TGF-β1 in pancreatic acinar cells.
Collapse
Affiliation(s)
- Kyung Don Ju
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | | | | | | |
Collapse
|
44
|
Wu Y, Antony S, Juhasz A, Lu J, Ge Y, Jiang G, Roy K, Doroshow JH. Up-regulation and sustained activation of Stat1 are essential for interferon-gamma (IFN-gamma)-induced dual oxidase 2 (Duox2) and dual oxidase A2 (DuoxA2) expression in human pancreatic cancer cell lines. J Biol Chem 2011; 286:12245-56. [PMID: 21321110 DOI: 10.1074/jbc.m110.191031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dual oxidase 2 is a member of the NADPH oxidase (Nox) gene family that plays a critical role in the biosynthesis of thyroid hormone as well as in the inflammatory response of the upper airway mucosa and in wound healing, presumably through its ability to generate reactive oxygen species, including H2O2. The recently discovered overexpression of Duox2 in gastrointestinal malignancies, as well as our limited understanding of the regulation of Duox2 expression, led us to examine the effect of cytokines and growth factors on Duox2 in human tumor cells. We found that exposure of human pancreatic cancer cells to IFN-γ (but not other agents) produced a profound up-regulation of the expression of Duox2, and its cognate maturation factor DuoxA2, but not other members of the Nox family. Furthermore, increased Duox2/DuoxA2 expression was closely associated with a significant increase in the production of both intracellular reactive oxygen species and extracellular H2O2. Examination of IFN-γ-mediated signaling events demonstrated that in addition to the canonical Jak-Stat1 pathway, IFN-γ activated the p38-MAPK pathway in pancreatic cancer cells, and both played an important role in the induction of Duox2 by IFN-γ. Duox2 up-regulation following IFN-γ exposure is also directly associated with the binding of Stat1 to elements of the Duox2 promoter. Our findings suggest that the pro-inflammatory cytokine IFN-γ initiates a Duox2-mediated reactive oxygen cascade in human pancreatic cancer cells; reactive oxygen species production in this setting could contribute to the pathophysiologic characteristics of these tumors.
Collapse
Affiliation(s)
- Yongzhong Wu
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chan YC, Leung PS. Co-operative effects of angiotensin II and caerulein in NFκB activation in pancreatic acinar cells in vitro. ACTA ACUST UNITED AC 2010; 166:128-34. [PMID: 20959124 DOI: 10.1016/j.regpep.2010.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/04/2010] [Accepted: 10/13/2010] [Indexed: 01/10/2023]
Abstract
Angiotensin II is a vasoactive peptide that controls blood pressure and homeostasis. Emerging evidence shows that locally generated angiotensin II plays a crucial role in normal physiology, as well as pathophysiological conditions such as pancreatitis. We recently reported that angiotensin II activates pancreatic NFκB in obstructive pancreatitis. However, the specific cell type responsible for this activation remains unclear. In this study, we investigated whether pancreatic acinar cells respond to angiotensin II. These cells are the most abundant pancreatic cells and the most vulnerable to pancreatitis. Pancreatic acinar AR42J cells were used as an in vitro model of pancreatic inflammation. Our results demonstrated that treatment with caerulein, a cholecystokinin receptor agonist, induced hypersecretion and NFκB activation, as demonstrated by elevated amylase secretion and degradation of inhibitor of NFκB (IκBβ). Angiotensin II, either alone or in combination with caerulein, augmented IκBβ degradation. Pre-treatment with losartan, an antagonist of the angiotensin type I (AT₁) receptor, abolished NFκB activation by angiotensin II and caerulein in a dose-dependent manner. Treatment with PD123319, a blocker of the angiotensin type II (AT₂) receptor, enhanced the activation of NFκB by angiotensin II and caerulein. Preliminary data further demonstrated that angiotensin II could extend caerulein-induced ERK1/2 activation in acinar cells. These results indicated that inflammation triggered by hyperstimulation of pancreatic acinar cells is enhanced by angiotensin II, via the AT₁ receptor. In contrast, stimulation of the AT₂ receptor protects against caerulein-induced NFκB activation. The differential roles of the AT₁ and AT₂ receptors might be useful in developing potential therapies for pancreatic inflammation.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | | |
Collapse
|
46
|
Yu JH, Lim JW, Kim H. Altered gene expression in cerulein-stimulated pancreatic acinar cells: pathologic mechanism of acute pancreatitis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:409-16. [PMID: 20054485 DOI: 10.4196/kjpp.2009.13.6.409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/29/2009] [Accepted: 11/13/2009] [Indexed: 01/16/2023]
Abstract
Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with 10(-8) M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis.
Collapse
Affiliation(s)
- Ji Hoon Yu
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | |
Collapse
|
47
|
Chan YC, Leung PS. Involvement of Redox-Sensitive Extracellular-Regulated Kinases in Angiotensin II-Induced Interleukin-6 Expression in Pancreatic Acinar Cells. J Pharmacol Exp Ther 2009; 329:450-8. [DOI: 10.1124/jpet.108.148353] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Abstract
Reactive oxygen and reactive nitrogen species (ROS/RNS) have been implicated in the pathogenesis of acute and chronic pancreatitis. Clinical and basic science studies have indicated that ROS/RNS formation processes are intimately linked to the development of the inflammatory disorders. The detrimental effects of highly reactive ROS/RNS are mediated by their direct actions on biomolecules (lipids, proteins, and nucleic acids) and activation of proinflammatory signal cascades, which subsequently lead to activation of immune responses. The present article summarizes the possible sources of ROS/RNS formation and the detailed signaling cascades implicated in the pathogenesis of pancreatic inflammation, as observed in acute and chronic pancreatitis. A therapeutic ROS/RNS-scavenging strategy has been advocated for decades; however, clinical studies examining such approaches have been inconsistent in their results. Emerging evidence indicates that pancreatitis-inducing ROS/RNS generation may be attenuated by targeting ROS/RNS-generating enzymes and upstream mediators.
Collapse
Affiliation(s)
- Po Sing Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
49
|
Longpre JM, Loo G. Paradoxical effect of diphenyleneiodonium in inducing DNA damage and apoptosis. Free Radic Res 2008; 42:533-43. [PMID: 18569011 DOI: 10.1080/10715760802126692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diphenyleneiodonium (DPI) is often used as a molecular tool in unravelling redox-sensitive cellular events involving NADPH oxidase. However, to better understand unexpected actions of DPI, it was ascertained if DPI affects cellular DNA. DPI induced single-strand breaks in DNA of HCT-116 cells, although this only slightly increased GADD153 expression. Nevertheless, after sustaining DNA damage, the DPI-treated cells subsequently had features characteristic of apoptosis, such as translocated membrane phospholipid and nuclei containing condensed chromatin. Paradoxically, DPI attenuated the DNA damage and overall ROS production caused by sodium deoxycholate (DOC), although DPI did not inhibit DOC-induced generation of mitochondrial [image omitted] . Furthermore, DPI prevented the occurrence of apoptosis caused by DOC. However, other known chemical inhibitors of NADPH oxidase did not produce the same results as DPI in negating the effects of DOC. Collectively, these disparate findings suggest that DPI can act not in accord with conventional wisdom depending on the experimental conditions.
Collapse
Affiliation(s)
- Jennifer M Longpre
- Cellular and Molecular Nutrition Research Laboratory, Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | | |
Collapse
|
50
|
Lim JW, Kim KH, Kim H. NF-kappaB p65 regulates nuclear translocation of Ku70 via degradation of heat shock cognate protein 70 in pancreatic acinar AR42J cells. Int J Biochem Cell Biol 2008; 40:2065-77. [PMID: 18378183 DOI: 10.1016/j.biocel.2008.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/17/2008] [Accepted: 02/11/2008] [Indexed: 12/26/2022]
Abstract
Ku proteins such as Ku70 and Ku80 play key roles in multiple nuclear processes. Nuclear translocation of Ku70 is independent of Ku80 translocation and mediated by nuclear localization signal (NLS) receptors including importin-alpha. In the present study using pancreatic acinar AR42J cells, heat shock cognate protein 70 (Hsc70) was identified as the protein associated with NLS of Ku70. Interaction of Ku70 with importin-alpha and nuclear translocation of Ku70 was suppressed by overexpression of Hsc70, but enhanced by downregulation of Hsc70. The results suggest that the formation of Ku70 complex with Hsc70 prevents NLS of Ku70 from access of importin-alpha and inhibits nuclear translocation of Ku70. Since NF-kappaB p65 activation induced the decrease of Hsc70 level, the interaction of Ku70 with importin-alpha and nuclear translocation of Ku70 increased upon the activation of NF-kappaB p65. NF-kappaB p65 induced cell proliferation through decrease of Hsc70 levels and increase of nuclear translocation of Ku70. In the cells treated with cerulein as a physiological stimulus to activate NF-kappaB p65, nuclear translocation of Ku70 increased through NF-kappaB p65-mediated decrease of Hsc70 level. The results suggest that the involvement of NF-kappaB p65 in nuclear translocation of Ku70 may be mediated by Hsc70 degradation, which may play a key role in cell proliferation of pancreatic acinar AR42J cells.
Collapse
Affiliation(s)
- Joo Weon Lim
- Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | | | | |
Collapse
|