1
|
Abstract
Adenoid cystic carcinoma (ACC) is one of the most frequent malignancies of salivary glands. The objective of this study was to identify key genes and potential mechanisms during ACC samples.The gene expression profiles of GSE88804 data set were downloaded from Gene Expression Omnibus. The GSE88804 data set contained 22 samples, including 15 ACC samples and 7 normal salivary gland tissues. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were constructed, and protein-protein interaction network of differentially expressed genes (DEGs) was performed by Cytoscape. The top 10 hub genes were analyzed based on Gene Expression Profiling Interactive Analysis. Then, DEGs between ACC samples and normal salivary gland samples were analyzed by gene set enrichment analysis. Furthermore, miRTarBase and Cytoscape were used for visualization of miRNA-mRNA regulatory network. KEGG pathway analysis was undertaken using DIANA-miRPath v3.0.In total, 382 DEGs were identified, including 119 upregulated genes and 263 downregulated genes. GO analysis showed that DEGs were mainly enriched in extracellular matrix organization, extracellular matrix, and calcium ion binding. KEGG pathway analysis showed that DEGs were mainly enriched in p53 signaling pathway and salivary secretion. Expression analysis and survival analysis showed that ANLN, CCNB2, CDK1, CENPF, DTL, KIF11, and TOP2A are all highly expressed, which all may be related to poor overall survival. Predicted miRNAs of 7 hub DEGs mainly enriched in proteoglycans in cancer and pathways in cancer.This study indicated that identified DEGs and hub genes might promote our understanding of molecular mechanisms, which might be used as molecular targets or diagnostic biomarkers for ACC.
Collapse
Affiliation(s)
- Hong-Bing Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi
| | - Guan-Jiang Huang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province
| | - Meng-Si Luo
- Department of Anesthesiology, Zhongshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, Guangdong Province, China
| |
Collapse
|
2
|
Kinouchi M, Uchida D, Kuribayashi N, Tamatani T, Nagai H, Miyamoto Y. Involvement of miR-518c-5p to growth and metastasis in oral cancer. PLoS One 2014; 9:e115936. [PMID: 25536052 PMCID: PMC4275267 DOI: 10.1371/journal.pone.0115936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022] Open
Abstract
We have previously demonstrated that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of metastasis in oral cancer. Recently, small non coding RNAs, microRNAs (miRNAs) have been shown to be involved in the metastatic process of several types of cancers. However, the miRNAs that contribute to metastases induced by the SDF-1/CXCR4 system in oral cancer are largely unknown. In this study, we examined the metastasis-related miRNAs induced by the SDF-1/CXCR4 system using B88-SDF-1 oral cancer cells, which exhibit functional CXCR4 and distant metastatic potential in vivo. Through miRNA microarray analysis, we identified the upregulation of miR-518c-5p in B88-SDF-1 cells, and confirmed the induction by real-time PCR analysis. Although an LNA-based miR-518c-5p inhibitor did not affect cell growth of B88-SDF-1 cells, it did significantly inhibit the migration of the cells. Next, we transfected a miR-518c expression vector into parental B88 cells and CAL27 oral cancer cells and isolated stable transfectants, B88-518c and CAL27-518c cells, respectively. The anchorage-dependent and -independent growth of miR-518c transfectants was significantly enhanced compared with the growth of mock cells. Moreover, we detected the enhanced migration of these cells. The LNA-based miR-518c-5p inhibitor significantly impaired the enhanced cell growth and migration of miR-518c transfectants, indicating that these phenomena were mainly dependent on the expression of miR-518c-5p. Next, we examined the function of miR-518c-5p in vivo. miR-518c transfectants or mock transfectants were inoculated into the masseter muscle or the blood vessels of nude mice. Tumor volume, lymph nodes metastasis, and lung metastasis were significantly increased in the mice inoculated with the miR-518c transfectants. These results indicated that miR-518c-5p regulates the growth and metastasis of oral cancer as a downstream target of the SDF-1/CXCR4 system.
Collapse
Affiliation(s)
- Makoto Kinouchi
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Daisuke Uchida
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
- * E-mail:
| | - Nobuyuki Kuribayashi
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Tetsuya Tamatani
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Hirokazu Nagai
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| | - Youji Miyamoto
- Department of Oral Surgery, Subdivision of Molecular Oral Medicine, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, Graduate School of Tokushima University, Tokushima, Japan
| |
Collapse
|
3
|
Zhang L, Mitani Y, Caulin C, Rao PH, Kies MS, Saintigny P, Zhang N, Weber RS, Lippman SM, El-Naggar AK. Detailed genome-wide SNP analysis of major salivary carcinomas localizes subtype-specific chromosome sites and oncogenes of potential clinical significance. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2048-57. [PMID: 23583282 DOI: 10.1016/j.ajpath.2013.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 01/31/2023]
Abstract
The molecular genetic alterations underlying the development and diversity of salivary gland carcinomas are largely unknown. To characterize these events, comparative genomic hybridization analysis was performed, using a single-nucleotide polymorphism microarray platform, of 60 fresh-frozen specimens that represent the main salivary carcinoma types: mucoepidermoid carcinoma (MEC), adenoid cystic carcinoma (ACC), and salivary duct carcinoma (SDC). The results were correlated with the clinicopathologic features and translocation statuses to characterize the genetic alterations. The most commonly shared copy number abnormalities (CNAs) in all types were losses at chromosomes 6q23-26 and the 9p21 region. Subtype-specific CNAs included a loss at 12q11-12 in ACC and a gain at 17q11-12 in SDC. Focal copy number losses included 1p36.33-p36-22 in ACC, 9p13.2 in MEC, and 3p12.3-q11-2, 6q21-22.1, 12q14.1, and 12q15 in SDC. Tumor-specific amplicons were identified at 11q23.3 (PVRL1) in ACC, 11q13.3 (NUMA1) in MEC, and 6p21.1 (CCND3), 9p13.2 (PAX5), 12q15 (CNOT2/RAB3IP), 12q21.1 (GLIPR1L1), and 17q12 (ERBB2/CCL4) in SDC. A comparative CNA analysis of fusion-positive and fusion-negative ACCs and MECs revealed relatively lower CNAs in fusion-positive tumors than in fusion-negative tumors in both tumor types. An association between CNAs and high grade and advanced stage was observed in MECs only. These findings support the pathogenetic segregation of these entities and define novel chromosomal sites for future identification of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
van Beveren NJM, Krab LC, Swagemakers S, Buitendijk G, Buitendijk GHS, Boot E, van der Spek P, Elgersma Y, van Amelsvoort TAMJ. Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome. PLoS One 2012; 7:e33473. [PMID: 22457764 PMCID: PMC3310870 DOI: 10.1371/journal.pone.0033473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/09/2012] [Indexed: 12/19/2022] Open
Abstract
22q11 Deletion Syndrome (22q11DS) is associated with dysmorphology and a high prevalence of schizophrenia-like symptoms. Several genes located on chromosome 22q11 have been linked to schizophrenia. The deletion is thought to disrupt the expression of multiple genes involved in maturation and development of neurons and neuronal circuits, and neurotransmission. We investigated whole-genome gene expression of Peripheral Blood Mononuclear Cells (PBMC's) of 8 22q11DS patients and 8 age- and gender-matched controls, to (1) investigate the expression levels of 22q11 genes and (2) to investigate whether 22q11 genes participate in functional genetic networks relevant to schizophrenia. Functional relationships between genes differentially expressed in patients (as identified by Locally Adaptive Statistical procedure (LAP) or satisfying p<0.05 and fold-change >1.5) were investigated with the Ingenuity Pathways Analysis (IPA). 14 samples (7 patients, 7 controls) passed quality controls. LAP identified 29 deregulated genes. Pathway analysis showed 262 transcripts differentially expressed between patients and controls. Functional pathways most disturbed were cell death, cell morphology, cellular assembly and organization, and cell-to-cell signaling. In addition, 10 canonical pathways were identified, among which the signal pathways for Natural Killer-cells, neurotrophin/Trk, neuregulin, axonal guidance, and Huntington's disease. Our findings support the use of 22q11DS as a research model for schizophrenia. We identified decreased expression of several genes (among which COMT, Ufd1L, PCQAP, and GNB1L) previously linked to schizophrenia as well as involvement of signaling pathways relevant to schizophrenia, of which Neurotrophin/Trk and neuregulin signaling seems to be especially notable.
Collapse
Affiliation(s)
- Nico J M van Beveren
- Department of Psychiatry, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Seethala RR, Cieply K, Barnes EL, Dacic S. Progressive genetic alterations of adenoid cystic carcinoma with high-grade transformation. Arch Pathol Lab Med 2011; 135:123-30. [PMID: 21204718 DOI: 10.5858/2010-0048-oar.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Although genome-wide imbalances have been characterized in conventional adenoid cystic carcinoma, other than p53 mutational status, the molecular profile of adenoid cystic carcinoma with high-grade transformation has not been explored. OBJECTIVE To evaluate progressive genetic alterations in adenoid cystic carcinoma with high-grade transformation using array comparative genomic hybridization. DESIGN Five adenoid cystic carcinomas with high-grade transformation (4 primary tumors and 1 paired metastasis) were selected and characterized at the DNA level by array comparative genomic hybridization on formalin-fixed paraffin-embedded tissue. Select alterations were validated by fluorescence in situ hybridization. RESULTS Chromosomal gains were mostly confined to the areas of high-grade transformation while losses were seen only in the conventional areas. Chromosomal regions with significant gains included 8q24, 17q11.2-q12, 17q23, and 15q11-13. Regions that showed the significant losses included 9q34, 4p16, 1p36.1, and 11q22. Fluorescence in situ hybridization analysis demonstrated increases in C-MYC (8q24.12-q24.13) and a low level increases in ERBB2 ( formerly HER2/neu ) (17q11.2-q12) in cases showing gains by array comparative genomic hybridization in these regions. However, no tumor showed HER2/ neu immunopositivity. CONCLUSIONS High-grade transformation in adenoid cystic carcinoma is a complex process that is reflected by several chromosomal alterations. Our findings implicate C-MYC amplification in this progression, although the role of HER2/neu is still unclear. Other candidate oncogenes, particularly on chromosome 17q23, warrant investigation in this rare tumor.
Collapse
Affiliation(s)
- Raja R Seethala
- Department of Pathology and Laboratory Medicine, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
6
|
Abstract
Both the variety and rarity of salivary gland carcinomas pose challenge for using histologic grade and biomarkers to predict outcome. Mucoepidermoid carcinoma is the histologic subtype for which grading is most prognostically and therapeutically relevant. This tumor is graded using standard schemes in a 3-tier manner with the intermediate-grade category shows the most variability between grading systems and thus the most controversy in management. The t(11;19)(q21; p13) MECT1-MAML2 translocation may be an objective marker that can help to further stratify difficult cases. Adenoid cystic carcinomas are graded based on pattern with solid areas correlating with a worse prognosis. Occasionally, adenoid cystic carcinomas may undergo transformation to highly aggressive pleomorphic high-grade carcinomas with frequent nodal metastases. Comparative genomic hybridization has revealed several chromosomal regions (such as 1p32-p36, 6q23-q27) of prognostic interest in adenoid cystic carcinoma. Carcinoma ex-pleomorphic adenoma is actually a category of tumors rather than a single tumor type with both aggressive and indolent versions. These tumors should be further qualified as to type/grade of carcinoma and extent, as intracapsular and minimally invasive tumors behave favorably. Acinic cell carcinomas, although generally considered low grade, can recur, metastasize, or even prove lethal in a significant number of cases suggesting amenability to a grading scheme to separate these biologic groups. Although aggressive histologic parameters (anaplasia, necrosis, and mitoses) are predictive of poor outcome, a standard grading scheme does not yet exists. Acinic cell carcinomas can also undergo high-grade transformation.
Collapse
|
7
|
Fehr A, Meyer A, Heidorn K, Röser K, Löning T, Bullerdiek J. A link between the expression of the stem cell marker HMGA2, grading, and the fusion CRTC1-MAML2 in mucoepidermoid carcinoma. Genes Chromosomes Cancer 2009; 48:777-85. [PMID: 19521953 DOI: 10.1002/gcc.20682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, the concept of cancer stem cells and their expression of embryonic stem cell markers has gained considerable experimental support. In this study, we examined the expression of one such marker, the high-mobility group AT-hook 2 gene (HMGA2) mRNA, in 53 formalin-fixed, paraffin-embedded mucoepidermoid carcinomas (MEC) and four normal parotid tissues using quantitative real-time RT-PCR (qPCR). MECs are often characterized by the fusion gene CRTC1-MAML2, the detection of which is an important tool for the diagnosis and prognosis of MEC. For detection of the CRTC1-MAML2 fusion transcript, we performed RT-PCR. The mean expression level of HMGA2 was higher in fusion negative (302.8 +/- 124.4; n = 14) than in positive tumors (67.3 +/- 13.1; n = 39). Furthermore, the fusion-negative tumors were often high-grade tumors and the HMGA2 expression level rose with the tumor grade (low: 43.7 +/- 11.0, intermediate: 126.2 +/- 28.3, and high: 271.2 +/- 126.5). A significant difference was found in the HMGA2 expression levels between the different grading groups (one-way ANOVA, P = 0.04) and among the fusion-negative and -positive tumors (t-test, P = 0.05), indicating that the expression level of HMGA2 was closely linked to grading, the presence/absence of the CRTC1-MAML2 fusion, and the tumor behavior of MECs. These findings offer further evidence for the theory that the MEC group comprises two subgroups: one group with the CRTC1-MAML2 fusion, which is a group with a moderate aggressiveness and prognosis, and the other group lacking that fusion corresponding to an increased stemness, and thus, higher aggressiveness and worse prognosis.
Collapse
Affiliation(s)
- André Fehr
- Center for Human Genetics, University of Bremen, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Guled M, Myllykangas S, Frierson HF, Mills SE, Knuutila S, Stelow EB. Array comparative genomic hybridization analysis of olfactory neuroblastoma. Mod Pathol 2008; 21:770-8. [PMID: 18408657 DOI: 10.1038/modpathol.2008.57] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Olfactory neuroblastoma is an unusual neuroectodermal malignancy, which is thought to arise at the olfactory membrane of the sinonasal tract. Due to its rarity, little is understood regarding its molecular and cytogenetic abnormalities. The aim of the current study is to identify specific DNA copy number changes in olfactory neuroblastoma. Thirteen dissected tissue samples were analyzed using array comparative genomic hybridization. Our results show that gene copy number profiles of olfactory neuroblastoma samples are complex. The most frequent changes included gains at 7q11.22-q21.11, 9p13.3, 13q, 20p/q, and Xp/q, and losses at 2q31.1, 2q33.3, 2q37.1, 6q16.3, 6q21.33, 6q22.1, 22q11.23, 22q12.1, and Xp/q. Gains were more frequent than losses, and high-stage tumors showed more alterations than low-stage olfactory neuroblastoma. Frequent changes in high-stage tumors were gains at 13q14.2-q14.3, 13q31.1, and 20q11.21-q11.23, and loss of Xp21.1 (in 66% of cases). Gains at 5q35, 13q, and 20q, and losses at 2q31.1, 2q33.3, and 6q16-q22, were present in 50% of cases. The identified regions of gene copy number change have been implicated in a variety of tumors, especially carcinomas. In addition, our results indicate that gains in 20q and 13q may be important in the progression of this cancer, and that these regions possibly harbor genes with functional relevance in olfactory neuroblastoma.
Collapse
Affiliation(s)
- Mohamed Guled
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Chandana SR, Conley BA. Salivary gland cancers: current treatments, molecular characteristics and new therapies. Expert Rev Anticancer Ther 2008; 8:645-52. [PMID: 18402531 DOI: 10.1586/14737140.8.4.645] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Salivary gland cancers are relatively rare and quite diverse. Current therapy relies on local ablation. There are few large clinical trials or randomized trials to guide treatment, especially for metastatic disease. This article reviews the epidemiology, staging, molecular characteristics, and treatment evidence for the most common types of salivary cancers and suggests potential future diagnostic and treatment directions. Progress in understanding the molecular and cell biology of salivary gland cancers may lead to the development of targeted therapies in these rare tumors. Multidisciplinary and multi-institutional collaborative studies are needed to help improve survival in salivary gland cancers.
Collapse
Affiliation(s)
- Sreenivasa R Chandana
- Division of Hematology/Oncology, Michigan State University, Breslin Cancer Center 401, W. Greenlawn Avenue, Lansing, MI, USA.
| | | |
Collapse
|
10
|
Antonescu CR, Wu K, Xing GL, Cao M, Turpaz Y, Leversha MA, Hubbell E, Maki RG, Miyada CG, Pillai R. DNA copy number analysis in gastrointestinal stromal tumors using gene expression microarrays. Cancer Inform 2008; 6:59-75. [PMID: 19259404 PMCID: PMC2623304 DOI: 10.4137/cin.s387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a method, Expression-Microarray Copy Number Analysis (ECNA) for the detection of copy number changes using Affymetrix Human Genome U133 Plus 2.0 arrays, starting with as little as 5 ng input genomic DNA. An analytical approach was developed using DNA isolated from cell lines containing various X-chromosome numbers, and validated with DNA from cell lines with defined deletions and amplifications in other chromosomal locations. We applied this method to examine the copy number changes in DNA from 5 frozen gastrointestinal stromal tumors (GIST). We detected known copy number aberrations consistent with previously published results using conventional or BAC-array CGH, as well as novel changes in GIST tumors. These changes were concordant with results from Affymetrix 100K human SNP mapping arrays. Gene expression data for these GIST samples had previously been generated on U133A arrays, allowing us to explore correlations between chromosomal copy number and RNA expression levels. One of the novel aberrations identified in the GIST samples, a previously unreported gain on 1q21.1 containing the PEX11B gene, was confirmed in this study by FISH and was also shown to have significant differences in expression pattern when compared to a control sample. In summary, we have demonstrated the use of gene expression microarrays for the detection of genomic copy number aberrations in tumor samples. This method may be used to study copy number changes in other species for which RNA expression arrays are available, e.g. other mammals, plants, etc., and for which SNPs have not yet been mapped.
Collapse
Affiliation(s)
- Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lalami Y, Vereecken P, Dequanter D, Lothaire P, Awada A. Salivary gland carcinomas, paranasal sinus cancers and melanoma of the head and neck: an update about rare but challenging tumors. Curr Opin Oncol 2008; 18:258-65. [PMID: 16552238 DOI: 10.1097/01.cco.0000219255.30220.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This is a review about recent clinical developments in rare cancers of the head and neck. RECENT FINDINGS Progress in molecular biology techniques has allowed the identification of new prognostic factors, and potential molecular-targeted therapies. This is of importance since chemotherapy continues to play a role but is still limited in this group of malignancies. New techniques of irradiation such as intensity-modulated radiotherapy and three-dimensional conformal radiotherapy appear to improve the locoregional control of these tumors. Surgery continues to be the cornerstone of treatment, with a growing interest in the technique of sentinel lymph node biopsy. SUMMARY As salivary gland carcinomas, paranasal sinus cancers and melanoma of the head and neck are rare malignancies, these tumors must be treated in specialized anticancer centers with access to the latest surgical and irradiation techniques. Moreover, clinical studies with translational research are needed to identify strong prognostic and predictive factors, and effective molecular-targeted therapies.
Collapse
Affiliation(s)
- Yassine Lalami
- Jules Bordet Institute, Department of Internal Medicine, Medical Oncology Clinic, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
12
|
Wieghaus KA, Gianchandani EP, Brown ML, Papin JA, Botchwey EA. Mechanistic exploration of phthalimide neovascular factor 1 using network analysis tools. ACTA ACUST UNITED AC 2007; 13:2561-75. [PMID: 17723106 PMCID: PMC3124853 DOI: 10.1089/ten.2007.0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neovascularization is essential for the survival and successful integration of most engineering tissues after implantation in vivo. The objective of this study was to elucidate possible mechanisms of phthalimide neovascular factor 1 (PNF1), a new synthetic small molecule proposed for therapeutic induction of angiogenesis. Complementary deoxyribonucleic acid microarray analysis was used to identify 568 transcripts in human microvascular endothelial cells (HMVECs) that were significantly regulated after 24-h stimulation with 30 muM of PNF1, previously known as SC-3-149. Network analysis tools were used to identify genetic networks of the global biological processes involved in PNF1 stimulation and to describe known molecular and cellular functions that the drug regulated most highly. Examination of the most significantly perturbed networks identified gene products associated with transforming growth factor-beta (TGF-beta), which has many known effects on angiogenesis, and related signal transduction pathways. These include molecules integral to the thrombospondin, plasminogen, fibroblast growth factor, epidermal growth factor, ephrin, Rho, and Ras signaling pathways that are essential to endothelial function. Moreover, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) of select genes showed significant increases in TGF-beta-associated receptors endoglin and beta glycan. These experiments provide important insight into the pro-angiogenic mechanism of PNF1, namely, TGF-beta-associated signaling pathways, and may ultimately offer new molecular targets for directed drug discovery.
Collapse
Affiliation(s)
- Kristen A Wieghaus
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
13
|
Nomura H, Uzawa K, Yamano Y, Fushimi K, Ishigami T, Kato Y, Saito K, Nakashima D, Higo M, Kouzu Y, Ono K, Ogawara K, Shiiba M, Bukawa H, Yokoe H, Tanzawa H. Network-based analysis of calcium-binding protein genes identifies Grp94 as a target in human oral carcinogenesis. Br J Cancer 2007; 97:792-801. [PMID: 17726464 PMCID: PMC2360381 DOI: 10.1038/sj.bjc.6603948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To characterise Ca(2+) -binding protein gene expression changes in oral squamous cell carcinomas (OSCCs), we compared the gene expression profiles in OSCC-derived cell lines with normal oral tissues. One hundred Ca(2+) -binding protein genes differentially expressed in OSCCs were identified, and genetic pathways associated with expression changes were generated. Among genes mapped to the network with the highest significance, glucose-regulated protein 94 kDa (Grp94) was evaluated further for mRNA and protein expression in the OSCC cell lines, primary OSCCs, and oral premalignant lesions (OPLs). A significant (P<0.001) overexpression of Grp94 protein was observed in all cell lines compared to normal oral epithelium. Immunohistochemical analysis showed highly expressed Grp94 in primary OSCCs and OPLs, whereas most of the corresponding normal tissues had no protein immunoreaction. Real-time quantitative reverse transcriptase-PCR data agreed with the protein expression status. Moreover, overexpression of Grp94 in primary tumours was significantly (P<0.001) correlated with poor disease-free survival. The results suggested that Grp94 may have potential clinical application as a novel diagnosis and prognostic biomarker for human OSCCs.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Calcium-Binding Proteins/genetics
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Disease-Free Survival
- Fluorescent Antibody Technique, Direct
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Neoplasm Staging
- Predictive Value of Tests
- Prognosis
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- H Nomura
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Uzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- E-mail:
| | - Y Yamano
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Fushimi
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - T Ishigami
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Y Kato
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Saito
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - D Nakashima
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - M Higo
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Y Kouzu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Ono
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Ogawara
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - M Shiiba
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - H Bukawa
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - H Yokoe
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - H Tanzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Center of Excellence (COE) Program in the 21st Century, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
14
|
Vékony H, Ylstra B, Wilting SM, Meijer GA, van de Wiel MA, Leemans CR, van der Waal I, Bloemena E. DNA copy number gains at loci of growth factors and their receptors in salivary gland adenoid cystic carcinoma. Clin Cancer Res 2007; 13:3133-9. [PMID: 17545515 DOI: 10.1158/1078-0432.ccr-06-2555] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Adenoid cystic carcinoma (ACC) is a malignant salivary gland tumor with a high mortality rate due to late, distant metastases. This study aimed at unraveling common genetic abnormalities associated with ACC. Additionally, chromosomal changes were correlated with patient characteristics and survival. EXPERIMENTAL DESIGN Microarray-based comparative genomic hybridization was done to a series of 18 paraffin-embedded primary ACCs using a genome-wide scanning BAC array. RESULTS A total of 238 aberrations were detected, representing more gains than losses (205 versus 33, respectively). Most frequent gains (>60%) were observed at 9q33.3-q34.3, 11q13.3, 11q23.3, 19p13.3-p13.11, 19q12-q13.43, 21q22.3, and 22q13.33. These loci harbor numerous growth factor [fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF)] and growth factors receptor (FGFR3 and PDGFRbeta) genes. Gains at the FGF(R) regions occurred significantly more frequently in the recurred/metastasized ACCs compared with indolent ACCs. Furthermore, patients with 17 or more chromosomal aberrations had a significantly less favorable outcome than patients with fewer chromosomal aberrations (log-rank = 5.2; P = 0.02). CONCLUSIONS Frequent DNA copy number gains at loci of growth factors and their receptors suggest their involvement in ACC initiation and progression. Additionally, the presence of FGFR3 and PDGFRbeta in increased chromosomal regions suggests a possible role for autocrine stimulation in ACC tumorigenesis.
Collapse
Affiliation(s)
- Hedy Vékony
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Academic Centre for Dentistry Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sønder SUS, Mikkelsen M, Rieneck K, Hedegaard CJ, Bendtzen K. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction. Br J Pharmacol 2007; 148:46-53. [PMID: 16520746 PMCID: PMC1617047 DOI: 10.1038/sj.bjp.0706700] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. 2 To elucidate the mechanism behind this, the four MR-binding steroids SPIR, canrenone, 7alpha-thiomethyl-spironolactone and aldosterone (ALDO) were investigated for effects on lipopolysaccharide- and phytohemagglutinin-A-activated human blood mononuclear cells. Gene expression was examined after 4 h using microarrays, and SPIR affected 1018 transcripts of the (=) 22,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. 3 The affected genes encode a large number of signalling proteins and receptors, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR affects genes controlled by the transcription factors NF-kappaB, CEBPbeta and MYC. 5 These observations provide new insight into the non-MR-mediated effects of SPIR.
Collapse
Affiliation(s)
- Søren Ulrik Salling Sønder
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Marianne Mikkelsen
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Klaus Rieneck
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Chris Juul Hedegaard
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Klaus Bendtzen
- Institute for Inflammation Research IIR 7521, Rigshospitalet National University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- Author for correspondence:
| |
Collapse
|
16
|
Steppan S, Kupfer K, Mayer A, Evans M, Yamasaki G, Greve JM, Eckart MR, Cassell DJ. Genome wide expression profiling of human peripheral blood mononuclear cells stimulated with BAY 50-4798, a novel T cell selective interleukin-2 analog. J Immunother 2007; 30:150-68. [PMID: 17471163 DOI: 10.1097/01.cji.0000211320.07654.f1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BAY 50-4798, a novel, engineered form of interleukin (IL)-2, is a selective agonist for the high-affinity IL-2 receptor and induces the proliferation of activated human T cells with potency similar to recombinant IL-2 (rIL-2), but has reduced proliferative activity on natural killer cells and is associated with a diminished secondary cytokine cascade. In the current study, the transcriptional profiles of human peripheral blood mononuclear cells (PBMCs) stimulated in vitro with BAY 50-4798 and rIL-2 were compared using Affymetrix microarray technology in combination with Ingenuity Pathway Analysis (IPA) to determine whether there are quantitative or qualitative differences in the molecular networks activated by these IL-2 analogs. A total of 299 genes were differentially expressed in response to the two IL-2 analogs, with an increase in the number of differences over time. Consistent with the fact that BAY 50-4798 interacts with fewer forms of the IL-2 receptor than rIL-2 to activate fewer cell types, 169 genes were expressed at lower levels in PBMCs cultured with BAY 50-4798 compared with IL-2. These genes were mainly categorized as cytokines and chemokines, and were used to build multiple molecular interaction networks, the most significant of which centered around a subunit of NF-kappaB, which is known to play a pivotal role in inflammation, and was associated with cell death. Of the genes induced in response to BAY 50-4798, only 25% were expressed at lower levels than those induced by rIL-2. Moreover, despite its more selective receptor targeting compared with rIL-2, BAY 50-4798 caused higher levels of expression of 130 genes, which predominantly fell into categories associated with metabolism and transcription. We interpret these results as consistent with the expected transcriptional profile of a mutein engineered and demonstrated to have diminished inflammatory effects yet fully retain selected features of IL-2 activity. In addition to demonstrating that the responses to BAY 50-4798 are characterized by differential expression of genes known to be induced by IL-2, we report for the first time the induction of a significant number of genes not previously reported in the context of IL-2 biology.
Collapse
Affiliation(s)
- Sonja Steppan
- Biotechnology Research Division, Bayer Corporation, Berkeley, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Milano A, Longo F, Basile M, Iaffaioli RV, Caponigro F. Recent advances in the treatment of salivary gland cancers: emphasis on molecular targeted therapy. Oral Oncol 2007; 43:729-34. [PMID: 17350323 DOI: 10.1016/j.oraloncology.2006.12.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 12/12/2022]
Abstract
Salivary gland cancers include tumors of different histologic characteristics and biological behavior. Radical surgery, followed or not by radiation therapy, represents the main treatment approach for this disease. The role of systemic chemotherapy is less clearly defined since trials of single-agent chemotherapy have consistently shown low response rates. Polychemotherapy is likely to induce a higher response rate, but does not improve survival. The determination of the molecular abnormalities underlying the different subtypes of salivary gland cancers might lead to more active targeted therapies. C-kit is overexpressed in a wide percentage of salivary gland carcinomas, but clinical trials with single-agent imatinib have been negative. ErbB1 and ErbB2 are also frequently overexpressed in salivary gland cancers and this has provided the rationale for clinical trials with trastuzumab, cetuximab, gefitinib, lapatinib. Finally, new pathways, such as vascular endothelial growth factor, might be worth targeting and clinical trials with anti-angiogenic agents are ongoing.
Collapse
Affiliation(s)
- Amalia Milano
- Medical Oncology B, Istituto Nazionale Tumori "Fondazione G. Pascale", Via Mariano Semmola, 80131 Napoli, Italy.
| | | | | | | | | |
Collapse
|
18
|
Yamashiro K, Myokai F, Hiratsuka K, Yamamoto T, Senoo K, Arai H, Nishimura F, Abiko Y, Takashiba S. Oligonucleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts. Int J Biochem Cell Biol 2007; 39:910-21. [PMID: 17409011 DOI: 10.1016/j.biocel.2007.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/07/2006] [Accepted: 01/02/2007] [Indexed: 11/16/2022]
Abstract
Mechanical stress results in differential gene expression that is critical to convert the stimulus into biochemical signals. Under physiological stress such as occlusal force, human periodontal ligament fibroblasts (HPLF) are associated with homeostasis of periodontal tissues however the changes in response to mechanotransduction remain uncharacterized. We hypothesized that cyclic tension-responsive (CT) genes may be used to identify a set of fundamental pathways of mechanotransduction. Our goal was to catalogue CT genes in cultured HPLF. HPLF were subjected to cyclic tension up to 16h, and total RNA was isolated from both tension-loaded and static HPLF. The oligonucleotide arrays analysis revealed significant changes of mRNA accumulation for 122 CT genes, and their kinetics were assigned by the K-means clustering methods. Ingenuity Pathway Analysis was completed for HPLF mechanotransduction using 50 CT genes. This analysis revealed that cyclic tension immediately down-regulated all nuclear transcription factors except v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) reacting as an early responsive gene. In turn, transcription factors such as tumor protein p53 binding protein 2 (TP53BP2), and extra-nuclear molecules such as adrenergic receptor beta2 (ADRB2) were up-regulated after 1-2h, which may result in fundamental HPLF functions to adapt to cyclic tension. Subsequent inhibition assays using Y27632, a pharmacologic inhibitor of Rho-associated kinase (ROCK), suggested that HPLF has both ROCK-dependent and ROCK-independent CT genes. Mechanical stress was found to effect the expression of numerous genes, in particular, expression of an early responsive gene; FOS initiates alteration of HPLF behaviors to control homeostasis of the periodontal ligament.
Collapse
Affiliation(s)
- Keisuke Yamashiro
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Watters JW, Cheng C, Pickarski M, Wesolowski GA, Zhuo Y, Hayami T, Wang W, Szumiloski J, Phillips RL, Duong LT. Inverse relationship between matrix remodeling and lipid metabolism during osteoarthritis progression in the STR/ORT mouse. ACTA ACUST UNITED AC 2007; 56:2999-3009. [PMID: 17763422 DOI: 10.1002/art.22836] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The biologic changes associated with osteoarthritis (OA) are incompletely understood. The aim of this study was to elucidate the molecular mechanisms underlying OA progression in an STR/Ort murine model of spontaneous disease. METHODS Global patterns of gene expression were assessed using microarray analysis of articular cartilage/subchondral bone from the tibial plateaus of STR/Ort mice at 3, 9, and 12 months of age. The age-dependent severity of osteophyte formation and extent of cartilage damage were determined in the corresponding femurs using microfocal computed tomography and the Mankin histologic scoring system. Pathway analysis was used to identify the functions of genes associated with OA progression, and changes in gene expression were confirmed using immunohistochemistry. RESULTS Six hundred twenty-one genes were associated with both osteophyte formation and cartilage damage in the STR/Ort joints. Genes involved in the development/function of connective tissue and in lipid metabolism were most significantly enriched and regulated during disease progression. Genes directly interacting with peroxisome proliferator-activated receptor alpha (PPARalpha)/PPARgamma were down-regulated, whereas those genes involved with connective tissue remodeling were up-regulated during disease progression. Associations of down-regulation of myotubularin-related phosphatase 1 (a phosphoinositide 3-phosphatase involved in lipid signaling) and up-regulation of biglycan (a member of the small leucine-rich protein family known to modulate osteoblast differentiation and matrix mineralization) with OA progression were confirmed by immunohistochemistry. CONCLUSION Since adipogenesis and osteogenesis are inversely related in the developing skeletal tissue, these results suggest that a shift in the differentiation of mesenchymal cells from adipogenesis toward osteogenesis is a component of the OA pathophysiologic processes occurring in the tibial plateau joints of STR/Ort mice.
Collapse
|
20
|
Zhang XY, Hu Y, Cui YP, Miao XP, Tian F, Xia YJ, Wu YQ, Liu X. Integrated genome-wide gene expression map and high-resolution analysis of aberrant chromosomal regions in squamous cell lung cancer. FEBS Lett 2006; 580:2774-8. [PMID: 16674950 DOI: 10.1016/j.febslet.2006.04.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/06/2006] [Accepted: 04/12/2006] [Indexed: 11/24/2022]
Abstract
The recognition of recurrent aberrant regions in cancer is important to the discovery of candidate cancer related genes. Here we first constructed a genome-wide gene expression map of squamous lung carcinoma from the Stanford Microarray Database. High-resolution detection of aberrant chromosomal regions was performed by using moving-median method. 84% (27 of 32) of our results were consistent with the previous studies of comparative genomic hybridization or loss of heterozygosity. One overrepresented region in Xq28 was newly discovered to be related to squamous cell lung carcinoma. These observations could be of great interest for further studies.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | | | |
Collapse
|