1
|
Seyrek K, Ivanisenko NV, König C, Lavrik IN. Modulation of extrinsic apoptotic pathway by intracellular glycosylation. Trends Cell Biol 2024; 34:728-741. [PMID: 38336591 DOI: 10.1016/j.tcb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The importance of post-translational modifications (PTMs), particularly O-GlcNAcylation, of cytoplasmic proteins in apoptosis has been neglected for quite a while. Modification of cytoplasmic proteins by a single N-acetylglucosamine sugar is a dynamic and reversible PTM exhibiting properties more like phosphorylation than classical O- and N-linked glycosylation. Due to the sparse information existing, we have only limited understanding of how GlcNAcylation affects cell death. Deciphering the role of GlcNAcylation in cell fate may provide further understanding of cell fate decisions. This review focus on the modulation of extrinsic apoptotic pathway via GlcNAcylation carried out by O-GlcNAc transferase (OGT) or by other bacterial effector proteins.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
2
|
Hollander EE, Flock RE, McDevitt JC, Vostrejs WP, Campbell SL, Orlen MI, Kemp SB, Kahn BM, Wellen KE, Kim IK, Stanger BZ. N-glycosylation by Mgat5 imposes a targetable constraint on immune-mediated tumor clearance. JCI Insight 2024; 9:e178804. [PMID: 38912584 PMCID: PMC11383181 DOI: 10.1172/jci.insight.178804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of β1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.
Collapse
Affiliation(s)
- Erin E. Hollander
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jayne C. McDevitt
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William P. Vostrejs
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney L. Campbell
- Department of Medicine and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margo I. Orlen
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samantha B. Kemp
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin M. Kahn
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E. Wellen
- Department of Medicine and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Il-Kyu Kim
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Z. Stanger
- Department of Medicine and
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Lossio CF, Osterne VJS, Pinto-Junior VR, Chen S, Oliveira MV, Verduijn J, Verbeke I, Serna S, Reichardt NC, Skirtach A, Cavada BS, Van Damme EJM, Nascimento KS. Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. Int J Mol Sci 2023; 24:15966. [PMID: 37958949 PMCID: PMC10649158 DOI: 10.3390/ijms242115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.
Collapse
Affiliation(s)
- Claudia F. Lossio
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Vinicius J. S. Osterne
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Vanir R. Pinto-Junior
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
- Department of Physics, Federal University of Ceara, Fortaleza 60440-970, Brazil
| | - Simin Chen
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Messias V. Oliveira
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Joost Verduijn
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Sonia Serna
- Glycotechnology Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Niels C. Reichardt
- Glycotechnology Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red (CIBER-BBN), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Andre Skirtach
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Benildo S. Cavada
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Kyria S. Nascimento
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| |
Collapse
|
4
|
Role of Glycans on Key Cell Surface Receptors That Regulate Cell Proliferation and Cell Death. Cells 2021; 10:cells10051252. [PMID: 34069424 PMCID: PMC8159107 DOI: 10.3390/cells10051252] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated. This review discusses receptor glycosylation and the known roles of glycans on the functions of receptors expressed in diverse cell types. We included growth factor receptors that have an intracellular tyrosine kinase domain, growth factor receptors that have a serine/threonine kinase domain, and cell-death-inducing receptors. N- and O-glycans have a wide range of functions including roles in receptor conformation, ligand binding, oligomerization, and activation of signaling cascades. A better understanding of these functions will enable control of cell survival and cell death in diseases such as cancer and in immune responses.
Collapse
|
5
|
Wu YX, Lu HF, Lin YH, Chuang HY, Su SC, Liao YJ, Twu YC. Branched I antigen regulated cell susceptibility against natural killer cytotoxicity through its N-linked glycosylation and overall expression. Glycobiology 2021; 31:624-635. [PMID: 33403394 DOI: 10.1093/glycob/cwaa117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 11/14/2022] Open
Abstract
Cell surface glycosylation has been known as an important modification process that can be targeted and manipulated by malignant cells to escape from host immunosurveillance. We previously showed that the blood group branched I antigen on the leukemia cell surface can regulate the cell susceptibility against natural killer (NK) cell-mediated cytotoxicity through interfering target-NK interaction. In this work, we first identified N-linkage as the major glycosylation linkage type for branched I glycan formation on leukemia cells, and this linkage was responsible for cell sensitivity against therapeutic NK-92MI targeting. Secondly, by examining different leukemia cell surface death receptors, we showed death receptor Fas had highest expressions in both Raji and TF-1a cells. Mutations on two Fas extracellular N-linkage sites (118 and 136) for glycosylation impaired activation of Fas-mediated apoptosis during NK-92MI cytotoxicity. Last, we found that the surface I antigen expression levels enable leukemia cells to respond differently against NK-92MI targeting. In low I antigen expressing K-562 cell, reduction of I antigen presence greatly reduced leukemia cell susceptibility against NK-92MI targeting. But in other high I antigen expressing leukemia cells, similar reduction in I antigen expression did not affect cell susceptibility.
Collapse
Affiliation(s)
- Yu-Xuan Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, 45, Cheng-Hsin St., Taipei, 112, Taiwan.,Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, 510, Zhongzheng Rd., New Taipei City, 242, Taiwan
| | - Yen-Hsi Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan.,Department of Clinical Laboratory, Chung Shan Medical University Hospital, 110, Sec. 1, Jianguo N. Rd., Taichung City, 402, Taiwan
| | - Hui-Yu Chuang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, 222, Maijin Rd., Keelung City, 204, Taiwan.,Central Research Laboratory, Xiamen Chang Gung Hospital, 123, Xiafei Rd., Haicang District, Xiamen, China
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing St., Taipei, 110, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, 155, Sec. 2, Li-Nong-St., Taipei, 112, Taiwan
| |
Collapse
|
6
|
Seyrek K, Lavrik IN. Modulation of CD95-mediated signaling by post-translational modifications: towards understanding CD95 signaling networks. Apoptosis 2020; 24:385-394. [PMID: 31069559 DOI: 10.1007/s10495-019-01540-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD95 is a member of the death receptor family and is well-known to promote apoptosis. However, accumulating evidence indicates that in some context CD95 has not only the potential to induce apoptosis but also can trigger non-apoptotic signal leading to cell survival, proliferation, cancer growth and metastasis. Despite extensive investigations focused on alterations in the expression level of CD95 and associated signal molecules, very few studies, however, have investigated the effects of post-translational modifications such as glycosylation, phosphorylation, palmitoylation, nitrosylation and glutathionylation on CD95 function. Post-translational modifications of CD95 in mammalian systems are likely to play a more prominent role than anticipated in CD95 induced cell death. In this review we will focus on the alterations in CD95-mediated signaling caused by post-translational modifications of CD95.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
7
|
Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ 2019; 26:981-993. [PMID: 30903104 DOI: 10.1038/s41418-019-0317-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Glycosylation and glycan-binding proteins such as galectins play an important role in the control of cell death signaling. Strikingly, very little attention has been given so far to the understanding of the molecular details behind this key regulatory network. Glycans attached to the death receptors such as CD95 and TRAIL-Rs, either alone or in a complex with galectins, might promote or inhibit apoptotic signals. However, we have just started to decode the functions of galectins in the modulation of extrinsic and intrinsic apoptosis. In this work, we have discussed the current understanding of the glycosylation-galectin regulatory network in CD95- as well as TRAIL-R-induced apoptosis and therapeutic strategies based on targeting galectins in cancer.
Collapse
|
8
|
Brockhausen I, Anastassiades TP. Inflammation and arthritis: perspectives of the glycobiologist. Expert Rev Clin Immunol 2014; 4:173-91. [DOI: 10.1586/1744666x.4.2.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Sessler T, Healy S, Samali A, Szegezdi E. Structural determinants of DISC function: new insights into death receptor-mediated apoptosis signalling. Pharmacol Ther 2013; 140:186-99. [PMID: 23845861 DOI: 10.1016/j.pharmthera.2013.06.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Death receptors are members of the tumour necrosis factor (TNF) receptor superfamily characterised by an ~80 amino acid long alpha-helical fold, termed the death domain (DD). Death receptors diversified during early vertebrate evolution indicating that the DD fold has plasticity and specificity that can be easily adjusted to attain additional functions. Eight members of the death receptor family have been identified in humans, which can be divided into four structurally homologous groups or clades, namely: the p75(NTR) clade (consisting of ectodysplasin A receptor, death receptor 6 (DR6) and p75 neurotrophin (NTR) receptor); the tumour necrosis factor receptor 1 clade (TNFR1 and DR3), the CD95 clade (CD95/FAS) and the TNF-related apoptosis-inducing ligand receptor (TRAILR) clade (TRAILR1 and TRAILR2). Receptors in the same clade participate in similar processes indicating that structural diversification enabled functional specialisation. On the surface of nearly all human cells multiple death receptors are expressed, enabling the cell to respond to a plethora of external signals. Activation of different death receptors converges on the activation of three main signal transduction pathways: nuclear factor-κB-mediated differentiation or inflammation, mitogen-associated protein kinase-mediated stress response and caspase-mediated apoptosis. While the ability to induce cell death is true for nearly all DRs, the FAS and TRAILR clades have specialised in inducing cell death. Here we summarise recent discoveries about the molecular regulation and structural requirements of apoptosis induction by death receptors and discuss how this information can be used to better explain the biological functions, similarities and distinguishing features of death receptors.
Collapse
Affiliation(s)
- Tamas Sessler
- Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
10
|
Hamshou M, Van Damme EJM, Caccia S, Cappelle K, Vandenborre G, Ghesquière B, Gevaert K, Smagghe G. High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:295-305. [PMID: 23291362 DOI: 10.1016/j.jinsphys.2012.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 05/24/2023]
Abstract
Whole insect assays where Rhizoctonia solani agglutinin (RSA) was fed to larval stages of the cotton leaf-worm Spodoptera littoralis and the pea aphid Acyrthosiphon pisum demonstrated a high concentration-dependent entomotoxicity, suggesting that this GalNAc/Gal-specific fungal lectin might be a good control agent for different pest insects. RSA at 10 mg/g in the solid diet of 2nd-instar caterpillars caused 84% weight reduction after 8 days with none of the caterpillars reaching the 4th-instar stage. In sucking aphids, 50% mortality was achieved after 3 days with 9 μM of RSA in the liquid diet. Feeding of FITC-labeled RSA to both insect pest species revealed strong lectin binding at the apical/luminal side of the midgut epithelium with the brush border zone, suggesting the insect midgut as a primary insecticide target tissue for RSA. This was also confirmed with cell cultures in vitro, where there was high fluorescence binding at the microvillar zone with primary cultures of larval midgut columnar cells of S. littoralis, and also at the surface with the insect midgut CF-203 cell line without lectin uptake in the midgut cells. In vitro assays using insect midgut CF-203 cells, revealed that RSA was highly toxic with an EC50 of 0.3 μM. Preincubation with GalNAc and saponin indicated that this action of RSA was carbohydrate-binding dependent and happened at the surface of the cells. Intoxicated CF-203 cells showed symptoms of apoptosis as nuclear condensation and DNA fragmentation, and this concurred with an increase of caspase-3/7, -8 and -9 activities. Finally, RSA affinity chromatography of membrane extracts of CF-203 cells followed by LC-MS/MS allowed the identification of 5747 unique peptides, among which four putatively glycosylated membrane proteins that are associated with apoptosis induction, namely Fas-associated factor, Apoptosis-linked gene-2, Neuroglian and CG2076, as potential binding targets for RSA. These data are discussed in relation to the physiological effects of RSA.
Collapse
Affiliation(s)
- Mohamad Hamshou
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Edmond V, Ghali B, Penna A, Taupin JL, Daburon S, Moreau JF, Legembre P. Precise mapping of the CD95 pre-ligand assembly domain. PLoS One 2012; 7:e46236. [PMID: 23049989 PMCID: PMC3457997 DOI: 10.1371/journal.pone.0046236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Pre-association of CD95 at the plasma membrane is mandatory for efficient death receptor signaling. This homotrimerization occurs through self-association of an extracellular domain called the pre-ligand assembly domain (PLAD). Using novel molecular and cellular tools, we confirmed that CD95-PLAD is necessary to promote CD95 multimerization and plays a pivotal role in the transmission of apoptotic signals. However, while a human CD95 mutant deleted of the previously described PLAD domain (amino acids 1 to 66) fails to interact with its wild-type counterpart and trigger autonomous cell death, deletion of amino acids 1 to 42 does not prevent homo- or hetero (human/mouse)-oligomerization of CD95, and thus does not alter transmission of the apoptotic signal. Overall, these findings indicate that the region between amino acids 43 to 66 corresponds to the minimal motif involved in CD95 homotypic interaction and is necessary to convey an efficient apoptotic signal. Interfering with this PLAD may represent a new therapeutic strategy for altering CD95-induced apoptotic and non-apoptotic signals.
Collapse
Affiliation(s)
- Valérie Edmond
- Université de Rennes-1, Rennes, France
- Inserm U1085, IRSET, Rennes, France
| | - Benoist Ghali
- Université de Bordeaux-2, Bordeaux, France
- CNRS UMR 5164, Bordeaux, France
| | - Aubin Penna
- Université de Rennes-1, Rennes, France
- Inserm U1085, IRSET, Rennes, France
| | - Jean-Luc Taupin
- Université de Bordeaux-2, Bordeaux, France
- CNRS UMR 5164, Bordeaux, France
- CHU Bordeaux, Place Amélie Raba Léon, Bordeaux, France
| | - Sophie Daburon
- Université de Bordeaux-2, Bordeaux, France
- CNRS UMR 5164, Bordeaux, France
| | - Jean-François Moreau
- Université de Bordeaux-2, Bordeaux, France
- CNRS UMR 5164, Bordeaux, France
- CHU Bordeaux, Place Amélie Raba Léon, Bordeaux, France
| | - Patrick Legembre
- Université de Rennes-1, Rennes, France
- Inserm U1085, IRSET, Rennes, France
- * E-mail:
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
13
|
Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus-silkworm expression system. Protein Expr Purif 2011; 80:102-9. [PMID: 21782025 DOI: 10.1016/j.pep.2011.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 12/27/2022]
Abstract
To achieve an efficient isolation of human Fas receptor extracellular domain (hFasRECD), a fusion protein of hFasRECD with human IgG1 heavy chain Fc domain containing thrombin cleavage sequence at the junction site was overexpressed using baculovirus-silkworm larvae expression system. The hFasRECD part was separated from the fusion protein by the effective cleavage of the recognition site with bovine thrombin. Protein G column treatment of the reaction mixture and the subsequent cation-exchange chromatography provided purified hFasRECD with a final yield of 13.5mg from 25.0 ml silkworm hemolymph. The functional activity of the product was examined by size-exclusion chromatography analysis. The isolated hFasRECD less strongly interacted with human Fas ligand extracellular domain (hFasLECD) than the Fc domain-bridged counterpart, showing the contribution of antibody-like avidity in the latter case. The purified glycosylated hFasRECD presented several discrete bands in the disulphide-bridge non-reducing SDS-PAGE analysis, and virtually all of the components were considered to participate in the binding to hFasLECD. The attached glycans were susceptible to PNGase F digestion, but mostly resistant to Endo Hf digestion under denaturing conditions. One of the components exhibited a higher susceptibility to PNGase F digestion under non-denaturing conditions.
Collapse
|
14
|
Swindall AF, Bellis SL. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 2011; 286:22982-90. [PMID: 21550977 PMCID: PMC3123066 DOI: 10.1074/jbc.m110.211375] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/28/2011] [Indexed: 01/28/2023] Open
Abstract
The glycosyltransferase, ST6Gal-I, adds sialic acid in an α2-6 linkage to the N-glycans of membrane and secreted glycoproteins. Up-regulation of ST6Gal-I occurs in many cancers, including colon carcinoma, and correlates with metastasis and poor prognosis. However, mechanisms by which ST6Gal-I facilitates tumor progression remain poorly understood due to limited knowledge of enzyme substrates. Herein we identify the death receptor, Fas (CD95), as an ST6Gal-I substrate, and show that α2-6 sialylation of Fas confers protection against Fas-mediated apoptosis. Intriguingly, differences in ST6Gal-I activity do not affect the function of DR4 or DR5 death receptors upon treatment with TRAIL, implicating a selective effect of ST6Gal-I on the Fas receptor. Using ST6Gal-I knockdown and forced overexpression colon carcinoma cell models, we find that α2-6 sialylation of Fas prevents apoptosis stimulated by FasL as well as the Fas-activating antibody, CH11, as evidenced by decreased activation of caspases 8 and 3. We also show that α2-6 sialylation of Fas does not alter the binding of CH11, but rather inhibits the capacity of Fas to induce apoptosis by blocking the association of FADD with Fas cytoplasmic tails, an event that initiates death-inducing signaling complex formation. Furthermore, α2-6 sialylation of Fas inhibits Fas internalization, which is required for apoptotic signaling. Although dysregulated Fas activity is a well known mechanism through which tumors evade apoptosis, the current study is the first to link Fas insensitivity to the actions of a specific sialyltransferase. This finding establishes a new paradigm by which death receptor function is impaired for the self-protection of tumors against apoptosis.
Collapse
Affiliation(s)
- Amanda F. Swindall
- From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Susan L. Bellis
- From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
15
|
Modulation of the CD95-induced apoptosis: the role of CD95 N-glycosylation. PLoS One 2011; 6:e19927. [PMID: 21625644 PMCID: PMC3097226 DOI: 10.1371/journal.pone.0019927] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/21/2011] [Indexed: 12/13/2022] Open
Abstract
Protein modifications of death receptor pathways play a central role in the regulation of apoptosis. It has been demonstrated that O-glycosylation of TRAIL-receptor (R) is essential for sensitivity and resistance towards TRAIL-mediated apoptosis. In this study we ask whether and how glycosylation of CD95 (Fas/APO-1), another death receptor, influences DISC formation and procaspase-8 activation at the CD95 DISC and thereby the onset of apoptosis. We concentrated on N-glycostructure since O-glycosylation of CD95 was not found. We applied different approaches to analyze the role of CD95 N-glycosylation on the signal transduction: in silico modeling of CD95 DISC, generation of CD95 glycosylation mutants (at N136 and N118), modulation of N-glycosylation by deoxymannojirimycin (DMM) and sialidase from Vibrio cholerae (VCN). We demonstrate that N-deglycosylation of CD95 does not block DISC formation and results only in the reduction of the procaspase-8 activation at the DISC. These findings are important for the better understanding of CD95 apoptosis regulation and reveal differences between apoptotic signaling pathways of the TRAIL and CD95 systems.
Collapse
|
16
|
Riedl E, Koeppel H, Pfister F, Peters V, Sauerhoefer S, Sternik P, Brinkkoetter P, Zentgraf H, Navis G, Henning RH, Van Den Born J, Bakker SJ, Janssen B, van der Woude FJ, Yard BA. N-glycosylation of carnosinase influences protein secretion and enzyme activity: implications for hyperglycemia. Diabetes 2010; 59:1984-90. [PMID: 20460427 PMCID: PMC2911063 DOI: 10.2337/db09-0868] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The (CTG)(n) polymorphism in the serum carnosinase (CN-1) gene affects CN-1 secretion. Since CN-1 is heavily glycosylated and glycosylation might influence protein secretion as well, we tested the role of N-glycosylation for CN-1 secretion and enzyme activity. We also tested whether CN-1 secretion is changed under hyperglycemic conditions. RESULTS N-glycosylation of CN-1 was either inhibited by tunicamycin in pCSII-CN-1-transfected Cos-7 cells or by stepwise deletion of its three putative N-glycosylation sites. CN-1 protein expression, N-glycosylation, and enzyme activity were assessed in cell extracts and supernatants. The influence of hyperglycemia on CN-1 enzyme activity in human serum was tested in homozygous (CTG)(5) diabetic patients and healthy control subjects. Tunicamycin completely inhibited CN-1 secretion. Deletion of all N-glycosylation sites was required to reduce CN-1 secretion efficiency. Enzyme activity was already diminished when two sites were deleted. In pCSII-CN-1-transfected Cos-7 cells cultured in medium containing 25 mmol/l d-glucose, the immature 61 kilodaltons (kDa) CN-1 immune reactive band was not detected. This was paralleled by an increased GlcNAc expression in cell lysates and CN-1 expression in the supernatants. Homozygous (CTG)(5) diabetic patients had significantly higher serum CN-1 activity compared with genotype-matched, healthy control subjects. CONCLUSIONS We conclude that apart from the (CTG)(n) polymorphism in the signal peptide of CN-1, N-glycosylation is essential for appropriate secretion and enzyme activity. Since hyperglycemia enhances CN-1 secretion and enzyme activity, our data suggest that poor blood glucose control in diabetic patients might result in an increased CN-1 secretion even in the presence of the (CTG)(5) allele.
Collapse
Affiliation(s)
- Eva Riedl
- 5th Medical Clinic, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hannes Koeppel
- 5th Medical Clinic, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederick Pfister
- 5th Medical Clinic, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Peters
- First Department of Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Sibylle Sauerhoefer
- 5th Medical Clinic, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Paula Sternik
- 5th Medical Clinic, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Paul Brinkkoetter
- 5th Medical Clinic, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Renal Division, Department of Medicine, University of Cologne, Cologne, Germany
| | - Hanswalter Zentgraf
- Department of Tumor Virology, German Cancer Research Center, Heidelberg, Germany
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob Van Den Born
- Laboratory of Experimental Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J.L. Bakker
- Department of Tumor Virology, German Cancer Research Center, Heidelberg, Germany
| | - Bart Janssen
- Institute of Human Genetics Heidelberg, Heidelberg, Germany
| | - Fokko J. van der Woude
- 5th Medical Clinic, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Benito A. Yard
- 5th Medical Clinic, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Corresponding author: Benito A. Yard,
| |
Collapse
|
17
|
Muraki M, Honda S. Efficient production of human Fas receptor extracellular domain-human IgG1 heavy chain Fc domain fusion protein using baculovirus/silkworm expression system. Protein Expr Purif 2010; 73:209-16. [PMID: 20576530 DOI: 10.1016/j.pep.2010.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/28/2010] [Accepted: 05/12/2010] [Indexed: 11/25/2022]
Abstract
The fusion protein consisting of human Fas receptor extracellular domain and human IgG1 heavy chain Fc domain (hFasRECD-Fc) is a medically important protein that potentially has therapeutic uses. The fusion gene composed of a synthetic human Fas receptor extracellular domain gene and the cDNA encoding human IgG1 heavy chain Fc domain was investigated on the secretory expression using two baculovirus systems which employed either Spodoptera frugiperda 9 (Sf9) cell line or Bombyx mori (silkworm) larvae as the host organism. Both expression systems produced the functional hFasRECD-Fc as a dimer molecule linked by disulfide bridges. The secretion level per unit volume was much higher in the case of silkworm larvae as compared to Sf9 cell line, and was estimated to be more than 150 times. A substantially pure hFasRECD-Fc sample from silkworm larvae was obtained by single step Protein G-agarose affinity column chromatography. The affinity purified sample was further fractionated by anion-exchange chromatography with the final purification yield of 22.5 mg from 26 ml hemolymph. The hFasRECD-Fc from silkworm larvae and the tag-free human Fas ligand extracellular domain derivative from Pichia pastoris formed a stable complex in solution, which was verified by size-exclusion chromatography. This study demonstrated that the baculovirus/silkworm expression system provided the means for efficient production of highly pure hFasRECD-Fc with functional activity.
Collapse
Affiliation(s)
- Michiro Muraki
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
18
|
Patsos G, Hebbe-Viton V, Robbe-Masselot C, Masselot D, San Martin R, Greenwood R, Paraskeva C, Klein A, Graessmann M, Michalski JC, Gallagher T, Corfield A. O-glycan inhibitors generate aryl-glycans, induce apoptosis and lead to growth inhibition in colorectal cancer cell lines. Glycobiology 2009; 19:382-98. [PMID: 19122213 DOI: 10.1093/glycob/cwn149] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our studies provide direct evidence that O-glycosylation pathways play a role in the regulation of cell growth through apoptosis and proliferation pathways. A series of small molecular weight analogs of the GalNAc-alpha-1-O-serine/threonine structure based on 1-benzyl-2-acetamido-2-deoxy-alpha-O-d-galactopyranoside have been synthesized and tested in the human colorectal cancer cell lines PC/AA/C1/SB10C and HCA7/C29. Three inhibitors, 1-benzyl-2-acetamido-2-deoxy-alpha-O-D-galactopyranoside, and the corresponding 2-azido- and C-glycoside analogs were screened in these colorectal cancer cell lines at 0.5 mM and showed induction of apoptosis and downregulation of proliferation. Treatment of both cell lines with inhibitors led to changes in glycosylation detected with peanut lectin. The inhibition of glycosyltransferase activity in cell homogenates from human colorectal mucosal cells and cultured cell lines could be shown. The competitive action of the inhibitors resulted in the intracellular formation of 28 aryl-glycan products which were identified by MALDI and electrospray mass spectroscopy. The structures showed a differential pattern for each of the inhibitors in both cell lines. Gene array analysis of the glycogenes illustrated a pattern of glycosyltransferases that matched the glycan structures found in glycoproteins and aryl-glycans formed in the PC/AA/C1/SB10C cells; however, there was no action of the three inhibitors on glycogene transcript levels. The inhibitors act at both intermediary metabolic and genomic levels, resulting in altered protein glycosylation and aryl-glycan formation. These events may play a part in growth arrest.
Collapse
Affiliation(s)
- Georgios Patsos
- Department of Clinical Science, University of Bristol, Bristol BS8 1TH, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The terminal sialic acid of glycoconjugates on the surface of intestinal epithelial cells activates excystation of Cryptosporidium parvum. Infect Immun 2008; 76:3735-41. [PMID: 18505814 DOI: 10.1128/iai.00362-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apicomplexan Cryptosporidium parvum reproduces in the intestinal epithelial cells of many mammalian species and is an agent of the important diarrheal disease cryptosporidiosis. Infection is transmitted fecal-orally by oocysts that pass through the stomach and excystation occurs in the intestine, releasing four invasive sporozoites. Some factors involved in inducing excystation have been identified, but the role of the enterocyte is not known. The present study showed that excystation was accelerated in the presence of the three enterocyte cell lines Caco2, HCT8, and CMT93. Epithelial cell lines derived from other organs, including the stomach, had no effect on excystation. No evidence was obtained that factors secreted from enterocytes induced excystation, but an enterocyte membrane preparation promoted sporozoite release. In addition, modification of the enterocyte surface by trypsin digestion or paraformaldehyde fixation abrogated the ability to enhance excystation. Importantly, the level of excystation in the presence of enterocytes decreased after treatment with either sialidase/neuraminidase to deplete surface terminal sialic acid or with lectins that specifically bind to sialic acid. Furthermore, the addition of sialic acid to oocysts in the absence of cells increased the level of excystation. These results suggest that sialic acid on the surface of enterocytes may provide an important local signal for the excystation of C. parvum sporozoites.
Collapse
|
20
|
Primary human osteoblasts and bone cancer cells as models to study glycodynamics in bone. Int J Biochem Cell Biol 2007; 40:471-83. [PMID: 17931955 DOI: 10.1016/j.biocel.2007.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/24/2007] [Accepted: 08/21/2007] [Indexed: 01/01/2023]
Abstract
Bone cells produce many glycoproteins potentially involved in the maintenance of healthy bone tissues. Two cytokines produced in inflamed joints, tumor necrosis factor (TNF)alpha and transforming growth factor (TGF)beta, have previously been shown to alter cellular glycosylation which may potentially affect the expression and function of glycoproteins. In order to evaluate models to study the glycodynamics of bone cells, we examined primary human osteoblastic cells from osteoarthritis patients, and compared these to human osteosarcoma cells MG63 and SJSA-1. We showed here for the first time that all of the human osteoblastic cells actively synthesize complex N- and O-glycan chains of bone cell glycoproteins, with quantitative differences between cell types. TNFalpha-induced apoptosis or TGFbeta-induced cell differentiation and proliferation had significant effects on both cell surface carbohydrates and glycosyltransferase activities of osteoblasts and osteosarcoma cells. The results indicate that cultured human bone-derived osteoblastic cells are good models to examine the glycodynamics of osteoblasts under conditions of cell growth and cell death. The changes induced by cytokines can result in altered cell surface functions which may be of importance in osteoarthritis, osteoporosis and other bone diseases.
Collapse
|