1
|
De Nardi AB, de Oliveira Massoco Salles Gomes C, Fonseca-Alves CE, de Paiva FN, Linhares LCM, Carra GJU, dos Santos Horta R, Ruiz Sueiro FA, Jark PC, Nishiya AT, de Carvalho Vasconcellos CH, Ubukata R, Batschinski K, Sobral RA, Fernandes SC, Biondi LR, De Francisco Strefezzi R, Matera JM, Rangel MMM, dos Anjos DS, Brunner CHM, Laufer-Amorim R, Cadrobbi KG, Cirillo JV, Martins MC, de Paula Reis Filho N, Silva Lessa DF, Portela R, Scarpa Carneiro C, Ricci Lucas SR, Fukumasu H, Feliciano MAR, Gomes Quitzan J, Dagli MLZ. Diagnosis, Prognosis, and Treatment of Canine Hemangiosarcoma: A Review Based on a Consensus Organized by the Brazilian Association of Veterinary Oncology, ABROVET. Cancers (Basel) 2023; 15:cancers15072025. [PMID: 37046686 PMCID: PMC10093745 DOI: 10.3390/cancers15072025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Hemangiosarcoma is a mesenchymal neoplasm originating in the endothelial cells of blood vessels; they can be classified as non-visceral and visceral types. Non-visceral hemangiosarcomas can affect the skin, subcutaneous tissues, and muscle tissues; visceral hemangiosarcomas can affect the spleen, liver, heart, lungs, kidneys, oral cavity, bones, bladder, uterus, tongue, and retroperitoneum. Among domestic species, dogs are most affected by cutaneous HSA. Cutaneous HSA represents approximately 14% of all HSA diagnosed in this species and less than 5% of dermal tumors, according to North American studies. However, Brazilian epidemiological data demonstrate a higher prevalence, which may represent 27 to 80% of all canine HSAs and 13.9% of all skin neoplasms diagnosed in this species. Cutaneous HSA most commonly affects middle-aged to elderly dogs (between 8 and 15 years old), with no gender predisposition for either the actinic or non-actinic forms. The higher prevalence of cutaneous HSA in some canine breeds is related to lower protection from solar radiation, as low skin pigmentation and hair coverage lead to greater sun exposure. Actinic changes, such as solar dermatosis, are frequent in these patients, confirming the influence of solar radiation on the development of this neoplasm. There are multiple clinical manifestations of hemangiosarcoma in canines. The diagnostic approach and staging classification of cutaneous HSAs are similar between the different subtypes. The definitive diagnosis is obtained through histopathological analysis of incisional or excisional biopsies. Cytology can be used as a presurgical screening test; however, it has little diagnostic utility in cases of HSA because there is a high risk of blood contamination and sample hemodilution. Surgery is generally the treatment of choice for dogs with localized non-visceral HSA without evidence of metastatic disease. Recently, electrochemotherapy (ECT) has emerged as an alternative therapy for the local ablative treatment of different neoplastic types; the use of radiotherapy for the treatment of dogs with cutaneous HSA is uncommon. There is greater consensus in the literature regarding the indications for adjuvant chemotherapy in subcutaneous and muscular HSA; doxorubicin is the most frequently used antineoplastic agent for subcutaneous and muscular subtypes and can be administered alone or in combination with other drugs. Other therapies include antiangiogenic therapy, photodynamic therapy, the association of chemotherapy with the metronomic dose, targeted therapies, and natural products. The benefits of these therapies are presented and discussed. In general, the prognosis of splenic and cardiac HSA is unfavorable. As a challenging neoplasm, studies of new protocols and treatment modalities are necessary to control this aggressive disease.
Collapse
|
2
|
Spugnini EP, Bolaffio C, Scacco L, Baldi A. Electrochemotherapy increases local control after incomplete excision of a recurring penile fibrosarcoma in a stallion. Open Vet J 2016; 6:234-237. [PMID: 27995080 PMCID: PMC5155137 DOI: 10.4314/ovj.v6i3.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/24/2016] [Indexed: 01/11/2023] Open
Abstract
An eleven-year-old stallion was referred for adjuvant treatment of an incompletely excised, recurring penile fibrosarcoma. The horse was bright, alert and responsive with a 15 x 12 cm ulcerated lesion on the ventral side of the penis. The lesion was the tumor bed of an incompletely excised fibrosarcoma. After complete staging procedures, the owner elected to treat the horse with electrochemotherapy (ECT) using cisplatin as chemotherapy agent. Two sessions of ECT were performed at two-week intervals using local cisplatin followed by trains of biphasic electric pulses applied using different electrodes until complete coverage of the area was achieved. The treatment was well tolerated, and the patient is still disease free after 12 months. ECT resulted in improved local control and should be considered among the available adjuvant treatments in equines carrying soft tissue tumors.
Collapse
Affiliation(s)
| | | | - L Scacco
- Equivet Roma Hospital, Rome, Italy
| | - A Baldi
- Biopulse S.r.l., Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Italy
| |
Collapse
|
3
|
Spugnini EP, Fais S, Azzarito T, Baldi A. Novel Instruments for the Implementation of Electrochemotherapy Protocols: From Bench Side to Veterinary Clinic. J Cell Physiol 2016; 232:490-495. [PMID: 27464761 DOI: 10.1002/jcp.25505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023]
Abstract
Electrochemotherapy (ECT) is a medical strategy that allows an increased efficacy of chemotherapy agents after the application of permeabilizing electric pulses having appropriate characteristics (form, voltage, frequency). In the past 10 years, the clinical efficacy of this therapeutic approach in several spontaneous models of tumors in animals has been shown. Moreover, some of the molecular and cellular mechanisms responsible for this phenomenon have been elucidated. Our group has been deeply involved in the development of new ECT protocols for companion animals, implementing the use of the technique as first line treatment, and evaluating different chemotherapy agents in laboratory animals as well as pets. This article summarizes the most important advances in veterinary ECT, including the development of novel equipment, therapeutic protocols, and their translation to humans. J. Cell. Physiol. 232: 490-495, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Rome, Italy
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Rome, Italy
| | | |
Collapse
|
4
|
Marčan M, Pavliha D, Kos B, Forjanič T, Miklavčič D. Web-based tool for visualization of electric field distribution in deep-seated body structures and planning of electroporation-based treatments. Biomed Eng Online 2015; 14 Suppl 3:S4. [PMID: 26356007 PMCID: PMC4565468 DOI: 10.1186/1475-925x-14-s3-s4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Treatments based on electroporation are a new and promising approach to treating tumors, especially non-resectable ones. The success of the treatment is, however, heavily dependent on coverage of the entire tumor volume with a sufficiently high electric field. Ensuring complete coverage in the case of deep-seated tumors is not trivial and can in best way be ensured by patient-specific treatment planning. The basis of the treatment planning process consists of two complex tasks: medical image segmentation, and numerical modeling and optimization. METHODS In addition to previously developed segmentation algorithms for several tissues (human liver, hepatic vessels, bone tissue and canine brain) and the algorithms for numerical modeling and optimization of treatment parameters, we developed a web-based tool to facilitate the translation of the algorithms and their application in the clinic. The developed web-based tool automatically builds a 3D model of the target tissue from the medical images uploaded by the user and then uses this 3D model to optimize treatment parameters. The tool enables the user to validate the results of the automatic segmentation and make corrections if necessary before delivering the final treatment plan. RESULTS Evaluation of the tool was performed by five independent experts from four different institutions. During the evaluation, we gathered data concerning user experience and measured performance times for different components of the tool. Both user reports and performance times show significant reduction in treatment-planning complexity and time-consumption from 1-2 days to a few hours. CONCLUSIONS The presented web-based tool is intended to facilitate the treatment planning process and reduce the time needed for it. It is crucial for facilitating expansion of electroporation-based treatments in the clinic and ensuring reliable treatment for the patients. The additional value of the tool is the possibility of easy upgrade and integration of modules with new functionalities as they are developed.
Collapse
|
5
|
Spugnini EP, Melillo A, Quagliuolo L, Boccellino M, Vincenzi B, Pasquali P, Baldi A. Definition of novel electrochemotherapy parameters and validation of their in vitro and in vivo effectiveness. J Cell Physiol 2014; 229:1177-81. [PMID: 24403005 DOI: 10.1002/jcp.24548] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022]
Abstract
Electrochemotherapy (ECT) is a cancer therapy that conjugates the administration of a chemotherapy agent to the delivery of permeabilizing pulses released singularly or as bursts. This approach results in higher number of anticancer molecules delivered to their biological targets, but is also associated to undesirable side effects such as pain and muscular contractions. A new electroporator delivering train of eight biphasic pulses at the voltage of 1,300 V/cm lasting 50 + 50 µsec each, with a frequency of 1 Hz, and with 10-µsec interpulse intervals (total treatment time: 870 µsec/cm(2) of treated area) was tested in vitro on the human lung cancer cell line A549 and in vivo, both in mice xenografts and privately owned rabbits with spontaneous tumors. The tumor cell line was treated with electroporation using the new parameters, that showed improved drug efficacy in causing cell death. Mice with chemoresistant xenografts were treated as well with either the new parameters and with a previous protocol, confirming the higher tolerability and efficacy of the novel parameters. Finally, a cohort of six pet rabbits with advanced skin neoplasms were enrolled in a compassionate trial using the new parameters in adjuvant fashion. In terms of efficacy, none of the rabbits experienced tumor recurrence, showing minimal discomfort during the ECT sessions. The data described, demonstrate that the new permeabilizing protocol adopting biphasic electric pulses displays a significant higher efficacy compared to previous ECT treatments and substantial reduction of the associated morbidity.
Collapse
|
6
|
Wu SP, Huang TC, Lin CC, Hui CF, Lin CH, Chen JY. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs 2012; 10:1852-1872. [PMID: 23015777 PMCID: PMC3447341 DOI: 10.3390/md10081852] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/18/2012] [Accepted: 08/14/2012] [Indexed: 12/11/2022] Open
Abstract
The antitumor activity of pardaxin, a fish antimicrobial peptide, has not been previously examined in in vitro and in vivo systems for treating murine fibrosarcoma. In this study, the antitumor activity of synthetic pardaxin was tested using murine MN-11 tumor cells as the study model. We show that pardaxin inhibits the proliferation of MN-11 cells and reduces colony formation in a soft agar assay. Transmission electron microscopy (TEM) showed that pardaxin altered the membrane structure similar to what a lytic peptide does, and also produced apoptotic features, such as hollow mitochondria, nuclear condensation, and disrupted cell membranes. A qRT-PCR and ELISA showed that pardaxin induced apoptosis, activated caspase-7 and interleukin (IL)-7r, and downregulated caspase-9, ATF 3, SOCS3, STAT3, cathelicidin, p65, and interferon (IFN)-γ suggesting that pardaxin induces apoptosis through the death receptor/nuclear factor (NF)-κB signaling pathway after 14 days of treatment in tumor-bearing mice. An antitumor effect was observed when pardaxin (25 mg/kg; 0.5 mg/day) was used to treat mice for 14 days, which caused significant inhibition of MN-11 cell growth in mice. Overall, these results indicate that pardaxin has the potential to be a novel therapeutic agent to treat fibrosarcomas.
Collapse
Affiliation(s)
- Shu-Ping Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; (S.-P.W.); (C.-H.L.)
| | - Tsui-Chin Huang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan;
| | - Ching-Chun Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan;
| | - Cho-Fat Hui
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan;
- Authors to whom correspondence should be addressed; (J.-Y.C.); (C.-F.H.); Tel.: +886-920802111 (J.-Y.C.); +886-987836032 (C.-F.H.); Fax: +886-39871035
| | - Cheng-Hui Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; (S.-P.W.); (C.-H.L.)
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan;
- Authors to whom correspondence should be addressed; (J.-Y.C.); (C.-F.H.); Tel.: +886-920802111 (J.-Y.C.); +886-987836032 (C.-F.H.); Fax: +886-39871035
| |
Collapse
|
7
|
Spugnini EP, Fanciulli M, Citro G, Baldi A. Preclinical models in electrochemotherapy: the role of veterinary patients. Future Oncol 2012; 8:829-37. [DOI: 10.2217/fon.12.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemotherapy is a tumor treatment that adapts the systemic or local delivery of anticancer drugs by the application of permeabilizing electric pulses with appropriate amplitude and waveforms. This allows the use of lipophobic drugs, which frequently have a narrow therapeutic index, with a decreased morbidity for the patient, while maintaining appropriate anticancer efficacy. Electrochemotherapy is used in humans for the treatment of cutaneous neoplasms or the palliation of skin tumor metastases, and a standard operating procedure has been devised. In veterinary oncology, the electrochemotherapy approach is gaining popularity, becoming a first-line treatment in consideration of its high efficacy and low toxicity. This review summarizes the state of the art in veterinary oncology as a preclinical model.
Collapse
Affiliation(s)
| | - Maurizio Fanciulli
- SAFU Department, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, Rome 00158, Italy
| | | | | |
Collapse
|
8
|
Spugnini EP, Renaud SM, Buglioni S, Carocci F, Dragonetti E, Murace R, Cardelli P, Vincenzi B, Baldi A, Citro G. Electrochemotherapy with cisplatin enhances local control after surgical ablation of fibrosarcoma in cats: an approach to improve the therapeutic index of highly toxic chemotherapy drugs. J Transl Med 2011; 9:152. [PMID: 21917133 PMCID: PMC3182914 DOI: 10.1186/1479-5876-9-152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022] Open
Abstract
Background Cancer is one of the most difficult current health challenges, being responsible for millions of deaths yearly. Systemic chemotherapy is the most common therapeutic approach, and the prevailing orientation calls for the administration of the maximum tolerated dose; however, considerable limitations exist including toxicities to healthy tissues and low achievable drug concentrations at tumor sites. Electrochemotherapy (ECT) is a tumor treatment that combines the systemic or local delivery of anticancer drugs with the application of permeabilizing electric pulses. In this article we evaluate the capability of ECT to allow the use of cisplatin despite its high toxicity in a spontaneous feline model of soft tissue sarcoma. Methods A cohort of sixty-four cats with incompletely excised sarcomas were treated with cisplatin-based adjuvant ECT and monitored for side effects. Their response was compared to that of fourteen cats treated with surgery alone. Results The toxicities were minimal and mostly treated symptomatically. ECT resulted in increased local control (median not reached at the time of writing) with a mean time to recurrence of 666 days versus 180 of controls. Conclusions We conclude that ECT is a safe and efficacious therapy for solid tumors; its use may be considered as part of strategies for the reintroduction of drugs with a narrow therapeutic index in the clinical protocols.
Collapse
|
9
|
Rosazza C, Phez E, Escoffre JM, Cézanne L, Zumbusch A, Rols MP. Cholesterol implications in plasmid DNA electrotransfer: Evidence for the involvement of endocytotic pathways. Int J Pharm 2011; 423:134-43. [PMID: 21601622 DOI: 10.1016/j.ijpharm.2011.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
The delivery of therapeutic molecules such as plasmid DNA in cells and tissues by means of electric fields holds great promise for anticancer treatment. To allow for their therapeutic action, the molecules have first to traverse the cell membrane. The mechanisms by which the electrotransferred pDNA interacts with and crosses the plasma membrane are not yet fully explained. The aim of this study is to unravel the role of cholesterol during gene electrotransfer in cells. We performed cholesterol depletion experiments and measured its effects on various steps of the electroporation process. The first two steps consisting of electropermeabilization of the plasma membrane and of pDNA interaction with it were not affected by cholesterol depletion. In contrast, gene expression decreased. Colocalization studies with endocytotic markers showed that pDNA is endocytosed with concomitant clathrin- and caveolin/raft-mediated endocytosis. Cholesterol might be involved in the pDNA translocation through the plasma membrane. This is the first direct experimental evidence of the occurrence of endocytosis in gene electrotransfer.
Collapse
Affiliation(s)
- Christelle Rosazza
- Department of Structural Biology and Biophysics, CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
10
|
Electrodelivery of drugs into cancer cells in the presence of poloxamer 188. J Biomed Biotechnol 2010. [PMID: 20706647 DOI: 10.1155/2010/314213.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present study it is shown that poloxamer 188, added before or immediately after an electrical pulse used for electroporation, decreases the number of dead cells and at the same time does not reduce the number of reversible electropores through which small molecules (cisplatin, bleomycin, or propidium iodide) can pass/diffuse. It was suggested that hydrophobic sections of poloxamer 188 molecules are incorporated into the edges of pores and that their hydrophilic parts act as brushy pore structures. The formation of brushy pores may reduce the expansion of pores and delay the irreversible electropermeability. Tumors were implanted subcutaneously in both flanks of nude mice using HeLa cells, transfected with genes for red fluorescent protein and luciferase. The volume of tumors stopped to grow after electrochemotherapy and the use of poloxamer 188 reduced the edema near the electrode and around the subcutaneously growing tumors.
Collapse
|
11
|
Tsoneva I, Iordanov I, Berger AJ, Tomov T, Nikolova B, Mudrov N, Berger MR. Electrodelivery of drugs into cancer cells in the presence of poloxamer 188. J Biomed Biotechnol 2010; 2010:314213. [PMID: 20706647 PMCID: PMC2913842 DOI: 10.1155/2010/314213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/07/2010] [Accepted: 06/10/2010] [Indexed: 12/21/2022] Open
Abstract
In the present study it is shown that poloxamer 188, added before or immediately after an electrical pulse used for electroporation, decreases the number of dead cells and at the same time does not reduce the number of reversible electropores through which small molecules (cisplatin, bleomycin, or propidium iodide) can pass/diffuse. It was suggested that hydrophobic sections of poloxamer 188 molecules are incorporated into the edges of pores and that their hydrophilic parts act as brushy pore structures. The formation of brushy pores may reduce the expansion of pores and delay the irreversible electropermeability. Tumors were implanted subcutaneously in both flanks of nude mice using HeLa cells, transfected with genes for red fluorescent protein and luciferase. The volume of tumors stopped to grow after electrochemotherapy and the use of poloxamer 188 reduced the edema near the electrode and around the subcutaneously growing tumors.
Collapse
Affiliation(s)
- Iana Tsoneva
- Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
12
|
Faurie C, Rebersek M, Golzio M, Kanduser M, Escoffre JM, Pavlin M, Teissie J, Miklavcic D, Rols MP. Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med 2010; 12:117-25. [PMID: 19941315 DOI: 10.1002/jgm.1414] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electroporation is a physical method used to transfer molecules into cells and tissues. Clinical applications have been developed for antitumor drug delivery. Clinical trials of gene electrotransfer are under investigation. However, knowledge about how DNA enters cells is not complete. By contrast to small molecules that have direct access to the cytoplasm, DNA forms a long lived complex with the plasma membrane and is transferred into the cytoplasm with a considerable delay. METHODS To increase our understanding of the key step of DNA/membrane complex formation, we investigated the dependence of DNA/membrane interaction and gene expression on electric pulse polarity and repetition frequency. RESULTS We observed that both are affected by reversing the polarity and by increasing the repetition frequency of pulses. The results obtained in the present study reveal the existence of two classes of DNA/membrane interaction: (i) a metastable DNA/membrane complex from which DNA can leave and return to external medium and (ii) a stable DNA/membrane complex, where DNA cannot be removed, even by applying electric pulses of reversed polarity. Only DNA belonging to the second class leads to effective gene expression. CONCLUSIONS The life-time of DNA/membrane complex formation is of the order of 1 s and has to be taken into account to improve protocols of electro-mediated gene delivery.
Collapse
Affiliation(s)
- Cécile Faurie
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Spugnini EP, Dotsinsky I, Mudrov N, Citro G, D'Avino A, Baldi A. Biphasic pulses enhance bleomycin efficacy in a spontaneous canine genital tumor model of chemoresistance: Sticker sarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:58. [PMID: 18980687 PMCID: PMC2596090 DOI: 10.1186/1756-9966-27-58] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 11/03/2008] [Indexed: 12/21/2022]
Abstract
Sticker's sarcoma (also known as transmissible venereal tumor) is a horizontally transmitted neoplasm of the dog, that is passed with coitus. It is a locally aggressive tumor with a low tendency to metastatic spread. The most common locations are the genitals, the nose, the perianal area. Standard treatment consists with chemotherapy with vincristine, however other therapies such as, cryotherapy, immunotherapy or, in selected cases, radiation therapy, have been reported. In this article we describe the outcome of a small cohort of canine patients, with chemotherapy resistant transmissible venereal tumor (TVT), treated with bleomycin selectively driven by trains of biphasic pulses (electrochemotherapy). Three canine patients, with refractory TVT, entered the study and received two sessions of ECT under sedation. The pets had local injection of bleomycin at the concentration of 1.5 mg/ml and five minutes after the chemotherapy, trains of 8 biphasic electric pulses lasting 50 + 50 μs each, with 1 ms interpulse intervals, were delivered by means of modified caliper or, for difficult districts, through paired needle electrode. All the patients responded to the treatment and are still in remission at different times. Electrochemotherapy appears as a safe and efficacious modality for the treatment of TVT and warrants further investigations.
Collapse
|