Zhou L, Aon MA, Liu T, O'Rourke B. Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress.
J Mol Cell Cardiol 2011;
51:632-9. [PMID:
21645518 DOI:
10.1016/j.yjmcc.2011.05.007]
[Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/11/2011] [Indexed: 01/10/2023]
Abstract
Local control of Ca(2+)-induced Ca(2+) release (CICR) depends on the spatial organization of L-type Ca(2+) channels and ryanodine receptors (RyR) in the dyad. Analogously, Ca(2+) uptake by mitochondria is facilitated by their close proximity to the Ca(2+) release sites, a process required for stimulating oxidative phosphorylation during changes in work. Mitochondrial feedback on CICR is less well understood. Since mitochondria are a primary source of reactive oxygen species (ROS), they could potentially influence the cytosolic redox state, in turn altering RyR open probability. We have shown that self-sustained oscillations in mitochondrial inner membrane potential (ΔΨ(m)), NADH, ROS, and reduced glutathione (GSH) can be triggered by a laser flash in cardiomyocytes. Here, we employ this method to directly examine how acute changes in energy state dynamically influence resting Ca(2+) spark occurrence and properties. Two-photon laser scanning microscopy was used to monitor cytosolic Ca(2+) (or ROS), ΔΨ(m), and NADH (or GSH) simultaneously in isolated guinea pig cardiomyocytes. Resting Ca(2+) spark frequency increased with each ΔΨ(m) depolarization and decreased with ΔΨ(m) repolarization without affecting Ca(2+) spark amplitude or time-to-peak. Stabilization of mitochondrial energetics by pretreatment with the superoxide scavenger TMPyP, or by acute addition of 4'-chlorodiazepam, a mitochondrial benzodiazepine receptor antagonist that blocks the inner membrane anion channel, prevented or reversed, respectively, the increased spark frequency. Cyclosporine A did not block the ΔΨ(m) oscillations or prevent Ca(2+) spark modulation by ΔΨ(m). The results support the hypothesis that mitochondria exert an influential role on the redox environment of the Ca(2+) handling subsystem, with mechanistic implications for the pathophysiology of cardiac disease.
Collapse