1
|
Singhatanadgit W, Olsen I, Young A. ICAM-1-mediated osteoblast-T lymphocyte direct interaction increases mineralization through TGF-β1 suppression. J Cell Physiol 2023; 238:420-433. [PMID: 36602898 DOI: 10.1002/jcp.30939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Modulation of osteoblast functions by T lymphocytes is important in inflammation-associated mineralized tissue diseases. The study aimed to determine whether direct interaction between these two cell types affects osteoblast functions and mineralization. The results showed that direct contact between the two cell types was evident by scanning electron microscopy and transmission electron microscopy. Under osteogenic induction, higher hydroxyapatite precipitation was observed in cocultures with direct contact with T lymphocytes compared with that by osteoblasts cultured alone. Cocultures without direct cell contact caused a decrease in mineralization. Direct cell contact also upregulated intercellular adhesion molecule (ICAM)-1 and simultaneously downregulated transforming growth factor (TGF)-β1 in osteoblasts. However, the downregulation of TGF-β1 was reversed by ICAM-1 blocking. Exogenously added TGF-β1 in cocultures with direct cell contact suppressed mineralization. In conclusion, studies are consistent with ICAM-1-mediated direct contact between osteoblasts and T lymphocytes increasing mineralization via downregulation of TGF-β1 in osteoblasts in vitro. This suggests a possible unexpected, but crucial, role of T lymphocytes in enhancing matrix mineralization during the repair process in vivo. The study identifies ICAM-1/TGF-β1 as possible novel therapeutic targets for the treatment and prevention of inflammation-associated mineralized tissue diseases.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | - Irwin Olsen
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, London, UK
| | - Anne Young
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, London, UK
| |
Collapse
|
2
|
Huang RL, Chen G, Wang W, Herller T, Xie Y, Gu B, Li Q. Synergy between IL-6 and soluble IL-6 receptor enhances bone morphogenetic protein-2/absorbable collagen sponge-induced bone regeneration via regulation of BMPRIA distribution and degradation. Biomaterials 2015; 67:308-22. [PMID: 26232880 DOI: 10.1016/j.biomaterials.2015.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/13/2023]
Abstract
Bone morphogenetic protein-2/absorbable collagen sponge (BMP-2/ACS) implants have been approved for clinical use to induce bone regeneration. We previously showed that exaggerated inflammation characterized by elevated level of inflammatory cytokines including TNF-α, IL-1β, and IL-6 has been shown to inhibit BMP-2/ACS-induced bone regeneration. Furthermore, unlike the negative effects of TNF-α and IL-1β, IL-6 seemed not to affect BMP-2-induced osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs). We hypothesized that there may be a regulatory loop between IL-6 and BMP-2 singling to affect BMP-2/ACS-induced bone regeneration. Here, we established a BMP-2/ACS-induced ectopic bone formation model in rats and fund that IL-6 injection significantly increased BMP-2/ACS-induced bone mass. Consistent with this animal model, an in vitro study demonstrated that synergy between IL-6 and soluble IL-6 receptor (IL-6/sIL-6R) promotes BMP-2-induced osteoblastic differentiation of human BMSCs through amplification of BMP/Smad signaling. Strikingly, IL-6 injection did not activate osteoclast-mediated bone resorption in the ectopic bone formation model, and IL-6/sIL-6R treatment did not affect receptor activator of NF-κB ligand (RANKL)-induced osteoclastic differentiation of human peripheral blood mononuclear cells (PBMCs) in vitro. Furthermore, IL-6/sIL-6R treatment did not affect expression of BMP receptors, but enhanced the cell surface translocation of BMP receptor IA (BMPRIA) and inhibited the degradation of BMPRIA. Collectively, these findings indicate that synergy between IL-6 and sIL-6R promotes the cell surface translocation of BMPRIA and maintains the stability of BMPRIA expression, leading to enhanced BMP-2/ACS-induced bone regeneration.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Gang Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenjin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Tanja Herller
- Department of General, Trauma, Hand, and Plastic Surgery, University of Munich, Munich, Germany
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
3
|
Amin HD, Olsen I, Knowles J, Dard M, Donos N. Interaction of enamel matrix proteins with human periodontal ligament cells. Clin Oral Investig 2015; 20:339-47. [PMID: 26121967 PMCID: PMC4762925 DOI: 10.1007/s00784-015-1510-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
Objectives It has recently been shown that enamel matrix derivative (EMD) components (Fraction C, containing <6 kDa peptides (mainly a 5.3 kDa tyrosine-rich amelogenin peptide (TRAP)), and Fraction A, containing a mixture of >6 kDa peptides (including a leucine-rich amelogenin peptide (LRAP))) differentially regulate osteogenic differentiation of periodontal ligament (PDL) cells. The present study examined whether EMD and the EMD Fractions (i) bind and internalize into PDL cells and (ii) precipitate and form insoluble complexes on PDL cells. Materials and methods Biotin-labelled EMD/EMD Fractions were incubated with PDL cells under various different culture conditions and confocal and electron microscopies were carried out to examine the binding and intracellular trafficking of these proteins. Results The results reported here show, for the first time, that at least some components in Fraction A and the TRAP peptide in Fraction C can bind and be internalized by human PDL cells via receptor-mediated endocytosis. In addition, Fraction A was found to form insoluble aggregate-like structures on PDL cells, whereas Fraction C was soluble in culture media. Conclusion Soluble amelogenin isoform TRAP appears to be internalizing into a subset of PDL cells. Moreover, TRAP uptake is most likely controlled by receptor-mediated endocytosis. Clinical relevance Information on interaction between PDL cells and EMD/TRAP might prove useful in designing targeted interventions (i.e. use of chemically prepared soluble amelogenin peptides) to repair/regenerate periodontal tissues. Such interventions can also (i) avoid the use of rather crude animal-derived enamel matrix protein (EMP)/EMD preparation and (ii) preparation of cost-effective and more controlled chemically synthesized amelogenin peptides for the clinical use. Electronic supplementary material The online version of this article (doi:10.1007/s00784-015-1510-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harsh D Amin
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, UK
| | - Irwin Olsen
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK.
| | - Jonathan Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Michel Dard
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, USA
| | - Nikolaos Donos
- Periodontology Unit, UCL Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
4
|
Silva L, Kim S, Luczyszyn S, Papalexiou V, Giovanini A, Almeida L, Tramontina V. Histological and immunohistochemical evaluation of biphasic calcium phosphate and a mineral trioxide aggregate for bone healing in rat calvaria. Int J Oral Maxillofac Surg 2015; 44:535-42. [DOI: 10.1016/j.ijom.2014.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/31/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
|
5
|
Cushnie EK, Ulery BD, Nelson SJ, Deng M, Sethuraman S, Doty SB, Lo KWH, Khan YM, Laurencin CT. Simple signaling molecules for inductive bone regenerative engineering. PLoS One 2014; 9:e101627. [PMID: 25019622 PMCID: PMC4096515 DOI: 10.1371/journal.pone.0101627] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
With greater than 500,000 orthopaedic procedures performed in the United States each year requiring a bone graft, the development of novel graft materials is necessary. We report that some porous polymer/ceramic composite scaffolds possess intrinsic osteoinductivity as shown through their capacity to induce in vivo host osteoid mineralization and in vitro stem cell osteogenesis making them attractive synthetic bone graft substitutes. It was discovered that certain low crystallinity ceramics partially dissociate into simple signaling molecules (i.e., calcium and phosphate ions) that induce stem cells to endogenously produce their own osteoinductive proteins. Review of the literature has uncovered a variety of simple signaling molecules (i.e., gases, ions, and redox reagents) capable of inducing other desirable stem cell differentiation through endogenous growth factor production. Inductive simple signaling molecules, which we have termed inducerons, represent a paradigm shift in the field of regenerative engineering where they can be utilized in place of recombinant protein growth factors.
Collapse
Affiliation(s)
- Emily K. Cushnie
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Bret D. Ulery
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Stephen J. Nelson
- School of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Meng Deng
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Swaminathan Sethuraman
- Center for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Stephen B. Doty
- Hospital for Special Surgery, New York, New York, United States of America
| | - Kevin W. H. Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yusuf M. Khan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Cato T. Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration. J Invest Dermatol 2013; 134:827-837. [PMID: 24126843 PMCID: PMC3945401 DOI: 10.1038/jid.2013.419] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/02/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein (BMP) signalling plays a key role in the control of skin development and postnatal remodelling by regulating keratinocyte proliferation, differentiation and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and qRT-PCR analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myo5a, in the epidermis of K14-caSmad1 mice versus wild-type controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared to wild-type controls. Finally, siRNA-mediated silencing of Bmpr-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17 and Myo5a compared to controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds.
Collapse
|
7
|
Amin HD, Olsen I, Knowles JC, Dard M, Donos N. Effects of enamel matrix proteins on multi-lineage differentiation of periodontal ligament cells in vitro. Acta Biomater 2013; 9:4796-805. [PMID: 22985741 DOI: 10.1016/j.actbio.2012.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/03/2012] [Accepted: 09/10/2012] [Indexed: 12/13/2022]
Abstract
The adult periodontal ligament (PDL) is considered to contain progenitor cells that are involved in the healing of periodontal wounds. Treatment with enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs), has been shown to be of some clinical benefit in eliciting periodontal regeneration in vivo. Although there is extensive information available about the effects of EMD on periodontal regeneration, the precise influence of this material on alveolar bone and the formation of blood vessels and proprioceptive sensory nerves, prominent features of functionally active periodontal tissue, remain unclear. The aim of the present study was therefore to examine the effects of EMD on the ability of human periodontal ligament cells (HPCs) to undergo multi-lineage differentiation in vitro. Our results showed that HPCs treated with EMD under non-selective growth conditions did not show any evidence of osteogenic, adipogenic, chondrogenic, neovasculogenic, neurogenic and gliogenic "terminal" differentiation. In contrast, under selective lineage-specific culture conditions, EMD up-regulated osteogenic, chondrogenic and neovasculogenic genes and "terminal" differentiation, but suppressed adipogenesis, neurogenesis and gliogenesis. These findings thus demonstrate for the first time that EMD can differentially modulate the multi-lineage differentiation of HPCs in vitro.
Collapse
Affiliation(s)
- Harsh D Amin
- Division of Biomaterials and Tissue Engineering, Department of Clinical Research, UCL Eastman Dental Institute, University College London, London, UK
| | | | | | | | | |
Collapse
|
8
|
Amin HD, Olsen I, Knowles J, Donos N. A procedure for identifying stem cell compartments with multi-lineage differentiation potential. Analyst 2011; 136:1440-9. [DOI: 10.1039/c0an00816h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Park KH, Han DI, Rhee YH, Jeong SJ, Kim SH, Park YG. Protein kinase C βII and δ/θ play critical roles in bone morphogenic protein-4-stimulated osteoblastic differentiation of MC3T3-E1 cells. Biochem Biophys Res Commun 2010; 403:7-12. [PMID: 20971075 DOI: 10.1016/j.bbrc.2010.10.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/17/2010] [Indexed: 11/29/2022]
Abstract
Bone morphogenic protein-4 (BMP-4), one of TGF-β superfamily, is involved in bone and cartilage development, specifically tooth and bone fracture repair. In the present study, the role of protein kinase C (PKC) was investigated in BMP-4-induced differentiation of osteoblast-like MC3T3-E1 cells. PKC inhibitor UCN-01 significantly attenuated the synthesis of osteocalcin, a marker of mature osteoblast phenotype, in a dose-dependent manner as well as blocked osteroblastic differentiation and mineralization in BMP-4-treated MC3T3-E1 cells. Also, UCN-01 suppressed vascular endothelial growth factor (VEGF) production in BMP-4-treated MC3T3-E1 cells. In addition, UCN-01 remarkably suppressed BMP-4-activated PKC βII and PKC δ/θ of PKC family proteins by Western blotting. Consistently, 2-dimensional electrophoresis (2-DE) immunoblotting revealed that UCN-01 inhibited the BMP-4-induced activation of PKC subfamilies in MC3T3-E1 cells. Taken together, our findings suggest that PKC βII and PKC δ/θ mediate BMP-4-induced osteoblastic differentiation.
Collapse
Affiliation(s)
- Ki Ho Park
- Department of Orthodontics Kyung-Hee University School of Dentistry, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Mitchell EA, Chaffey BT, McCaskie AW, Lakey JH, Birch MA. Controlled spatial and conformational display of immobilised bone morphogenetic protein-2 and osteopontin signalling motifs regulates osteoblast adhesion and differentiation in vitro. BMC Biol 2010; 8:57. [PMID: 20459712 PMCID: PMC2880964 DOI: 10.1186/1741-7007-8-57] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 05/10/2010] [Indexed: 01/08/2023] Open
Abstract
Background The interfacial molecular mechanisms that regulate mammalian cell growth and differentiation have important implications for biotechnology (production of cells and cell products) and medicine (tissue engineering, prosthetic implants, cancer and developmental biology). We demonstrate here that engineered protein motifs can be robustly displayed to mammalian cells in vitro in a highly controlled manner using a soluble protein scaffold designed to self assemble on a gold surface. Results A protein was engineered to contain a C-terminal cysteine that would allow chemisorption to gold, followed by 12 amino acids that form a water soluble coil that could switch to a hydrophobic helix in the presence of alkane thiols. Bioactive motifs from either bone morphogenetic protein-2 or osteopontin were added to this scaffold protein and when assembled on a gold surface assessed for their ability to influence cell function. Data demonstrate that osteoblast adhesion and short-term responsiveness to bone morphogenetic protein-2 is dependent on the surface density of a cell adhesive motif derived from osteopontin. Furthermore an immobilised cell interaction motif from bone morphogenetic protein supported bone formation in vitro over 28 days (in the complete absence of other osteogenic supplements). In addition, two-dimensional patterning of this ligand using a soft lithography approach resulted in the spatial control of osteogenesis. Conclusion These data describe an approach that allows the influence of immobilised protein ligands on cell behaviour to be dissected at the molecular level. This approach presents a durable surface that allows both short (hours or days) and long term (weeks) effects on cell activity to be assessed. This widely applicable approach can provide mechanistic insight into the contribution of immobilised ligands in the control of cell activity.
Collapse
Affiliation(s)
- Elizabeth A Mitchell
- Institute for Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
11
|
Mizuno D, Agata H, Furue H, Kimura A, Narita Y, Watanabe N, Ishii Y, Ueda M, Tojo A, Kagami H. Limited but heterogeneous osteogenic response of human bone marrow mesenchymal stem cells to bone morphogenetic protein-2 and serum. Growth Factors 2010; 28:34-43. [PMID: 19835486 DOI: 10.3109/08977190903326362] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although there are numerous reports describing the in vivo bone forming capability of recombinant human bone morphogenetic proteins-2 (rhBMP-2), studies have reported limited effects on human mesenchymal stem cells (hMSCs). However, the reasons for these discrepancies are not well understood. The aim of this study was to investigate the responsiveness of hMSCs to osteoinductive signals, focusing on rhBMP-2 and the effect of serum on that responsiveness. Human MSCs from six donors were analysed. When those cells were treated with osteoinduction medium including dexamethasone (Dex), alkaline phosphatase (ALP) activities increased in all cell lines. On the other hand, rhBMP-2-containing medium failed to increase ALP activity. When five different sera were used for cultivation and induction with rhBMP-2, ALP activities increased in two of them, but not in the others. The expression of BMP-2 antagonist noggin was induced in almost all combinations regardless of the responsiveness to rhBMP-2. On the other hand, the expression of follistatin showed significant variations depending on the serum and cell line. However, the expression did not correlate with the responsiveness to rhBMP-2. The results from this study showed limited but heterogeneous osteogenic response of hMSCs to rhBMP-2 and that the results are affected by the choice of serum. This fact should be concerned for the successful and effective clinical application of rhBMP-2.
Collapse
Affiliation(s)
- Daiki Mizuno
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bragdon B, Thinakaran S, Bonor J, Underhill TM, Petersen NO, Nohe A. FRET reveals novel protein-receptor interaction of bone morphogenetic proteins receptors and adaptor protein 2 at the cell surface. Biophys J 2009; 97:1428-35. [PMID: 19720031 DOI: 10.1016/j.bpj.2009.05.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 11/17/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are involved with a wide range of processes including apoptosis, differentiation, and proliferation. Several different pathways such as Smad, p38, and PI3/Akt are activated by BMPs. Signaling is transduced by BMP receptors (BMPRs) of type I and type II that are serine/threonine kinase receptors. BMPRs shuttle between membrane domains such as caveolae enriched with caveolin-1 beta-isoform and caveolae of the caveolin-1 alpha/beta-isoforms. It is hypothesized that there are other membrane domains to which the receptors localize. We used immunoprecipitation, Western blots, image cross-correlation spectroscopy, and fluorescence resonance energy transfer to investigate the interaction of BMPRs with proteins in clathrin-coated pits (CCPs). Our data indicate that these domains are associated with at least two of the BMPRs: BRIa and BRII. For the first time, to our knowledge, we showed what we believe are specific interactions between BRIa and BRII with a key component of CCPs, adaptor protein 2. Further, disruption of CCPs resulted in increased BRIa aggregation at the cell surface and activation of the BMP pathway even in the absence of BMP2. Therefore, CCPs seem to function as a negative regulatory membrane domain for BMP pathway activation.
Collapse
Affiliation(s)
- Beth Bragdon
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | | | | | | | | | |
Collapse
|