1
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
2
|
Zhang L, Xia C, Yang Y, Sun F, Zhang Y, Wang H, Liu R, Yuan M. DNA methylation and histone post-translational modifications in atherosclerosis and a novel perspective for epigenetic therapy. Cell Commun Signal 2023; 21:344. [PMID: 38031118 PMCID: PMC10688481 DOI: 10.1186/s12964-023-01298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/27/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis, which is a vascular pathology characterized by inflammation and plaque build-up within arterial vessel walls, acts as the important cause of most cardiovascular diseases. Except for a lipid-depository and chronic inflammatory, increasing evidences propose that epigenetic modifications are increasingly associated with atherosclerosis and are of interest from both therapeutic and biomarker perspectives. The chronic progressive nature of atherosclerosis has highlighted atherosclerosis heterogeneity and the fact that specific cell types in the complex milieu of the plaque are, by far, not the only initiators and drivers of atherosclerosis. Instead, the ubiquitous effects of cell type are tightly controlled and directed by the epigenetic signature, which, in turn, is affected by many proatherogenic stimuli, including low-density lipoprotein, proinflammatory, and physical forces of blood circulation. In this review, we summarize the role of DNA methylation and histone post-translational modifications in atherosclerosis. The future research directions and potential therapy for the management of atherosclerosis are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Chenhai Xia
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Yongjun Yang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Fangfang Sun
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Yu Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Huan Wang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Military Medical University, No. 1 Xinsi Road, Xi'an 710000, China.
| | - Ming Yuan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
3
|
Moi D, Bonanni D, Belluti S, Linciano P, Citarella A, Franchini S, Sorbi C, Imbriano C, Pinzi L, Rastelli G. Discovery of potent pyrrolo-pyrimidine and purine HDAC inhibitors for the treatment of advanced prostate cancer. Eur J Med Chem 2023; 260:115730. [PMID: 37633202 DOI: 10.1016/j.ejmech.2023.115730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
The development of drugs for the treatment of advanced prostate cancer (PCA) remains a challenging task. In this study we have designed, synthesized and tested twenty-nine novel HDAC inhibitors based on three different zinc binding groups (trifluoromethyloxadiazole, hydroxamic acid, and 2-mercaptoacetamide). These warheads were conveniently tethered to variously substituted phenyl linkers and decorated with differently substituted pyrrolo-pyrimidine and purine cap groups. Remarkably, most of the compounds showed nanomolar inhibitory activity against HDAC6. To provide structural insights into the Structure-Activity Relationships (SAR) of the investigated compounds, docking of representative inhibitors and molecular dynamics of HDAC6-inhibitor complexes were performed. Compounds of the trifluoromethyloxadiazole and hydroxamic acid series exhibited promising anti-proliferative activities, HDAC6 targeting in PCA cells, and in vitro tumor selectivity. Representative compounds of the two series were tested for solubility, cell permeability and metabolic stability, demonstrating favorable in vitro drug-like properties. The more interesting compounds were subjected to migration assays, which revealed that compound 13 and, to a lesser extent, compound 15 inhibited the invasive behaviour of androgen-sensitive and -insensitive advanced prostate cancer cells. Compound 13 was profiled against all HDACs and found to inhibit all members of class II HDACs (except for HDAC10) and to be selective with respect to class I and class IV HDACs. Overall, compound 13 combines potent inhibitory activity and class II selectivity with favorable drug-like properties, an excellent anti-proliferative activity and marked anti-migration properties on PCA cells, making it an excellent lead candidate for further optimization.
Collapse
Affiliation(s)
- Davide Moi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Davide Bonanni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Andrea Citarella
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy.
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy.
| |
Collapse
|
4
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
5
|
Liu H, Han J, Lv Y, Zhao Z, Zheng S, Sun Y, Sun T. Isorhamnetin and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. J Nanobiotechnology 2023; 21:208. [PMID: 37408047 DOI: 10.1186/s12951-023-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The immune checkpoint inhibitor (ICI) anti-PD-L1 monoclonal antibody can inhibit the progress of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transformation (EMT) can promote tumor migration and the formation of immune-suppression microenvironment, which affects the therapeutic effect of ICI. Yin-yang-1 (YY1) is an important transcription factor regulating proliferation, migration and EMT of tumor cells. This work proposed a drug-development strategy that combined the regulation of YY1-mediated tumor progression with ICIs for the treatment of HCC. METHODS We first studied the proteins that regulated YY1 expression by using pull-down, co-immunoprecipitation, and duo-link assay. The active compound regulating YY1 content was screened by virtual screening and cell-function assay. Isorhamnetin (ISO) and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles (HMSN-ISO@ProA-PD-L1 Ab) were prepared as an antitumor drug to play a synergistic anti-tumor role. RESULTS YY1 can specifically bind with the deubiquitination enzyme USP7. USP7 can prevent YY1 from ubiquitin-dependent degradation and stabilize YY1 expression, which can promote the proliferation, migration and EMT of HCC cells. Isorhamnetin (ISO) were screened out, which can target USP7 and promote YY1 ubiquitin-dependent degradation. The cell experiments revealed that the HMSN-ISO@ProA-PD-L1 Ab nanoparticles can specifically target tumor cells and play a role in the controlled release of ISO. HMSN-ISO@ProA-PD-L1 Ab nanoparticles inhibited the growth of Hepa1-6 transplanted tumors and the effect was better than that of PD-L1 Ab treatment group and ISO treatment group. HMSN-ISO@ProA-PD-L1 Ab nanoparticles also exerted a promising effect on reducing MDSC content in the tumor microenvironment and promoting T-cell infiltration in tumors. CONCLUSIONS The isorhamnetin and anti-PD-L1 antibody dual-functional nanoparticles can improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. This study demonstrated the possibility of HCC treatment strategies based on inhibiting USP7-mediated YY1 deubiquitination combined with anti-PD-L1 monoclonal Ab.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zihan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yu Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
6
|
Bernal L, Pinzi L, Rastelli G. Identification of Promising Drug Candidates against Prostate Cancer through Computationally-Driven Drug Repurposing. Int J Mol Sci 2023; 24:ijms24043135. [PMID: 36834548 PMCID: PMC9964599 DOI: 10.3390/ijms24043135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PC) is one of the most common types of cancer in males. Although early stages of PC are generally associated with favorable outcomes, advanced phases of the disease present a significantly poorer prognosis. Moreover, currently available therapeutic options for the treatment of PC are still limited, being mainly focused on androgen deprivation therapies and being characterized by low efficacy in patients. As a consequence, there is a pressing need to identify alternative and more effective therapeutics. In this study, we performed large-scale 2D and 3D similarity analyses between compounds reported in the DrugBank database and ChEMBL molecules with reported anti-proliferative activity on various PC cell lines. The analyses included also the identification of biological targets of ligands with potent activity on PC cells, as well as investigations on the activity annotations and clinical data associated with the more relevant compounds emerging from the ligand-based similarity results. The results led to the prioritization of a set of drugs and/or clinically tested candidates potentially useful in drug repurposing against PC.
Collapse
Affiliation(s)
- Leonardo Bernal
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-2058564
| |
Collapse
|
7
|
Zhao B, Fu J, Ni H, Xu L, Xu C, He Q, Ni C, Wang Y, Kuang J, Tang M, Shou Q, Yao M. Catalpol ameliorates CFA-induced inflammatory pain by targeting spinal cord and peripheral inflammation. Front Pharmacol 2022; 13:1010483. [PMID: 36353492 PMCID: PMC9637921 DOI: 10.3389/fphar.2022.1010483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/11/2022] [Indexed: 10/24/2023] Open
Abstract
Chronic, inflammatory pain is an international health concern that severely diminishes individuals' quality of life. Catalpol is an iridoid glycoside derived from the roots of Rehmannia glutinosa that possesses anti-inflammatory, antioxidant, and neuroprotective properties for the treating multiple kinds of disorders. Nevertheless, catalpol's impacts on inflammatory pain and its potential methods of action are still unclear. The purpose of this investigation is to determine the mechanism of catalpol to reduce the inflammatory pain behaviors in a rat model with complete Freund's adjuvant (CFA). Catwalk, Von-Frey, and open field testing were performed for behavioral assessment. Western blot analysis and real-time quantitative PCR (RT-PCR) were employed to identify variations in molecular expression, while immunofluorescence was utilized to identify cellular localization. Catalpol effectively reduced CFA-induced mechanical allodynia and thermal hyperalgesia when injected intrathecally. Moreover, catalpol can regulate the HDAC4/PPAR-γ-signaling pathway in CFA rat spinal cord neurons. Meanwhile catalpol significantly decreased the expression of the NF-κB/NLRP3 inflammatory axis in the spinal cord of CFA rats. In addition, both in vivo and in vitro research revealed that catalpol treatment inhibited astrocyte activation and increase inflammatory factor expression. Interestingly, we also found that catalpol could alleviate peripheral pain by inhibiting tissue inflammation. Taken together, the findings declared that catalpol may inhibit inflammatory pain in CFA rats by targeting spinal cord and peripheral inflammation.
Collapse
Affiliation(s)
- Baoxia Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chengfei Xu
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jiao Kuang
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Mengjie Tang
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiyang Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Anesthesiology and Pain Research Center, The First Hospital of Jiaxing Or The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
8
|
YY1 Oligomerization Is Regulated by Its OPB Domain and Competes with Its Regulation of Oncoproteins. Cancers (Basel) 2022; 14:cancers14071611. [PMID: 35406384 PMCID: PMC8996997 DOI: 10.3390/cancers14071611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary YY1 regulates various cancer-related genes and activates key oncoproteins. In this study, we discovered that the oncoprotein binding (OPB) domain of YY1 is both necessary and stimulatory to its oligomerization. The hydrophobic residues, especially F219, in the OPB are essential to YY1 intermolecular interaction. Strikingly, the mutations of the hydrophobic residues showed better ability than wild-type YY1 in promote breast cancer cell proliferation and migration. Our further study revealed that YY1 proteins with mutated hydrophobic residues in the OPB domain showed improved binding affinity to EZH2. Overall, our data support the model of a mutually exclusive process between oligomerization of YY1 and its regulation of the oncoproteins EZH2, AKT and MDM2. Abstract Yin Yang 1 (YY1) plays an oncogenic role through regulating the expression of various cancer-related genes and activating key oncoproteins. Previous research reported that YY1 protein formed dimers or oligomers without definite biological implications. In this study, we first demonstrated the oncoprotein binding (OPB) and zinc finger (ZF) domains of YY1 as the regions involved in its intermolecular interactions. ZFs are well-known for protein dimerization, so we focused on the OPB domain. After mutating three hydrophobic residues in the OPB to alanines, we discovered that YY1(F219A) and YY1(3A), three residues simultaneously replaced by alanines, were defective of intermolecular interaction. Meanwhile, the OPB peptide could robustly facilitate YY1 protein oligomerization. When expressed in breast cancer cells with concurrent endogenous YY1 knockdown, YY1(F219A) and (3A) mutants showed better capacity than wt in promoting cell proliferation and migration, while their interactions with EZH2, AKT and MDM2 showed differential alterations, especially with improved EZH2 binding affinity. Our study revealed a crucial role of the OPB domain in facilitating YY1 oligomerization and suggested a mutually exclusive regulation between YY1-mediated enhancer formation and its activities in promoting oncoproteins.
Collapse
|
9
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target. Cell Death Dis 2021; 12:137. [PMID: 33542203 PMCID: PMC7862285 DOI: 10.1038/s41419-021-03417-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/05/2023]
Abstract
Histone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.
Collapse
|
11
|
Roles of Histone Acetylation Modifiers and Other Epigenetic Regulators in Vascular Calcification. Int J Mol Sci 2020; 21:ijms21093246. [PMID: 32375326 PMCID: PMC7247359 DOI: 10.3390/ijms21093246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC) is characterized by calcium deposition inside arteries and is closely associated with the morbidity and mortality of atherosclerosis, chronic kidney disease, diabetes, and other cardiovascular diseases (CVDs). VC is now widely known to be an active process occurring in vascular smooth muscle cells (VSMCs) involving multiple mechanisms and factors. These mechanisms share features with the process of bone formation, since the phenotype switching from the contractile to the osteochondrogenic phenotype also occurs in VSMCs during VC. In addition, VC can be regulated by epigenetic factors, including DNA methylation, histone modification, and noncoding RNAs. Although VC is commonly observed in patients with chronic kidney disease and CVD, specific drugs for VC have not been developed. Thus, discovering novel therapeutic targets may be necessary. In this review, we summarize the current experimental evidence regarding the role of epigenetic regulators including histone deacetylases and propose the therapeutic implication of these regulators in the treatment of VC.
Collapse
|
12
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
- Sailu Sarvagalla
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
13
|
Zhang B, Dong Y, Liu M, Yang L, Zhao Z. miR-149-5p Inhibits Vascular Smooth Muscle Cells Proliferation, Invasion, and Migration by Targeting Histone Deacetylase 4 (HDAC4). Med Sci Monit 2019; 25:7581-7590. [PMID: 31595884 PMCID: PMC6796703 DOI: 10.12659/msm.916522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Studies have demonstrated that microRNAs (miRNAs) have essential roles in biological functions of vascular smooth muscle cells (VSMCs). However, the function and related molecular mechanism of miR-149-5p in VSMCs remains unclear. MATERIAL AND METHODS We used MTT assay, Transwell assay, and wound-healing assay to measure the proliferation, invasion, and migration of VSMCs transfected with miR-149-5p mimics or inhibitors, respectively. Bioinformatics tools and luciferase assay were used to validate the relationship between miR-149-5p and histone deacetylase 4 (HDAC4). Rescue experiments were used to confirm the interaction of miR-149-5p and HDAC4 in regulating biological functions in VSMCs. RESULTS miR-149-5p was downregulated in PDGF-bb-induced VSMCs. It was also found that miR-149-5p overexpression suppressed proliferation, invasion, and migration of VSMCs, while miR-149-5p knockdown showed the opposite effects. Furthermore, HDAC4 was found to be a potential target of miR-149-5p, which rescued miR-149-5p-mediated proliferation, invasion, and migration in VSMCs. CONCLUSIONS We demonstrated that miR-149-5p can suppress biological functions of VSMCs by regulating HDAC4, which might provide a potent therapeutic target for VSMC growth-related diseases.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Yang Dong
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, China (mainland)
| | - Ming Liu
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| | - Lei Yang
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| | - Zhuo Zhao
- Department of Toxicology, Technical Center for Safety of Industrial Products, Tianjin Entry Exit Inspection and Quarantine Bureau, Dongli, Tianjin, China (mainland)
| |
Collapse
|
14
|
Chen L, Su D, Li S, Guan L, Shi C, Li D, Hu S, Ma X. The connexin 46 mutant (V44M) impairs gap junction function causing congenital cataract. J Genet 2017; 96:969-976. [PMID: 29321356 DOI: 10.1007/s12041-017-0861-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Connexin 46 (Cx46) is important for gap junction channels formation which plays crucial role in the preservation of lens homeostasis and transparency. Previously, we have identified a missense mutation (p.V44M) of Cx46 in a congenital cataract family. This study aims at dissecting the potential pathogenesis of the causative mutant of cataract. Plasmids carrying wild-type (wt) and mutant (V44M) of Cx46 were constructed and expressed in Hela cells respectively.Western blotting and fluorescence microscopy were applied to analyse the expression and subcellular localization of recombinant proteins, respectively. Scrape loading dye transfer experiment was performed to detect the transfer capability of gap junction channels among cells expressed V44Mmutant. The results demonstrated that in transfected Hela cells, both wt-Cx46 and Cx46 V44M were localized abundantly in the plasma membrane. No significant difference was found between the protein expressions of the two types of Cx46. The fluorescent localization assay revealed the plaque formation, significantly reduced in the cells expressing Cx46 V44M. Immunoblotting analysis demonstrated that formation of Triton X-100 insoluble complex decreased obviously in mutant Cx46. Additionally, the scrape-loading dye-transfer experiment showed a lower dye diffusion distance of Cx46 V44M cells, which indicates that the gap junction intercellular communication activity was aberrant. Human Cx46 V44M mutant causing cataracts result in abnormally decreased formation of gap junction plaques and impaired gap junction channel function.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Ophthalmology, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157000, Heilongjiang Province, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang Y, Tao T, Liu C, Guan H, Zhang G, Ling Z, Zhang L, Lu K, Chen S, Xu B, Chen M. Upregulation of miR-146a by YY1 depletion correlates with delayed progression of prostate cancer. Int J Oncol 2017; 50:421-431. [PMID: 28101571 PMCID: PMC5238785 DOI: 10.3892/ijo.2017.3840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/28/2016] [Indexed: 01/17/2023] Open
Abstract
Previously published studies explained that the excessive expression of miR-146a influences the prostate cancer (PCa) cells in terms of apoptosis, progression, and viability. Although miR-146a acts as a tumor suppressor, current knowledge on the molecular mechanisms that controls its expression in PCa is limited. In this study, gene set enrichment analysis (GSEA) showed negatively enriched expression of miR-146a target gene sets and positively enriched expression of gene sets suppressed by the enhancer of zeste homolog 2 (EZH2) after YY1 depletion in PCa cells. The current results demonstrated that the miR-146a levels in PCa tissues with high Gleason scores (>7) are significantly lower than those in PCa tissues with low Gleason scores (≤7), which were initially observed in the clinical specimens. An inverse relationship between YY1 and miR-146a expression was also observed. Experiments indicated the decrease in cell viability, proliferation, and promoting apoptosis after YY1 depletion, while through inhibiting miR-146a could alleviate the negative effect brought by YY1 depletion. We detected the reversed adjustment of YY1 to accommodate miR-146a transcriptions. On the basis of YY1 depletion, we determined that the expression of miR-146a increased after EZH2 knockdown. We validated the combination of YY1 and its interaction with EZH2 at the miR-146a promoter binding site, thereby prohibiting the transcriptional activity of miR-146a in PCa cells. Our results suggested that YY1 depletion repressed PCa cell viability and proliferation and induced apoptosis at least in a miR-146a-assisted manner.
Collapse
Affiliation(s)
- Yeqing Huang
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Tao Tao
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Han Guan
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Zhixin Ling
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Kai Lu
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
16
|
Study on the mechanism of HIF1a-SOX9 in glucose-induced cardiomyocyte hypertrophy. Biomed Pharmacother 2015; 74:57-62. [DOI: 10.1016/j.biopha.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/09/2015] [Indexed: 11/23/2022] Open
|
17
|
Crow M, Khovanov N, Kelleher JH, Sharma S, Grant AD, Bogdanov Y, Wood JN, McMahon SB, Denk F. HDAC4 is required for inflammation-associated thermal hypersensitivity. FASEB J 2015; 29:3370-8. [PMID: 25903105 PMCID: PMC4511203 DOI: 10.1096/fj.14-264440] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/16/2015] [Indexed: 01/04/2023]
Abstract
Transcriptional alterations are characteristic of persistent pain states, but the key regulators remain elusive. HDAC4 is a transcriptional corepressor that has been linked to synaptic plasticity and neuronal excitability, mechanisms that may be involved in peripheral and central sensitization. Using a conditional knockout (cKO) strategy in mice, we sought to determine whether the loss of HDAC4 would have implications for sensory neuron transcription and nociception. HDAC4 was found to be largely unnecessary for transcriptional regulation of naïve sensory neurons but was essential for appropriate transcriptional responses after injury, with Calca and Trpv1 expression consistently down-regulated in HDAC4 cKO compared to levels in the littermate controls (0.2-0.44-fold change, n = 4 in 2 separate experiments). This down-regulation corresponded to reduced sensitivity to 100 nM capsaicin in vitro (IC50 = 230 ± 20 nM, 76 ± 4.4% wild-type capsaicin responders vs. 56.9 ± 4.7% HDAC4 cKO responders) and to reduced thermal hypersensitivity in the complete Freund's adjuvant (CFA) model of inflammatory pain (1.3-1.4-fold improvement over wild-type controls; n = 5-12, in 2 separate experiments). These data indicate that HDAC4 is a novel inflammatory pain mediator and may be a good therapeutic target, capable of orchestrating the regulation of multiple downstream effectors.
Collapse
Affiliation(s)
- Megan Crow
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Nikita Khovanov
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Jayne H Kelleher
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Simone Sharma
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Andrew D Grant
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Yury Bogdanov
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Stephen B McMahon
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Franziska Denk
- *Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom, UCL Genomics, Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| |
Collapse
|
18
|
Bonavida B, Kaufhold S. Prognostic significance of YY1 protein expression and mRNA levels by bioinformatics analysis in human cancers: a therapeutic target. Pharmacol Ther 2015; 150:149-68. [PMID: 25619146 DOI: 10.1016/j.pharmthera.2015.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/15/2015] [Indexed: 01/22/2023]
Abstract
Conventional therapeutic treatments for various cancers include chemotherapy, radiotherapy, hormonal therapy and immunotherapy. While such therapies have resulted in clinical responses, they were coupled with non-tumor specificity, toxicity and resistance in a large subset of the treated patients. During the last decade, novel approaches based on scientific knowledge on the biology of cancer were exploited and led to the development of novel targeted therapies, such as specific chemical inhibitors and immune-based therapies. Although these targeted therapies resulted in better responses and less toxicity, there still remains the problem of the inherent or acquired resistance. Hence, current studies are seeking additional novel therapeutic targets that can overcome several mechanisms of resistance. The transcription factor Yin Yang 1 (YY1) is a ubiquitous protein expressed in normal and cancer tissues, though the expression level is much higher in a large number of cancers; hence, YY1 has been considered as a potential novel prognostic biomarker and therapeutic target. YY1 has been reported to be involved in the regulation of drug/immune resistance and also in the regulation of EMT. Several excellent reviews have been published on YY1 and cancer (see below), and, thus, this review will update recently published reports as well as report on the analysis of bioinformatics datasets for YY1 in various cancers and the relationship between reported protein expression and mRNA levels. The potential clinical significance of YY1 is discussed.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| | - Samantha Kaufhold
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
19
|
Role of YY1 in the pathogenesis of prostate cancer and correlation with bioinformatic data sets of gene expression. Genes Cancer 2014; 5:71-83. [PMID: 25053986 PMCID: PMC4091534 DOI: 10.18632/genesandcancer.12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/10/2014] [Indexed: 11/25/2022] Open
Abstract
Current treatments of various cancers include chemotherapy, radiation, surgery, immunotherapy, and combinations. However, there is a need to develop novel diagnostic and therapeutic treatments for unresponsive patients. These may be achieved by the identification of novel diagnostic and prognostic biomarkers which will help in the stratification of patients' initial responses to particular treatments and circumvent resistance, relapses, metastasis, and death. We have been investigating human prostate cancer as a model tumor. We have identified Yin Yang 1 (YY1), a dysregulated transcription factor, whose overexpression correlated with tumor progression as well as in the regulation of drug resistance and the development of EMT. YY1 expression is upregulated in human prostate cancer cell lines and tissues. We postulated that YY1 may be a potential biomarker in prostate cancer for patients' stratification as well as a novel target for therapeutic intervention. We used Bioinformatic gene RNA array datasets for the expression of YY1 in prostate tumor tissues as compared to normal tissues. Interestingly, variations on the expression levels of YY1 mRNA in prostate cancer were reported by different investigators. This mini review summarizes the current reported studies and Bioinformatic analyses on the role of YY1 in the pathogenesis of prostate cancer.
Collapse
|
20
|
Kong KA, Lee JY, Oh JH, Lee Y, Kim MH. Akt1 mediates the posterior Hoxc gene expression through epigenetic modifications in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:793-9. [PMID: 24955524 DOI: 10.1016/j.bbagrm.2014.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 05/09/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
The evolutionarily conserved Hox genes are organized in clusters and expressed colinearly to specify body patterning during embryonic development. Previously, Akt1 has been identified as a putative Hox gene regulator through in silico analysis. Substantial upregulation of consecutive 5' Hoxc genes has been observed when Akt1 is absent in mouse embryonic fibroblast (MEF) cells. In this study, we provide evidence that Akt1 regulates the 5' Hoxc gene expression by epigenetic modifications. Enrichment of histone H3K9 acetylation and a low level of the H3K27me3 mark were detected at the posterior 5' Hoxc loci when Akt1 is absent. A histone deacetylase (HDAC) inhibitor de-repressed 5' Hoxc gene expression when Akt1 is present, and a DNA demethylating reagent synergistically upregulated HDAC-induced 5' Hoxc gene expression. A knockdown study revealed that Hdac6 is mediated in the Hoxc12 repression through direct binding to the transcription start site (TSS) in the presence of Akt1. Co-immunoprecipitation analysis revealed that endogenous Akt1 directly interacted with Hdac6. Furthermore, exogenous Akt1 was enriched at the promoter region of the posterior Hoxc genes such as Hoxc11 and Hoxc12, not the Akt1-independent Hoxc5 and Hoxd10 loci. The regulation of the H3K27me3 mark by Ezh2 and Kdm6b at the 5' Hoxc gene promoter turned out to be Akt1 dependent. Taken together, these results suggest that Akt1 mediates the posterior 5' Hoxc gene expression through epigenetic modification such as histone methylation and acetylation, and partly through a direct binding to the promoter region of the 5' Hoxc genes and/or Hdac6 in mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Kyoung-Ah Kong
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youra Lee
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Lab., Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Bérubé-Simard FA, Prudhomme C, Jeannotte L. YY1 acts as a transcriptional activator of Hoxa5 gene expression in mouse organogenesis. PLoS One 2014; 9:e93989. [PMID: 24705708 PMCID: PMC3976385 DOI: 10.1371/journal.pone.0093989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022] Open
Abstract
The Hox gene family encodes homeodomain-containing transcriptional regulators that confer positional information to axial and paraxial tissues in the developing embryo. The dynamic Hox gene expression pattern requires mechanisms that differentially control Hox transcription in a precise spatio-temporal fashion. This implies an integrated regulation of neighbouring Hox genes achieved through the sharing and the selective use of defined enhancer sequences. The Hoxa5 gene plays a crucial role in lung and gut organogenesis. To position Hoxa5 in the regulatory hierarchy that drives organ morphogenesis, we searched for cis-acting regulatory sequences and associated trans-acting factors required for Hoxa5 expression in the developing lung and gut. Using mouse transgenesis, we identified two DNA regions included in a 1.5-kb XbaI-XbaI fragment located in the Hoxa4-Hoxa5 intergenic domain and known to control Hoxa4 organ expression. The multifunctional YY1 transcription factor binds the two regulatory sequences in vitro and in vivo. Moreover, the mesenchymal deletion of the Yy1 gene function in mice results in a Hoxa5-like lung phenotype with decreased Hoxa5 and Hoxa4 gene expression. Thus, YY1 acts as a positive regulator of Hoxa5 expression in the developing lung and gut. Our data also support a role for YY1 in the coordinated expression of Hox genes for correct organogenesis.
Collapse
Affiliation(s)
- Félix-Antoine Bérubé-Simard
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Christelle Prudhomme
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, Canada
- Centre de recherche sur le cancer de l′Université Laval, Québec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| |
Collapse
|
22
|
Regulation of microRNAs by epigenetics and their interplay involved in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:96. [PMID: 24261995 PMCID: PMC3874662 DOI: 10.1186/1756-9966-32-96] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022]
Abstract
Similar to protein-coding genes, miRNAs are also susceptible to epigenetic modulation. Although numerous miRNAs have been shown to be affected by DNA methylation, the regulatory mechanism of histone modification on miRNA is not adequately understood. EZH2 and HDACs were recently identified as critical histone modifiers of deregulated miRNAs in cancer and can be recruited to a miRNA promoter by transcription factors such as MYC. Because miRNAs can modulate epigenetic architecture and can be regulated by epigenetic alteration, they could reasonably play an important role in mediating the crosstalk between epigenetic regulators. The complicated network between miRNAs and epigenetic machineries underlies the epigenetic–miRNA regulatory pathway, which is important in monitoring gene expression profiles. Regulation of miRNAs by inducing epigenetic changes reveals promising avenues for the design of innovative strategies in the fight against human cancer.
Collapse
|
23
|
Abstract
Mammalian SFMBTs have been considered to be polycomb group repressors. However, molecular mechanisms underlying mammalian SFMBTs-mediated gene regulation and their biological function have not been characterized. In the present study, we identified YY1 and methylated histones as interacting proteins of human SFMBT2. We also found that human SFMBT2 binds preferentially to methylated histone H3 and H4 that are associated with transcriptional repression. Using DU145 prostate cancer cells as a model, we showed that SFMBT2 has a transcriptional repression activity on HOXB13 gene expression. In addition, occupancy of SFMBT2 coincided with enrichment of diand tri-methylated H3K9 and H4K20 as well as tri-methylated H3K27 at the HOXB13 gene promoter. When SFMBT2 was depleted by siRNA in DU145 prostate cancer cells, significant up-regulation of HOXB13 gene expression and decreased cell growth were observed. Collectively, our findings indicate that human SFMBT2 may regulate cell growth via epigenetic regulation of HOXB13 gene expression in DU145 prostate cancer cells.
Collapse
|
24
|
Yu SL, Lee DC, Son JW, Park CG, Lee HY, Kang J. Histone deacetylase 4 mediates SMAD family member 4 deacetylation and induces 5-fluorouracil resistance in breast cancer cells. Oncol Rep 2013; 30:1293-300. [PMID: 23817620 DOI: 10.3892/or.2013.2578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/12/2013] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylases (HDACs) have been shown to play important roles in the regulation of chromatin remodeling by histone deacetylation, and their expression is induced in several types of cancer. In addition, they are known to be associated with resistance to anticancer drugs. However, the relevance of HDAC4 in chemoresistance remains unclear. Therefore, we investigated the interaction between HDAC4 expression and chemoresistance in breast cancer cells. We found that increased HDAC4 expression in MDA-MB-231 cells was associated with resistance to the anticancer drug 5-fluorouracil (5-FU). To verify these results, a cell line stably overexpressing HDAC4 was generated using MCF-7 cells (HDAC4OE). This cell line displayed increased 5-FU resistance, and HDAC4 knockdown in HDAC4OE cells restored 5-FU sensitivity. Consequently, we concluded that HDAC4 is a critical gene associated with 5‑FU chemoresistance. Further investigation using a microarray approach revealed that 355 genes were differentially expressed following HDAC4 overexpression. Based on functional annotation of the array results, HDAC4 overexpression was found to downregulate genes related to the transforming growth factor (TGF) β signaling pathway, including SMAD4, SMAD6, bone morphogenetic protein 6, inhibitor of DNA binding 1 and TGFβ2. We also found that HDAC4 expression regulates SMAD4 expression by inducing deacetylation of histone H3 in the SMAD4 promoter region. In addition, SMAD4 knockdown in MCF‑7 cells increased 5-FU resistance. In summary, our data suggest that HDAC4‑mediated deacetylation of the SMAD4 promoter may lead to 5-FU resistance in breast cancer cells.
Collapse
Affiliation(s)
- Seong-Lan Yu
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 302-718, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Kassardjian A, Rizkallah R, Riman S, Renfro SH, Alexander KE, Hurt MM. The transcription factor YY1 is a novel substrate for Aurora B kinase at G2/M transition of the cell cycle. PLoS One 2012; 7:e50645. [PMID: 23226345 PMCID: PMC3511337 DOI: 10.1371/journal.pone.0050645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
Yin Yang 1 (YY1) is a ubiquitously expressed and highly conserved multifunctional transcription factor that is involved in a variety of cellular processes. Many YY1-regulated genes have crucial roles in cell proliferation, differentiation, apoptosis, and cell cycle regulation. Numerous mechanisms have been shown to regulate the function of YY1, such as DNA binding affinity, subcellular localization, and posttranslational modification including phosphorylation. Polo-like kinase 1(Plk1) and Casein kinase 2α (CK2 α) were the first two kinases identified to phosphorylate YY1. In this study, we identify a third kinase. We report that YY1 is a novel substrate of the Aurora B kinase both in vitro and in vivo. Serine 184 phosphorylation of YY1 by Aurora B is cell cycle regulated and peaks at G2/M and is rapidly dephosphorylated, likely by protein phosphatase 1 (PP1) as the cells enter G1. Aurora A and Aurora C can also phosphorylate YY1 in vitro, but at serine/threonine residues other than serine 184. We present evidence that phosphorylation of YY1 in the central glycine/alanine (G/A)-rich region is important for DNA binding activity, with a potential phosphorylation/acetylation interplay regulating YY1 function. Given their importance in mitosis and overexpression in human cancers, Aurora kinases have been identified as promising therapeutic targets. Increasing our understanding of Aurora substrates will add to the understanding of their signaling pathways.
Collapse
Affiliation(s)
- Ari Kassardjian
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Raed Rizkallah
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Sarah Riman
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States of America
| | - Samuel H. Renfro
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Karen E. Alexander
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Myra M. Hurt
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
26
|
Reddy SDN, Pakala SB, Molli PR, Sahni N, Karanam NK, Mudvari P, Kumar R. Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. J Biol Chem 2012; 287:27843-50. [PMID: 22700976 PMCID: PMC3431680 DOI: 10.1074/jbc.m112.348474] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/13/2012] [Indexed: 12/11/2022] Open
Abstract
Metastasis-associated protein 1 (MTA1) is widely overexpressed in human cancers and is associated with malignant phenotypic changes contributing to morbidity in the associated diseases. Here we discovered for the first time that MTA1, a master chromatin modifier, transcriptionally represses the expression of phosphatase and tensin homolog (PTEN), a tumor suppressor gene, by recruiting class II histone deacetylase 4 (HDAC4) along with the transcription factor Yin-Yang 1 (YY1) onto the PTEN promoter. We also found evidence of an inverse correlation between the expression levels of MTA1 and PTEN in physiologically relevant breast cancer microarray datasets. We found that MTA1 up-regulation leads to a decreased expression of PTEN protein and stimulation of PI3K as well as phosphorylation of its signaling targets. Accordingly, selective down-regulation of MTA1 in breast cancer cells increases PTEN expression and inhibits stimulation of the PI3K/AKT signaling. Collectively, these findings provide a mechanistic role for MTA1 in transcriptional repression of PTEN, leading to modulation of the resulting signaling pathways.
Collapse
Affiliation(s)
- Sirigiri Divijendra Natha Reddy
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Suresh B. Pakala
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Poonam R. Molli
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Neil Sahni
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Narasimha Kumar Karanam
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Prakriti Mudvari
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| | - Rakesh Kumar
- From the Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, The George Washington University, Washington, D. C. 20037
| |
Collapse
|
27
|
Liu Z, Ren G, Shangguan C, Guo L, Dong Z, Li Y, Zhang W, Zhao L, Hou P, Zhang Y, Wang X, Lu J, Huang B. ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PLoS One 2012; 7:e40943. [PMID: 22808286 PMCID: PMC3396626 DOI: 10.1371/journal.pone.0040943] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/15/2012] [Indexed: 01/02/2023] Open
Abstract
All-trans retinoic acid (ATRA) has been widely investigated for treatments of many cancers including prostate cancer. HOXB13, silenced in androgen receptor-negative (AR(-)) prostate cancer cells, plays a role in AR(-) prostate cancer cell growth arrest. In this study we intended to elucidate the mechanisms that are involved in the proliferation inhibition of AR(-) prostate cancer cells triggered by ATRA. We discovered that ATRA was able to induce the growth arrest and to increase HOXB13 expression in AR(-) prostate cancer cells. Both EZH2 and DNMT3b participated in the repression of HOXB13 expression through an epigenetic mechanism involving DNA and histone methylation modifications. Specifically, EZH2 recruited DNMT3b to HOXB13 promoter to form a repression complex. Moreover, ATRA could upregulate HOXB13 through decreasing EZH2 and DNMT3b expressions and reducing their interactions with the HOXB13 promoter. Concurrently, the methylation level of the HOXB13 promoter was reduced upon the treatment of ATRA. Results from this study implicated a novel effect of ATRA in inhibition of the growth of AR(-) resistant human prostate cancer cells through alteration of HOXB13 expression as a result of epigenetic modifications.
Collapse
Affiliation(s)
- Zhiwei Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guoling Ren
- College of Life Sciences, Daqing Normal University, Daqing, Heilongjiang, China
| | - Chenyan Shangguan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lijing Guo
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Zhixiong Dong
- The College of Life Science, Tianjin Normal University, Tianjin, China
| | - Yueyang Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Weina Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Li Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Pingfu Hou
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiuli Wang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
28
|
Abstract
Yin Yang 1 (YY1) is a transcription factor with diverse and complex biological functions. YY1 either activates or represses gene transcription, depending on the stimuli received by the cells and its association with other cellular factors. Since its discovery, a biological role for YY1 in tumor development and progression has been suggested because of its regulatory activities toward multiple cancer-related proteins and signaling pathways and its overexpression in most cancers. In this review, we primarily focus on YY1 studies in cancer research, including the regulation of YY1 as a transcription factor, its activities independent of its DNA binding ability, the functions of its associated proteins, and mechanisms regulating YY1 expression and activities. We also discuss the correlation of YY1 expression with clinical outcomes of cancer patients and its target potential in cancer therapy. Although there is not a complete consensus about the role of YY1 in cancers based on its activities of regulating oncogene and tumor suppressor expression, most of the currently available evidence supports a proliferative or oncogenic role of YY1 in tumorigenesis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
29
|
Rizkallah R, Hurt MM. Regulation of the transcription factor YY1 in mitosis through phosphorylation of its DNA-binding domain. Mol Biol Cell 2009; 20:4766-76. [PMID: 19793915 DOI: 10.1091/mbc.e09-04-0264] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yin-Yang 1 (YY1) is a ubiquitously expressed zinc finger transcription factor. It regulates a vast array of genes playing critical roles in development, differentiation, and cell cycle. Very little is known about the mechanisms that regulate the functions of YY1. It has long been proposed that YY1 is a phosphoprotein; however, a direct link between phosphorylation and the function of YY1 has never been proven. Investigation of the localization of YY1 during mitosis shows that it is distributed to the cytoplasm during prophase and remains excluded from DNA until early telophase. Immunostaining studies show that YY1 is distributed equally between daughter cells and rapidly associates with decondensing chromosomes in telophase, suggesting a role for YY1 in early marking of active and repressed genes. The exclusion of YY1 from DNA in prometaphase HeLa cells correlated with an increase in the phosphorylation of YY1 and loss of DNA-binding activity that can be reversed by dephosphorylation. We have mapped three phosphorylation sites on YY1 during mitosis and show that phosphorylation of two of these sites can abolish the DNA-binding activity of YY1. These results demonstrate a novel mechanism for the inactivation of YY1 through phosphorylation of its DNA-binding domain.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|