1
|
Yang Z, Liu Y, Cheng Q, Chen T. Targeting super enhancers for liver disease: a review. PeerJ 2023; 11:e14780. [PMID: 36726725 PMCID: PMC9885865 DOI: 10.7717/peerj.14780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Background Super enhancers (SEs) refer to the ultralong regions of a gene accompanied by multiple transcription factors and cofactors and strongly drive the expression of cell-type-related genes. Recent studies have demonstrated that SEs play crucial roles in regulating gene expression related to cell cycle progression and transcription. Aberrant activation of SEs is closely related to the occurrence and development of liver disease. Liver disease, especially liver failure and hepatocellular carcinoma (HCC), constitutes a major class of diseases that seriously endanger human health. Currently, therapeutic strategies targeting SEs can dramatically prevent disease progression and improve the prognosis of animal models. The associated new approaches to the treatment of related liver disease are relatively new and need systematic elaboration. Objectives In this review, we elaborate on the features of SEs and discuss their function in liver disease. Additionally, we review their application prospects in clinical practice in the future. The article would be of interest to hepatologists, molecular biologists, clinicians, and all those concerned with targeted therapy and prognosis of liver disease. Methodology We searched three bibliographic databases (Web of Science Core Collection, Embase, PubMed) from 01/1981 to 06/2022 for peer-reviewed scientific publications focused on (1) gene treatment of liver disease; (2) current status of SE research; and (3) targeting SEs for liver disease. We included English language original studies only. Results The number of published studies considering the role of enhancers in liver disease is considerable. Since SEs were just defined in 2013, the corresponding data on SEs are scarce: approximately 50 papers found in bibliographic databases on the correlation between enhancers (or SEs) and liver disease. Remarkably, half of these papers were published in the past three years, indicating the growing interest of the scientific community in this issue. Studies have shown that treatments targeting components of SEs can improve outcomes in liver disease in animal and clinical trials. Conclusions The treatment of liver disease is facing a bottleneck, and new treatments are needed. Therapeutic regimens targeting SEs have an important role in the treatment of liver disease. However, given the off-target effect of gene therapy and the lack of clinical trials, the available experimental data are still fragmented and controversial.
Collapse
|
2
|
Likhoshvai VA, Golubyatnikov VP, Khlebodarova TM. Limit cycles in models of circular gene networks regulated by negative feedback loops. BMC Bioinformatics 2020; 21:255. [PMID: 32921311 PMCID: PMC7488683 DOI: 10.1186/s12859-020-03598-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The regulatory feedback loops that present in structural and functional organization of molecular-genetic systems and the phenomenon of the regulatory signal delay, a time period between the moment of signal reception and its implementation, provide natural conditions for complicated dynamic regimes in these systems. The delay phenomenon at the intracellular level is a consequence of the matrix principle of data transmission, implemented through the rather complex processes of transcription and translation.However, the rules of the influence of system structure on system dynamics are not clearly understood. Knowledge of these rules is particularly important for construction of synthetic gene networks with predetermined properties. RESULTS We study dynamical properties of models of simplest circular gene networks regulated by negative feedback mechanisms. We have shown existence and stability of oscillating trajectories (cycles) in these models. Two algorithms of construction and localization of these cycles have been proposed. For one of these models, we have solved an inverse problem of parameters identification. CONCLUSIONS The modeling results demonstrate that non-stationary dynamics in the models of circular gene networks with negative feedback loops is achieved by a high degree of non-linearity of the mechanism of the autorepressor influence on its own expression, by the presence of regulatory signal delay, the value of which must exceed a certain critical value, and transcription/translation should be initiated from a sufficiently strong promoter/Shine-Dalgarno site. We believe that the identified patterns are key elements of the oscillating construction design.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch RAS, Novosibirsk, Russia
| | - Vladimir P Golubyatnikov
- Laboratory of Inverse Problems of Mathematical Physics, Sobolev Institute of Mathematics Siberian Branch RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | - Tamara M Khlebodarova
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Li C, Deng M, Hu J, Li X, Chen L, Ju Y, Hao J, Meng S. Chronic inflammation contributes to the development of hepatocellular carcinoma by decreasing miR-122 levels. Oncotarget 2017; 7:17021-34. [PMID: 26933995 PMCID: PMC4941368 DOI: 10.18632/oncotarget.7740] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/05/2016] [Indexed: 12/12/2022] Open
Abstract
Persistent inflammation in chronic hepatitis plays a major role in the development of hepatocellular carcinoma (HCC). In this study, the major inflammatory cytokines expressed in chronic hepatitis, IL-6 and TNF-α, induced a marked decrease in microRNA-122 (miR-122) levels, and miR-122 expression was downregulated in the livers of chronic hepatitis B (CHB) patients. The decrease of miR-122 caused upregulation of the proinflammatory chemokine CCL2. IL-6 and TNF-α suppressed miR-122 both by directly downregulating the transcription factor C/EBPα and indirectly upregulating c-myc, which blocks C/EBPα-mediated miR-122 transcription. In addition, IL-6 and TNF-α levels were elevated and miR-122 levels were decreased in mouse and rat models of diethylnitrosamine (DEN)-induced HCC. Restoration of miR-122 levels through delivery of agomir-122 suppressed DEN-induced hepatocarcinogenesis in mice. Our results show that inflammation-induced miR-122 downregulation in hepatitis contributes to carcinogenesis and suggest that increasing miR-122 may be an effective strategy for preventing HCC development in CHB patients.
Collapse
Affiliation(s)
- Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Mengmeng Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Junli Hao
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
4
|
A tumor suppressor role for C/EBPα in solid tumors: more than fat and blood. Oncogene 2017; 36:5221-5230. [PMID: 28504718 DOI: 10.1038/onc.2017.151] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) plays a critical role during embryogenesis and is thereafter required for homeostatic glucose metabolism, adipogenesis and myeloid development. Its ability to regulate the expression of lineage-specific genes and induce growth arrest contributes to the terminal differentiation of several cell types, including hepatocytes, adipocytes and granulocytes. CEBPA loss of-function mutations contribute to the development of ~10% of acute myeloid leukemia (AML), stablishing a tumor suppressor role for C/EBPα. Deregulation of C/EBPα expression has also been reported in a variety of additional human neoplasias, including liver, breast and lung cancer. However, functional CEBPA mutations have not been found in solid tumors, suggesting that abrogation of C/EBPα function in non-hematopoietic tissues is regulated by alternative mechanisms. Here we review the function of C/EBPα in solid tumors and focus on the molecular mechanisms underlying its tumor suppressive role.
Collapse
|
5
|
Transformation of Astrocytes to a Neuroprotective Phenotype by Microglia via P2Y 1 Receptor Downregulation. Cell Rep 2017; 19:1151-1164. [DOI: 10.1016/j.celrep.2017.04.047] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 03/07/2017] [Accepted: 04/14/2017] [Indexed: 11/22/2022] Open
|
6
|
Khlebodarova TM, Kogai VV, Fadeev SI, Likhoshvai VA. Chaos and hyperchaos in simple gene network with negative feedback and time delays. J Bioinform Comput Biol 2016; 15:1650042. [PMID: 28052708 DOI: 10.1142/s0219720016500426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Today there are examples that prove the existence of chaotic dynamics at all levels of organization of living systems, except intracellular, although such a possibility has been theoretically predicted. The lack of experimental evidence of chaos generation at the intracellular level in vivo may indicate that during evolution the cell got rid of chaos. This work allows the hypothesis that one of the possible mechanisms for avoiding chaos in gene networks can be a negative evolutionary selection, which prevents fixation or realization of regulatory circuits, creating too mild, from the biological point of view, conditions for the emergence of chaos. It has been shown that one of such circuits may be a combination of negative autoregulation of expression of transcription factors at the level of their synthesis and degradation. The presence of such a circuit results in formation of multiple branches of chaotic solutions as well as formation of hyperchaos with equal and sufficiently low values of the delayed argument that can be implemented not only in eukaryotic, but in prokaryotic cells.
Collapse
Affiliation(s)
- Tamara M Khlebodarova
- * Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr., Lavrentieva 10, Novosibirsk, 630090, Russia
| | - Vladislav V Kogai
- † Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Prospect Koptyuga 4, Novosibirsk, 630090, Russia
| | - Stanislav I Fadeev
- † Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Prospect Koptyuga 4, Novosibirsk, 630090, Russia
| | - Vitaly A Likhoshvai
- * Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr., Lavrentieva 10, Novosibirsk, 630090, Russia.,‡ Novosibirsk State University, av. Pirogova 2, Novosibirsk, 630090, Russia
| |
Collapse
|
7
|
Likhoshvai VA, Kogai VV, Fadeev SI, Khlebodarova TM. Alternative splicing can lead to chaos. J Bioinform Comput Biol 2015; 13:1540003. [PMID: 25556917 DOI: 10.1142/s021972001540003x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alternative splicing is a widespread phenomenon in higher eukaryotes, where it serves as a mechanism to increase the functional diversity of proteins. This phenomenon has been described for different classes of proteins, including transcription regulatory proteins. We demonstrated that in the simplest genetic system model the formation of the alternatively spliced isoforms with opposite functions (activators and repressors) could be a cause of transition to chaotic dynamics. Under the simplest genetic system we understand a system consisting of a single gene encoding the structure of a transcription regulatory protein whose expression is regulated by a feedback mechanism. As demonstrated by numerical analysis of the models, if the synthesized isoforms regulate the expression of their own gene acting through different sites and independently of each other, for the generation of chaotic dynamics it is sufficient that the regulatory proteins have a dimeric structure. If regulatory proteins act through one site, the chaotic dynamics is generated in the system only when the repressor protein is either a tetrameric or a higher-dimensional multimer. In this case the activator can be a dimer. It was also demonstrated that if the transcription factor isoforms exhibit either activating or inhibiting activity and are lower-dimensional multimers (< 4), independently of the regulation type the model demonstrates either cyclic or stationary trajectories.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia , Novosibirsk State University, av. Pirogova 2, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|
8
|
Tu CC, Kumar VB, Day CH, Kuo WW, Yeh SP, Chen RJ, Liao CR, Chen HY, Tsai FJ, Wu WJ, Huang CY. Estrogen receptor α (ESR1) over-expression mediated apoptosis in Hep3B cells by binding with SP1 proteins. J Mol Endocrinol 2013; 51:203-12. [PMID: 23733894 DOI: 10.1530/jme-13-0085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have reported that estrogen receptors (ERs) are expressed in normal human liver, chronic hepatitis, and benign hepatic tumor tissues. However, decreased expression of ERs can be observed in hepatocellular carcinoma (HCC) and the role of ERs in HCC is not fully understood. Thus, the present study aimed to investigate the molecular mechanism induced by the overexpression of ERα (ERα (ESR1)) in Hep3B cells. We first detected the induction of apoptosis in ER-negative Hep3B cells using DNA fragmentation assay and flow cytometry. We found that ERα and ERα plus 17β-estradiol treatment increased apoptosis in Hep3B cells. Additionally, western blotting showed increased expression of active caspase 3 and tumor necrosis factor α (TNFα (TNF)) in ERα-transfected cells. To further understand the importance of SP1-binding sites in the TNFα promoter, ERα-negative Hep3B cells were co-transfected with ERα and a wild-type TNFα plasmid or TNFα with deleted SP1 regions. Deletion of both distant and primal SP1 sites abolished the activity of ERα, and similar results were observed by blocking the expression of SP1 protein using mithramycin (MA). This result indicates that SP1 protein is essential for ERα-activated TNFα promoter activity. Co-immunoprecipitation assay further confirmed the binding interaction between ERα and SP1 in a ligand-dependent manner. In general, we demonstrate that the overexpression of ERα mediates apoptosis in ERα-negative Hep3B cells by the binding of ERα to SP1 protein. Additionally, this ERα-SP1 complex binds to the proximal and distal sites of the TNFα gene promoter and further induces the expression of active caspase 3 in a ligand-dependent manner.
Collapse
Affiliation(s)
- Chuan-Chou Tu
- Institute of Medical and Molecular Toxicology and Institute of Medicine, Chung Shan University, Taichung, Taiwan Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vig S, Pandey AK, Verma G, Datta M. C/EBPα mediates the transcriptional suppression of human calreticulin gene expression by TNFα. Int J Biochem Cell Biol 2012; 44:113-22. [DOI: 10.1016/j.biocel.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/29/2011] [Accepted: 10/11/2011] [Indexed: 01/22/2023]
|
10
|
Cyclooxygenase inhibitors protect D-galactosamine/lipopolysaccharide induced acute hepatic injury in experimental mice model. Food Chem Toxicol 2011; 50:861-6. [PMID: 22107987 DOI: 10.1016/j.fct.2011.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
We investigated the protective effects of two non-steroid anti-inflammatory drugs, indomethacin (COX-1 and COX-2 inhibitors) and nimesulide (specific COX-2 inhibitor) on the hepatic injury induced by lipopolysaccharide in d-galactosamine sensitized (Gal/LPS) mice. ICR male mice were injected with a single dose of Gal/LPS with or without pre-treatment of 3mg/kg indomethacin or 30 mg/kg nimesulide (single i.p. injection). Sixteen hours later, blood and liver tissues of mice were collected for histological, molecular, and biochemical analyses. Our results showed marked reduction of hepatic necrosis, serum ALT, and tissue TBARS levels in both indomethacin- and nimesulide-pre-treated mice when compared with Gal/LPS-treated mice. Western blot and RT-PCR analysis showed decreased levels of iNOS mRNA, iNOS protein, and nitrotyrosine formation in both COX inhibitor pre-treated groups when compared with Gal/LPS-treated group. There was an inverse relationship between COX-1 and COX-2 expressions, as well as between COX-2 and C/EBP-α expressions in COX inhibitors groups, Gal/LPS and control groups. COX inhibitors reduced the expression of TNF-α mRNA and the activity of NF-κB which were elevated by Gal/LPS treatment. We conclude that COX inhibitors protected the liver from Gal/LPS-induced hepatotoxicity. COX inhibitors could be considered as potential agents in the prevention of acute liver failure and sepsis.
Collapse
|
11
|
Salter RC, Arnaoutakis K, Michael DR, Singh NN, Ashlin TG, Buckley ML, Kwan APL, Ramji DP. The expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 in human macrophages is inhibited by the anti-atherogenic cytokine transforming growth factor-β and requires Smads, p38 mitogen-activated protein kinase and c-Jun. Int J Biochem Cell Biol 2011; 43:805-11. [PMID: 21334453 PMCID: PMC3081072 DOI: 10.1016/j.biocel.2011.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/14/2011] [Accepted: 02/14/2011] [Indexed: 11/29/2022]
Abstract
Atherosclerosis is an inflammatory disorder of the vasculature that is orchestrated by the action of cytokines. Macrophages play a prominent role in all stages of this disease, including foam cell formation, production of reactive oxygen species, modulation of the inflammatory response and the regulation of the stability of atherosclerotic plaques. The role of the matrix metalloproteinase family in the control of plaque stability is well established. A disintegrin and metalloproteinase with thrombospondin motif (ADAMTS) family has been implicated in several diseases and the expression of ADAMTS-4 in macrophages of atherosclerotic lesions has suggested a potential role for this protease in atherosclerosis. However, the action of cytokines on the expression of ADAMTS-4 in macrophages is poorly understood. We have investigated here the effect of transforming growth factor-β (TGF-β) on ADAMTS-4 expression in macrophages along with the regulatory mechanisms underlying its actions. Consistent with the anti-atherogenic role of TGF-β, this cytokine decreased the expression of ADAMTS-4 mRNA and protein in human macrophages. Transient transfection assays showed that the −100 to +10 promoter region contained the minimal TGF-β response elements. Small-interfering RNA-mediated knockdown revealed a critical role for Smads, p38 mitogen-activated protein kinase and c-Jun in the action of TGF-β on ADAMTS-4 mRNA expression. These studies show for the first time that TGF-β inhibits the expression of ADAMTS-4 in human macrophages and identifies the signalling pathways underlying this response. The inhibition of macrophage ADAMTS-4 expression is likely to contribute to the anti-atherogenic, plaque stabilisation action of TGF-β.
Collapse
Affiliation(s)
- Rebecca C Salter
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang X, Wu X, Wang C, Zhang W, Ouyang Y, Yu Y, He Z. Transcriptional suppression of breast cancer resistance protein (BCRP) by wild-type p53 through the NF-κB pathway in MCF-7 cells. FEBS Lett 2010; 584:3392-7. [DOI: 10.1016/j.febslet.2010.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 01/23/2023]
|
13
|
Ali S, Singh NN, Yildirim H, Ramji DP. Requirement for nuclear factor kappa B signalling in the interleukin-1-induced expression of the CCAAT/enhancer binding protein-delta gene in hepatocytes. Int J Biochem Cell Biol 2009; 42:113-9. [PMID: 19800021 PMCID: PMC2827769 DOI: 10.1016/j.biocel.2009.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 11/18/2022]
Abstract
Elevated circulating levels of acute phase proteins (APP) are associated with inflammation and inflammatory disorders such as cardiovascular disease. APP are mainly synthesised by hepatocytes and their transcription is induced by pro-inflammatory cytokines such as interleukin-1 (IL-1). The molecular mechanisms underlying the IL-1-induced expression of key transcription factors implicated in the regulation of APP are poorly understood. We have investigated this aspect using the CCAAT/enhancer binding protein-delta (C/EBPdelta) as a model gene. IL-1 induced the expression of C/EBPdelta mRNA and protein in the human hepatoma Hep3B cell line, a widely employed model system for studies on cytokine signalling in relation to the expression of APP. The IL-1-mediated induction of C/EBPdelta expression was attenuated in the presence of pharmacological inhibitors against c-Jun N-terminal kinase (JNK) (curcumin and SP600125), casein kinase 2 (CK2) (apigenin) and nuclear factor-kappaB (NF-kappaB) (NF-kappaB activation inhibitor). RNA interference assays showed significant attenuation of the IL-1-induced expression of C/EBPdelta following knockdown of the p50 and p65 subunits of NF-kappaB. IL-1 induced NF-kappaB DNA binding and activation by this transcription factor and this was attenuated by curcumin and apigenin. Taken together, these results suggest a potentially crucial role for NF-kappaB in the IL-1-induced expression of C/EBPdelta, and thereby downstream APP genes regulated by this transcription factor.
Collapse
Affiliation(s)
| | | | | | - Dipak P. Ramji
- Corresponding author. Tel.: +44 029 20876753; fax: +44 029 20876753.
| |
Collapse
|