1
|
Sun Y, Wei H, Yu W, Gao H, Li J, Li X, Zhang H, Zhang H, Miao S, Zhao L, Yang R, Xu J, Lu Y, Wei F, Zhou H, Gao D, Jin Y, Zhang L. The actin-binding protein drebrin disrupts NF2-LATS kinases complex assembly to facilitate liver tumorigenesis. Hepatology 2025; 81:1433-1451. [PMID: 39325963 DOI: 10.1097/hep.0000000000001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS The Hippo signaling has emerged as a crucial regulator of tissue homeostasis, regeneration, and tumorigenesis, representing a promising therapeutic target. Neurofibromin 2 (NF2), a component of Hippo signaling, is directly linked to human cancers but has been overlooked as a target for cancer therapy. APPROACH AND RESULTS Through a high-content RNA interference genome-wide screen, the actin-binding protein Drebrin (DBN1) has been identified as a novel modulator of YAP localization. Further investigations have revealed that DBN1 directly interacts with NF2, disrupting the activation of large tumor suppressor kinases (LATS1/2) by competing with LATS kinases for NF2 binding. Consequently, DBN1 knockout considerably promotes YAP nuclear exclusion and repression of target gene expression, thereby preventing cell proliferation and liver tumorigenesis. We identified three lysine residues (K238, K248, and K252) essential for DBN1-NF2 interaction and developed a mutant DBN1 (DBN1-3K mut ) that is defective in NF2 binding and incompetent to trigger NF2-dependent YAP activation and tumorigenesis both in vitro and in vivo. Furthermore, BTP2, a DBN1 inhibitor, successfully restored NF2-LATS kinase binding and elicited potent antitumor activity. The combination of sorafenib and BTP2 exerted synergistic inhibitory effects against HCC. CONCLUSIONS Our study identifies a novel DBN1-NF2-LATS axis, and pharmacological inhibition of DBN1 represents a promising alternative intervention targeting the Hippo pathway in cancer treatment.
Collapse
Affiliation(s)
- Yang Sun
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Henan Wei
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wentao Yu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haoran Gao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haijiao Zhang
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Haoen Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lihua Zhao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ruizeng Yang
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Jinjin Xu
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunyun Jin
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Lei Zhang
- Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minghang, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Protasi F, Girolami B, Roccabianca S, Rossi D. Store-operated calcium entry: From physiology to tubular aggregate myopathy. Curr Opin Pharmacol 2023; 68:102347. [PMID: 36608411 DOI: 10.1016/j.coph.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023]
Abstract
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Barbara Girolami
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Sara Roccabianca
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy
| | - Daniela Rossi
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy.
| |
Collapse
|
3
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
4
|
Poobalasingam T, Bianco F, Oozeer F, Gordon-Weeks PR. The drebrin/EB3 pathway regulates cytoskeletal dynamics to drive neuritogenesis in embryonic cortical neurons. J Neurochem 2021; 160:185-202. [PMID: 34478582 DOI: 10.1111/jnc.15502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 02/01/2023]
Abstract
Co-ordinating the dynamic behaviour of actin filaments (F-actin) and microtubules in filopodia is an important underlying process in neuritogenesis, but the molecular pathways involved are ill-defined. The drebrin/end-binding protein 3 (EB3) pathway is a candidate pathway for linking F-actin to microtubules in filopodia. Drebrin binds F-actin and, simultaneously, the microtubule-binding protein EB3 when bound to microtubule plus-ends. We assessed the effect on neuritogenesis of gain- or loss-of-function of proteins in the drebrin/EB3 pathway in rat embryonic cortical neurons in culture. Loss-of-function of drebrin by gene editing or pharmacological inhibition of drebrin binding to F-actin reduced the number of dynamic microtubules in the cell periphery and simultaneously delayed the initiation of neuritogenesis, whereas over-expression of drebrin induced supernumerary neurites. Similarly, loss of EB3 inhibited neuritogenesis, whereas loss of end-binding protein 1 (EB1), a related protein that does not bind to drebrin, did not affect neuritogenesis. Over-expression of EB3, but not EB1, induced supernumerary neurites. We discovered that EB3 is more proximally located at dynamic microtubule plus-ends than EB1 in growth cone filopodia allowing for continuous microtubule elongation as the drebrin/EB3 pathway zippers microtubules to F-actin in filopodia. Finally, we showed that preventing the entry of dynamic microtubules into filopodia using a pharmacological inhibitor of microtubule dynamics is associated with a loss of EB3, but not EB1, from microtubule plus-ends and a concurrent attenuation of neuritogenesis. Collectively, these findings support the idea that neuritogenesis depends on microtubule/F-actin zippering in filopodia orchestrated by the drebrin/EB3 pathway.
Collapse
Affiliation(s)
- Thanushiyan Poobalasingam
- William Harvey Research Institute, Charter House Square, Queen Mary University of London, London, UK
| | - Francesca Bianco
- Department of Psychology & School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Phillip R Gordon-Weeks
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Alvarez-Suarez P, Nowak N, Protasiuk-Filipunas A, Yamazaki H, Prószyński TJ, Gawor M. Drebrin Regulates Acetylcholine Receptor Clustering and Organization of Microtubules at the Postsynaptic Machinery. Int J Mol Sci 2021; 22:9387. [PMID: 34502296 PMCID: PMC8430516 DOI: 10.3390/ijms22179387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023] Open
Abstract
Proper muscle function depends on the neuromuscular junctions (NMJs), which mature postnatally to complex "pretzel-like" structures, allowing for effective synaptic transmission. Postsynaptic acetylcholine receptors (AChRs) at NMJs are anchored in the actin cytoskeleton and clustered by the scaffold protein rapsyn, recruiting various actin-organizing proteins. Mechanisms driving the maturation of the postsynaptic machinery and regulating rapsyn interactions with the cytoskeleton are still poorly understood. Drebrin is an actin and microtubule cross-linker essential for the functioning of the synapses in the brain, but its role at NMJs remains elusive. We used immunohistochemistry, RNA interference, drebrin inhibitor 3,5-bis-trifluoromethyl pyrazole (BTP2) and co-immunopreciptation to explore the role of this protein at the postsynaptic machinery. We identify drebrin as a postsynaptic protein colocalizing with the AChRs both in vitro and in vivo. We also show that drebrin is enriched at synaptic podosomes. Downregulation of drebrin or blocking its interaction with actin in cultured myotubes impairs the organization of AChR clusters and the cluster-associated microtubule network. Finally, we demonstrate that drebrin interacts with rapsyn and a drebrin interactor, plus-end-tracking protein EB3. Our results reveal an interplay between drebrin and cluster-stabilizing machinery involving rapsyn, actin cytoskeleton, and microtubules.
Collapse
Affiliation(s)
- Paloma Alvarez-Suarez
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Natalia Nowak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Anna Protasiuk-Filipunas
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Hiroyuki Yamazaki
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan;
| | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Marta Gawor
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| |
Collapse
|
6
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Shan Y, Farmer SM, Wray S. Drebrin regulates cytoskeleton dynamics in migrating neurons through interaction with CXCR4. Proc Natl Acad Sci U S A 2021; 118:e2009493118. [PMID: 33414275 PMCID: PMC7826346 DOI: 10.1073/pnas.2009493118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) and chemokine receptor type 4 (CXCR4) are regulators of neuronal migration (e.g., GnRH neurons, cortical neurons, and hippocampal granule cells). However, how SDF-1/CXCR4 alters cytoskeletal components remains unclear. Developmentally regulated brain protein (drebrin) stabilizes actin polymerization, interacts with microtubule plus ends, and has been proposed to directly interact with CXCR4 in T cells. The current study examined, in mice, whether CXCR4 under SDF-1 stimulation interacts with drebrin to facilitate neuronal migration. Bioinformatic prediction of protein-protein interaction highlighted binding sites between drebrin and crystallized CXCR4. In migrating GnRH neurons, drebrin, CXCR4, and the microtubule plus-end binding protein EB1 were localized close to the cell membrane. Coimmunoprecipitation (co-IP) confirmed a direct interaction between drebrin and CXCR4 using wild-type E14.5 whole head and a GnRH cell line. Analysis of drebrin knockout (DBN1 KO) mice showed delayed migration of GnRH cells into the brain. A decrease in hippocampal granule cells was also detected, and co-IP confirmed a direct interaction between drebrin and CXCR4 in PN4 hippocampi. Migration assays on primary neurons established that inhibiting drebrin (either pharmacologically or using cells from DBN1 KO mice) prevented the effects of SDF-1 on neuronal movement. Bioinformatic prediction then identified binding sites between drebrin and the microtubule plus end protein, EB1, and super-resolution microscopy revealed decreased EB1 and drebrin coexpression after drebrin inhibition. Together, these data show a mechanism by which a chemokine, via a membrane receptor, communicates with the intracellular cytoskeleton in migrating neurons during central nervous system development.
Collapse
Affiliation(s)
- Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Matthew Farmer
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
8
|
Kohlschmidt N, Elbracht M, Czech A, Häusler M, Phan V, Töpf A, Huang KT, Bartok A, Eggermann K, Zippel S, Eggermann T, Freier E, Groß C, Lochmüller H, Horvath R, Hajnóczky G, Weis J, Roos A. Molecular pathophysiology of human MICU1 deficiency. Neuropathol Appl Neurobiol 2021; 47:840-855. [PMID: 33428302 DOI: 10.1111/nan.12694] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
AIMS MICU1 encodes the gatekeeper of the mitochondrial Ca2+ uniporter, MICU1 and biallelic loss-of-function mutations cause a complex, neuromuscular disorder in children. Although the role of the protein is well understood, the precise molecular pathophysiology leading to this neuropaediatric phenotype has not been fully elucidated. Here we aimed to obtain novel insights into MICU1 pathophysiology. METHODS Molecular genetic studies along with proteomic profiling, electron-, light- and Coherent anti-Stokes Raman scattering microscopy and immuno-based studies of protein abundances and Ca2+ transport studies were employed to examine the pathophysiology of MICU1 deficiency in humans. RESULTS We describe two patients carrying MICU1 mutations, two nonsense (c.52C>T; p.(Arg18*) and c.553C>T; p.(Arg185*)) and an intragenic exon 2-deletion presenting with ataxia, developmental delay and early onset myopathy, clinodactyly, attention deficits, insomnia and impaired cognitive pain perception. Muscle biopsies revealed signs of dystrophy and neurogenic atrophy, severe mitochondrial perturbations, altered Golgi structure, vacuoles and altered lipid homeostasis. Comparative mitochondrial Ca2+ transport and proteomic studies on lymphoblastoid cells revealed that the [Ca2+ ] threshold and the cooperative activation of mitochondrial Ca2+ uptake were lost in MICU1-deficient cells and that 39 proteins were altered in abundance. Several of those proteins are linked to mitochondrial dysfunction and/or perturbed Ca2+ homeostasis, also impacting on regular cytoskeleton (affecting Spectrin) and Golgi architecture, as well as cellular survival mechanisms. CONCLUSIONS Our findings (i) link dysregulation of mitochondrial Ca2+ uptake with muscle pathology (including perturbed lipid homeostasis and ER-Golgi morphology), (ii) support the concept of a functional interplay of ER-Golgi and mitochondria in lipid homeostasis and (iii) reveal the vulnerability of the cellular proteome as part of the MICU1-related pathophysiology.
Collapse
Affiliation(s)
| | - Miriam Elbracht
- Institute of Human Genetics, RWTH Aachen University Hospital, Aachen, Germany
| | - Artur Czech
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, RWTH Aachen University Hospital, Aachen, Germany
| | - Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Ana Töpf
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Kai-Ting Huang
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Bartok
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Katja Eggermann
- Institute of Human Genetics, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University Hospital, Aachen, Germany
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Claudia Groß
- Institute of Clinical Genetics and Tumour Genetics, Bonn, Germany
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Rita Horvath
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas Roos
- Department of Neuropediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Yasuda H, Kojima N, Hanamura K, Yamazaki H, Sakimura K, Shirao T. Drebrin Isoforms Critically Regulate NMDAR- and mGluR-Dependent LTD Induction. Front Cell Neurosci 2018; 12:330. [PMID: 30349460 PMCID: PMC6186840 DOI: 10.3389/fncel.2018.00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023] Open
Abstract
Drebrin is an actin-binding protein that is preferentially expressed in the brain. It is highly localized in dendritic spines and regulates spine shapes. The embryonic-type (drebrin E) is expressed in the embryonic and early postnatal brain and is replaced by the adult-type (drebrin A) during development. In parallel, NMDA receptor (NMDAR)-dependent long-term depression (LTD) of synaptic transmission, induced by low-frequency stimulation (LFS), is dominant in the immature brain and decreases during development. Here, we report that drebrin regulates NMDAR-dependent and group 1 metabotropic glutamate receptor (mGluR)-dependent LTD induction in the hippocampus. While LFS induced NMDAR-dependent LTD in the developing hippocampus in wild-type (WT) mice, it did not induce LTD in developing drebrin E and A double knockout (DXKO) mice, indicating that drebrin is required for NMDAR-dependent LTD. On the other hand, LFS induced robust LTD dependent on mGluR5, one of group 1 mGluRs, in both developing and adult brains of drebrin A knockout (DAKO) mice, in which drebrin E is expressed throughout development and adulthood. Agonist-induced mGluR-dependent LTD was normal in WT and DXKO mice; however, it was enhanced in DAKO mice. Also, mGluR1, another group 1 mGluR, was involved in agonist-induced mGluR-dependent LTD in DAKO mice. These data suggest that abnormal drebrin E expression in adults promotes group 1 mGluR-dependent LTD induction. Therefore, while drebrin expression is critical for NMDAR-dependent LTD induction, developmental conversion from drebrin E to drebrin A prevents robust group 1 mGluR-dependent LTD.
Collapse
Affiliation(s)
- Hiroki Yasuda
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Nobuhiko Kojima
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Faculty of Life Sciences, Toyo University, Itakura, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
11
|
Tomoshige S, Kobayashi Y, Hosoba K, Hamamoto A, Miyamoto T, Saito Y. Cytoskeleton-related regulation of primary cilia shortening mediated by melanin-concentrating hormone receptor 1. Gen Comp Endocrinol 2017; 253:44-52. [PMID: 28842217 DOI: 10.1016/j.ygcen.2017.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
Primary cilia are specialized microtubule-based organelles. Their importance is highlighted by the gamut of ciliary diseases associated with various syndromes including diabetes and obesity. Primary cilia serve as signaling hubs through selective interactions with ion channels and conventional G-protein-coupled receptors (GPCRs). Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a key regulator of feeding, is selectively expressed in neuronal primary cilia in distinct regions of the mouse brain. We previously found that MCH acts on ciliary MCHR1 and induces cilia shortening through a Gi/o-dependent Akt pathway with no cell cycle progression. Many factors can participate in cilia length control. However, the mechanisms for how these molecules are relocated and coordinated to activate cilia shortening are poorly understood. In the present study, we investigated the role of cytoskeletal dynamics in regulating MCH-induced cilia shortening using clonal MCHR1-expressing hTERT-RPE1 cells. Pharmacological and biochemical approaches showed that cilia shortening mediated by MCH was associated with increased soluble cytosolic tubulin without changing the total tubulin amount. Enhanced F-actin fiber intensity was also observed in MCH-treated cells. The actions of various pharmacological agents revealed that coordinated actin machinery, especially actin polymerization, was required for MCHR1-mediated cilia shortening. A recent report indicated the existence of actin-regulated machinery for cilia shortening through GPCR agonist-dependent ectosome release. However, our live-cell imaging experiments showed that MCH progressively elicited cilia shortening without exclusion of fluorescence-positive material from the tip. Short cilia phenotypes have been associated with various metabolic disorders. Thus, the present findings may contribute toward better understanding of how the cytoskeleton is involved in the GPCR ligand-triggered cilia shortening with cell mechanical properties that underlies clinical manifestations such as obesity.
Collapse
Affiliation(s)
- Sakura Tomoshige
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Kosuke Hosoba
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Akie Hamamoto
- Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan.
| |
Collapse
|
12
|
Drebrin Regulation of Calcium Signaling in Immune Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28865026 DOI: 10.1007/978-4-431-56550-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Store-operated Ca2+ channels are plasma membrane channels that are activated by depletion of intracellular Ca2+ stores, resulting in an increase in intracellular Ca2+; however, little is known about their regulation. Our work has shown that the immunosuppressant compound BTP2, which blocks Ca2+ influx into cells, interacts with the actin-reorganizing protein, drebrin. Here we review the role of drebrin in the regulation of calcium signaling, with a focus on immune cells.
Collapse
|
13
|
Majoul IV, Ernesti JS, Butkevich EV, Duden R. Drebrins and Connexins: A Biomedical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:225-247. [DOI: 10.1007/978-4-431-56550-5_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Gasperini RJ, Pavez M, Thompson AC, Mitchell CB, Hardy H, Young KM, Chilton JK, Foa L. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding? Mol Cell Neurosci 2017; 84:29-35. [PMID: 28765051 DOI: 10.1016/j.mcn.2017.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023] Open
Abstract
The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system.
Collapse
Affiliation(s)
- Robert J Gasperini
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Macarena Pavez
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Adrian C Thompson
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Camilla B Mitchell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Holly Hardy
- University of Exeter Medical School, Wellcome Wolfson Centre for Medical Research, Exeter EX2 5DW, United Kingdom.
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - John K Chilton
- University of Exeter Medical School, Wellcome Wolfson Centre for Medical Research, Exeter EX2 5DW, United Kingdom.
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
15
|
Dart AE, Worth DC, Muir G, Chandra A, Morris JD, McKee C, Verrill C, Bryant RJ, Gordon-Weeks PR. The drebrin/EB3 pathway drives invasive activity in prostate cancer. Oncogene 2017; 36:4111-4123. [PMID: 28319065 PMCID: PMC5537610 DOI: 10.1038/onc.2017.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/13/2017] [Accepted: 02/02/2017] [Indexed: 02/06/2023]
Abstract
Prostate cancer is the most common cancer in men and the metastatic form of the disease is incurable. We show here that the drebrin/EB3 pathway, which co-ordinates dynamic microtubule/actin filament interactions underlying cell shape changes in response to guidance cues, plays a role in prostate cancer cell invasion. Drebrin expression is restricted to basal epithelial cells in benign human prostate but is upregulated in luminal epithelial cells in foci of prostatic malignancy. Drebrin is also upregulated in human prostate cancer cell lines and co-localizes with actin filaments and dynamic microtubules in filopodia of pseudopods of invading cells under a chemotactic gradient of the chemokine CXCL12. Disruption of the drebrin/EB3 pathway using BTP2, a small molecule inhibitor of drebrin binding to actin filaments, reduced the invasion of prostate cancer cell lines in 3D in vitro assays. Furthermore, gain- or loss-of-function of drebrin or EB3 by over-expression or siRNA-mediated knockdown increases or decreases invasion of prostate cancer cell lines in 3D in vitro assays, respectively. Finally, expression of a dominant-negative construct that competes with EB3 binding to drebrin, also inhibited invasion of prostate cancer cell lines in 3D in vitro assays. Our findings show that co-ordination of dynamic microtubules and actin filaments by the drebrin/EB3 pathway drives prostate cancer cell invasion and is therefore implicated in disease progression.
Collapse
Affiliation(s)
- A E Dart
- The MRC Centre for Developmental Neurobiology, King's College London, New Hunts House, Guy's Campus, London, UK
| | - D C Worth
- The MRC Centre for Developmental Neurobiology, King's College London, New Hunts House, Guy's Campus, London, UK
| | - G Muir
- Urology, King's College Hospital, London, UK
| | - A Chandra
- Cellular Pathology, 2nd floor North Wing, St. Thomas' Hospital, London, UK
| | - J D Morris
- Division of Cancer Studies, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - C McKee
- Oxford Institute for Radiation Oncology, Churchill Hospital, University of Oxford, Oxford, UK
| | - C Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - R J Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - P R Gordon-Weeks
- The MRC Centre for Developmental Neurobiology, King's College London, New Hunts House, Guy's Campus, London, UK
| |
Collapse
|
16
|
|
17
|
Regulation of Skeletal Myoblast Differentiation by Drebrin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:361-373. [DOI: 10.1007/978-4-431-56550-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Role of Drebrin at the Immunological Synapse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:271-280. [PMID: 28865025 DOI: 10.1007/978-4-431-56550-5_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although drebrin was first described in neurons, it is also expressed in cells of the immune system, such as T lymphocytes and mast cells. Another member of the drebrin family of proteins, mammalian actin-binding protein 1 (mAbp-1) is more widely expressed and plays important roles in the function of macrophages, polymorphonuclear neutrophils, and B lymphocytes. We will briefly discuss on the function of mAbp-1 and drebrin in immune cells with emphasis on T cells. Specifically, drebrin enables the immune responses of CD4+ T lymphocytes. T cells are activated after the recognition of an antigen presented by antigen-presenting cells through cognate cell-cell contacts called immunological synapses (IS). In CD4+ T cells, drebrin associates with the chemokine receptor CXCR4, and both molecules redistribute to the IS displaying similar dynamics. Through its interaction with CXCR4 and the actin cytoskeleton, drebrin regulates T cell activation. CD4+ T cells are one of the main targets for the human immunodeficiency virus (HIV)-1. This virus utilizes the IS structure to be transmitted to uninfected cells, forming cell-cell contacts called virological synapses (VS). Interestingly, drebrin negatively regulates HIV-1 infection of CD4+ T lymphocytes, by regulating actin polymerization at the VS.
Collapse
|
19
|
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 2016; 95:465-474. [DOI: 10.1016/j.ejcb.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023] Open
|
20
|
Abstract
Aberrant Ca(2+) release-activated Ca(2+) (CRAC) channel activity has been implicated in a number of human disorders, including immunodeficiency, autoimmunity, occlusive vascular diseases and cancer, thus placing CRAC channels among the important targets for the treatment of these disorders. We briefly summarize herein the molecular basis and activation mechanism of CRAC channel and focus on discussing several pharmacological inhibitors of CRAC channels with respect to their biological activity, mechanisms of action and selectivity over other types of Ca(2+) channel in different types of cells.
Collapse
|
21
|
Dupré L, Houmadi R, Tang C, Rey-Barroso J. T Lymphocyte Migration: An Action Movie Starring the Actin and Associated Actors. Front Immunol 2015; 6:586. [PMID: 26635800 PMCID: PMC4649030 DOI: 10.3389/fimmu.2015.00586] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
The actin cytoskeleton is composed of a dynamic filament meshwork that builds the architecture of the cell to sustain its fundamental properties. This physical structure is characterized by a continuous remodeling, which allows cells to accomplish complex motility steps such as directed migration, crossing of biological barriers, and interaction with other cells. T lymphocytes excel in these motility steps to ensure their immune surveillance duties. In particular, actin cytoskeleton remodeling is a key to facilitate the journey of T lymphocytes through distinct tissue environments and to tune their stop and go behavior during the scanning of antigen-presenting cells. The molecular mechanisms controlling actin cytoskeleton remodeling during T lymphocyte motility have been only partially unraveled, since the function of many actin regulators has not yet been assessed in these cells. Our review aims to integrate the current knowledge into a comprehensive picture of how the actin cytoskeleton drives T lymphocyte migration. We will present the molecular actors that control actin cytoskeleton remodeling, as well as their role in the different T lymphocyte motile steps. We will also highlight which challenges remain to be addressed experimentally and which approaches appear promising to tackle them.
Collapse
Affiliation(s)
- Loïc Dupré
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Raïssa Houmadi
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Catherine Tang
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France ; Master BIOTIN, Université Montpellier I , Montpellier , France
| | - Javier Rey-Barroso
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| |
Collapse
|
22
|
Xie J, Pan H, Yao J, Zhou Y, Han W. SOCE and cancer: Recent progress and new perspectives. Int J Cancer 2015; 138:2067-77. [PMID: 26355642 PMCID: PMC4764496 DOI: 10.1002/ijc.29840] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
Ca2+ acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell proliferation, differentiation, migration and apoptosis. Store‐operated Ca2+ entry (SOCE) mediated by ORAI and the stromal interaction molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of intracellular Ca2+ stores triggers activation of the endoplasmic reticulum (ER)‐resident Ca2+ sensor protein STIM to gate and open the ORAI Ca2+ channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed.
Collapse
Affiliation(s)
- Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX
| | - Weidong Han
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Majewski L, Kuznicki J. SOCE in neurons: Signaling or just refilling? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1940-52. [DOI: 10.1016/j.bbamcr.2015.01.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/14/2023]
|
24
|
Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction. Nat Commun 2015; 6:7523. [PMID: 26146072 DOI: 10.1038/ncomms8523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/16/2015] [Indexed: 01/22/2023] Open
Abstract
Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.
Collapse
|
25
|
Law M, Lee Y, Morales JL, Ning G, Huang W, Pabon J, Kannan AK, Jeong AR, Wood A, Carter C, Mohinta S, Song J, August A. Cutting Edge: Drebrin-Regulated Actin Dynamics Regulate IgE-Dependent Mast Cell Activation and Allergic Responses. THE JOURNAL OF IMMUNOLOGY 2015; 195:426-30. [PMID: 26056254 DOI: 10.4049/jimmunol.1401442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 05/15/2015] [Indexed: 11/19/2022]
Abstract
Mast cells play critical roles in allergic responses. Calcium signaling controls the function of these cells, and a role for actin in regulating calcium influx into cells has been suggested. We have previously identified the actin reorganizing protein Drebrin as a target of the immunosuppressant 3,5-bistrifluoromethyl pyrazole, which inhibits calcium influx into cells. In this study, we show that Drebrin(-/-) mice exhibit reduced IgE-mediated histamine release and passive systemic anaphylaxis, and Drebrin(-/-) mast cells also exhibit defects in FcεRI-mediated degranulation. Drebrin(-/-) mast cells exhibit defects in actin cytoskeleton organization and calcium responses downstream of the FcεRI, and agents that relieve actin reorganization rescue mast cell FcεRI-induced degranulation. Our results indicate that Drebrin regulates the actin cytoskeleton and calcium responses in mast cells, thus regulating mast cell function in vivo.
Collapse
Affiliation(s)
- Mankit Law
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16801; Immunology and Infectious Diseases Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - YongChan Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - J Luis Morales
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16801
| | - Gang Ning
- Microscopy and Cytometry Facility, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801
| | - Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Jonathan Pabon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Arun K Kannan
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Ah-Reum Jeong
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Amie Wood
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Chavez Carter
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Sonia Mohinta
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Jihong Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Avery August
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16801; Immunology and Infectious Diseases Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
26
|
Sonego M, Oberoi M, Stoddart J, Gajendra S, Hendricusdottir R, Oozeer F, Worth DC, Hobbs C, Eickholt BJ, Gordon-Weeks PR, Doherty P, Lalli G. Drebrin regulates neuroblast migration in the postnatal mammalian brain. PLoS One 2015; 10:e0126478. [PMID: 25945928 PMCID: PMC4422745 DOI: 10.1371/journal.pone.0126478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/02/2015] [Indexed: 01/13/2023] Open
Abstract
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.
Collapse
Affiliation(s)
- Martina Sonego
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Michelle Oberoi
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Jake Stoddart
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Sangeetha Gajendra
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Rita Hendricusdottir
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Fazal Oozeer
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Daniel C. Worth
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Britta J. Eickholt
- Cluster of Excellence NeuroCure and Institute of Biochemistry, Charité —Universitätsmedizin Berlin, Berlin, Germany
| | | | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Mercer J, Kelman I, do Rosario F, de Deus de Jesus Lima A, da Silva A, Beloff AM, McClean A. Nation-building policies in Timor-Leste: disaster risk reduction, including climate change adaptation. DISASTERS 2014; 38:690-718. [PMID: 25196332 PMCID: PMC4415648 DOI: 10.1111/disa.12082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Few studies have explored the relationships between nation-building, disaster risk reduction and climate change adaptation. Focusing on small island developing states, this paper examines nation-building in Timor-Leste, a small island developing state that recently achieved independence. Nation-building in Timor-Leste is explored in the context of disaster risk reduction, which necessarily includes climate change adaptation. The study presents a synopsis of Timor-Leste's history and its nation-building efforts as well as an overview of the state of knowledge of disaster risk reduction including climate change adaptation. It also offers an analysis of significant gaps and challenges in terms of vertical and horizontal governance, large donor presence, data availability and the integration of disaster risk reduction and climate change adaptation for nation-building in Timor-Leste. Relevant and applicable lessons are provided from other small island developing states to assist Timor-Leste in identifying its own trajectory out of underdevelopment while it builds on existing strengths.
Collapse
Affiliation(s)
- Jessica Mercer
- Correspondence Jessica Mercer, Secure Futures Consultancy, Winchester, Hampshire, United Kingdom. E-mail: ;
| | | | | | | | | | | | | |
Collapse
|
28
|
Bon RS, Beech DJ. In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels -- mirage or pot of gold? Br J Pharmacol 2014; 170:459-74. [PMID: 23763262 DOI: 10.1111/bph.12274] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022] Open
Abstract
The primary purpose of this review is to address the progress towards small molecule modulators of human Transient Receptor Potential Canonical proteins (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7). These proteins generate channels for calcium and sodium ion entry. They are relevant to many mammalian cell types including acinar gland cells, adipocytes, astrocytes, cardiac myocytes, cochlea hair cells, endothelial cells, epithelial cells, fibroblasts, hepatocytes, keratinocytes, leukocytes, mast cells, mesangial cells, neurones, osteoblasts, osteoclasts, platelets, podocytes, smooth muscle cells, skeletal muscle and tumour cells. There are broad-ranging positive roles of the channels in cell adhesion, migration, proliferation, survival and turning, vascular permeability, hypertrophy, wound-healing, hypo-adiponectinaemia, angiogenesis, neointimal hyperplasia, oedema, thrombosis, muscle endurance, lung hyper-responsiveness, glomerular filtration, gastrointestinal motility, pancreatitis, seizure, innate fear, motor coordination, saliva secretion, mast cell degranulation, cancer cell drug resistance, survival after myocardial infarction, efferocytosis, hypo-matrix metalloproteinase, vasoconstriction and vasodilatation. Known small molecule stimulators of the channels include hyperforin, genistein and rosiglitazone, but there is more progress with inhibitors, some of which have promising potency and selectivity. The inhibitors include 2-aminoethoxydiphenyl borate, 2-aminoquinolines, 2-aminothiazoles, fatty acids, isothiourea derivatives, naphthalene sulfonamides, N-phenylanthranilic acids, phenylethylimidazoles, piperazine/piperidine analogues, polyphenols, pyrazoles and steroids. A few of these agents are starting to be useful as tools for determining the physiological and pathophysiological functions of TRPC channels. We suggest that the pursuit of small molecule modulators for TRPC channels is important but that it requires substantial additional effort and investment before we can reap the rewards of highly potent and selective pharmacological modulators.
Collapse
Affiliation(s)
- Robin S Bon
- School of Chemistry, University of Leeds, Leeds, UK
| | | |
Collapse
|
29
|
Jairaman A, Prakriya M. Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 2013; 7:402-14. [PMID: 23807116 DOI: 10.4161/chan.25292] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Calcium influx through store-operated Ca(2+) release-activated Ca(2+) channels (CRAC channels) is a well-defined mechanism of generating cellular Ca(2+) elevations that regulates many functions including gene expression, exocytosis and cell proliferation. The identifications of the ER Ca(2+) sensing proteins, STIM1-2 and the CRAC channel proteins, Orai1-3, have led to improved understanding of the physiological roles and the activation mechanism of CRAC channels. Defects in CRAC channel function are associated with serious human diseases such as immunodeficiency and auto-immunity. In this review, we discuss several pharmacological modulators of CRAC channels, focusing specifically on the molecular mechanism of drug action and their utility in illuminating the mechanism of CRAC channel operation and their physiological roles in different cells.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Molecular Pharmacology and Biological Chemistry; Northwestern University, Feinberg School of Medicine; Chicago, IL USA
| | - Murali Prakriya
- Department of Molecular Pharmacology and Biological Chemistry; Northwestern University, Feinberg School of Medicine; Chicago, IL USA
| |
Collapse
|
30
|
Lee D, Aoki C. Presenilin conditional double knockout mice exhibit decreases in drebrin a at hippocampal CA1 synapses. Synapse 2012; 66:870-9. [PMID: 22715045 DOI: 10.1002/syn.21578] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 06/08/2012] [Indexed: 01/09/2023]
Abstract
Presenilin conditional double knockout (PScDKO) mice have been used as animal models to study the development of Alzheimer's disease (AD) phenotypes. Studies to date indicate that these animals exhibit memory dysfunction and decreased synaptic plasticity before the onset of neurodegeneration. Therefore, the current study sought to examine how the loss of presenilin expression leads to these defects. Drebrin A, a neuron-specific actin-binding protein, has been shown to play an important role in the activity-dependent redistribution of the NMDA type of glutamate receptors at the synapse which, in turn, is a critical step for enabling synaptic plasticity. It is hypothesized that defects in the activity dependent redistribution of NMDA receptors in PScDKO mice may be due to loss of drebrin A. In this study, electron microscopic immunocytochemistry (EM-ICC) was used to quantify and locate drebrin A in the CA1 field of the hippocampus of PScDKO mice. The high resolution of EM-ICC allowed for differentiation between drebrin A at the synapse and at nonsynaptic sites, the latter of which would reflect the protein's role in regulating the reserve or degradative pool of NMDA receptors. The results here demonstrate that loss of function of presenilin in mice leads to a decrease in immunoreactivity for drebrin A at both synaptic (54% decrease, P < 0.01) and nonsynaptic areas (40% decrease, P < 0.01) and overall (44% decrease, P < 0.01). The reduction of drebrin A in both synaptic and nonsynaptic locations of the spine may implicate impairment in glutamate receptor trafficking to and from the postsynaptic plasma membrane. In addition, because of reduced drebrin A at nonsynaptic sites, the regulation of the reserve and degradative pools of glutamate receptors may also be impaired, leading to further synaptic dysfunction. Therefore, this study provides evidence to the theory that drebrin A has a causal role in compromising activity-dependent glutamate receptor trafficking in PScDKO mice.
Collapse
Affiliation(s)
- David Lee
- Center for Neural Science, New York University, New York 10003, USA
| | | |
Collapse
|
31
|
Mancini A, Sirabella D, Zhang W, Yamazaki H, Shirao T, Krauss RS. Regulation of myotube formation by the actin-binding factor drebrin. Skelet Muscle 2011; 1:36. [PMID: 22152295 PMCID: PMC3251523 DOI: 10.1186/2044-5040-1-36] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/08/2011] [Indexed: 11/15/2022] Open
Abstract
Background Myogenic differentiation involves cell-cycle arrest, activation of the muscle-specific transcriptome, and elongation, alignment and fusion of myoblasts into multinucleated myotubes. This process is controlled by promyogenic transcription factors and regulated by signaling pathways in response to extracellular cues. The p38 mitogen-activated protein kinase (p38 MAPK) pathway promotes the activity of several such transcription factors, including MyoD and MEF2, thereby controlling the muscle-specific transcription program. However, few p38-regulated genes that play a role in the regulation of myogenesis have been identified. Methods RNA interference (RNAi), chemical inhibition and immunofluorescence approaches were used to assess the role of drebrin in differentiation of primary mouse myoblasts and C2C12 cells. Results In a search for p38-regulated genes that promote myogenic differentiation, we identified Dbn1, which encodes the actin-binding protein drebrin. Drebrin is an F-actin side-binding protein that remodels actin to facilitate the change of filopodia into dendritic spines during synaptogenesis in developing neurons. Dbn1 mRNA and protein are induced during differentiation of primary mouse and C2C12 myoblasts, and induction is substantially reduced by the p38 MAPK inhibitor SB203580. Primary myoblasts and C2C12 cells depleted of drebrin by RNAi display reduced levels of myogenin and myosin heavy chain and form multinucleated myotubes very inefficiently. Treatment of myoblasts with BTP2, a small-molecule inhibitor of drebrin, produces a phenotype similar to that produced by knockdown of drebrin, and the inhibitory effects of BTP2 are rescued by expression of a mutant form of drebrin that is unable to bind BTP2. Drebrin in myoblasts is enriched in cellular projections and cell cortices and at regions of cell-cell contact, all sites where F-actin, too, was concentrated. Conclusions Our findings reveal that Dbn1 expression is a target of p38 MAPK signaling during myogenesis and that drebrin promotes myoblast differentiation.
Collapse
Affiliation(s)
- Annalisa Mancini
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L, Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Law M, Morales JL, Mottram LF, Iyer A, Peterson BR, August A. Structural requirements for the inhibition of calcium mobilization and mast cell activation by the pyrazole derivative BTP2. Int J Biochem Cell Biol 2011; 43:1228-39. [PMID: 21558014 DOI: 10.1016/j.biocel.2011.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 04/11/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
Mast cells play a critical role in the development of the allergic response. Upon activation by allergens and IgE via the high affinity receptor for IgE (FcɛRI), these cells release histamine and other functional mediators that initiate and propagate immediate hypersensitivity reactions. Mast cells also secrete cytokines that can regulate immune activity. These processes are controlled, in whole or part, by increases in intracellular Ca(2+) induced by the FcɛRI. We show here that N-(4-(3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl)phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2), a pyrazole derivative, inhibits activation-induced Ca(2+) influx in the rat basophil cell line RBL-2H3 and in bone marrow-derived mast cells (BMMCs), without affecting global tyrosine phosphorylation of cellular proteins or phosphorylation of the mitogen-activated protein kinases Erk1/2, JNK and p38. BTP2 also inhibits activation-induced degranulation and secretion of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-13, tumor necrosis factor (TNF)-α, and granulocyte macrophage-colony stimulating factor (GM-CSF) by BMMCs, which correlates with the inhibition of Nuclear Factor of Activated T cells (NFAT) translocation. In vivo, BTP2 inhibits antigen-induced histamine release. Structure-activity relationship analysis indicates that substitution at the C3 or C5 position of the pyrazole moiety on BTP2 (5-trifluoromethyl-3-methyl-pyrazole or 3-trifluoromethyl-5-methyl-pyrazole, respectively) affected its activity, with the trifluoromethyl group at the C3 position being critical to its activity. We conclude that BTP2 and related compounds may be potent modulators of mast cell responses and potentially useful for the treatment of symptoms of allergic inflammation.
Collapse
Affiliation(s)
- Mankit Law
- Center for Molecular Immunology and Infectious Disease, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Store-operated calcium entry is a process by which the depletion of calcium from the endoplasmic reticulum activates calcium influx across the plasma membrane. In the past few years, the major players in this pathway have been identified. STIM1 and STIM2 function as calcium sensors in the endoplasmic reticulum and can interact with and activate plasma membrane channels comprised of Orai1, Orai2, or Orai3 subunits. This review discusses recent advances in our understanding of this widespread signaling mechanism as well as the mechanisms by which a number of interesting pharmacological agents modify it.
Collapse
Affiliation(s)
- James W Putney
- Calcium Regulation Section, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|