1
|
Arias HR, Targowska-Duda KM, García-Colunga J, Ortells MO. Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors? Molecules 2021; 26:molecules26082149. [PMID: 33917953 PMCID: PMC8068400 DOI: 10.3390/molecules26082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/05/2022] Open
Abstract
It is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population. However, SSRIs are not efficient for smoking cessation therapy. In patients with major depressive disorder, there is a lower availability of functional nAChRs, although their amount is not altered, which is possibly caused by higher endogenous ACh levels, which consequently induce nAChR desensitization. Other neurotransmitter systems have also emerged as possible targets for SSRIs. Studies on dorsal raphe nucleus serotoninergic neurons support the concept that SSRI-induced nAChR inhibition decreases the glutamatergic hyperstimulation observed in stress conditions, which compensates the excessive 5-HT overflow in these neurons and, consequently, ameliorates depression symptoms. At the molecular level, SSRIs inhibit different nAChR subtypes by noncompetitive mechanisms, including ion channel blockade and induction of receptor desensitization, whereas α9α10 nAChRs, which are peripherally expressed and not directly involved in depression, are inhibited by competitive mechanisms. According to the functional and structural results, SSRIs bind within the nAChR ion channel at high-affinity sites that are spread out between serine and valine rings. In conclusion, SSRI-induced inhibition of a variety of nAChRs expressed in different neurotransmitter systems widens the complexity by which these antidepressants may act clinically.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK 74464, USA
- Correspondence: ; Tel.: +1-918-525-6324; Fax: +1-918-280-2515
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, Morón 1708, Argentina;
| |
Collapse
|
2
|
Duarte Y, Rojas M, Canan J, Pérez EG, González-Nilo F, García-Colunga J. Different Classes of Antidepressants Inhibit the Rat α7 Nicotinic Acetylcholine Receptor by Interacting within the Ion Channel: A Functional and Structural Study. Molecules 2021; 26:molecules26040998. [PMID: 33668529 PMCID: PMC7918632 DOI: 10.3390/molecules26040998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Several antidepressants inhibit nicotinic acetylcholine receptors (nAChRs) in a non-competitive and voltage-dependent fashion. Here, we asked whether antidepressants with a different structure and pharmacological profile modulate the rat α7 nAChR through a similar mechanism by interacting within the ion-channel. We applied electrophysiological (recording of the ion current elicited by choline, ICh, which activates α7 nAChRs from rat CA1 hippocampal interneurons) and in silico approaches (homology modeling of the rat α7 nAChR, molecular docking, molecular dynamics simulations, and binding free energy calculations). The antidepressants inhibited ICh with the order: norfluoxetine ~ mirtazapine ~ imipramine < bupropion ~ fluoxetine ~ venlafaxine ~ escitalopram. The constructed homology model of the rat α7 nAChR resulted in the extracellular vestibule and the channel pore is highly negatively charged, which facilitates the permeation of cations and the entrance of the protonated form of antidepressants. Molecular docking and molecular dynamics simulations were carried out within the ion−channel of the α7 nAChR, revealing that the antidepressants adopt poses along the receptor channel, with slightly different binding-free energy values. Furthermore, the inhibition of ICh and free energy values for each antidepressant-receptor complex were highly correlated. Thus, the α7 nAChR is negatively modulated by a variety of antidepressants interacting in the ion−channel.
Collapse
Affiliation(s)
- Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
- Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
| | - Jonathan Canan
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
| | - Edwin G. Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
- Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
- Correspondence: ; Tel.: +52-442-238-1063
| |
Collapse
|
3
|
Laikowski MM, Reisdorfer F, Moura S. NAChR α4β2 Subtype and their Relation with Nicotine Addiction, Cognition, Depression and Hyperactivity Disorder. Curr Med Chem 2019; 26:3792-3811. [PMID: 29637850 DOI: 10.2174/0929867325666180410105135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/27/2017] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Neuronal α4β2 nAChRs are receptors involved in the role of neurotransmitters regulation and release, and this ionic channel participates in biological process of memory, learning and attention. This work aims to review the structure and functioning of the α4β2 nAChR emphasizing its role in the treatment of associated diseases like nicotine addiction and underlying pathologies such as cognition, depression and attention-deficit hyperactivity disorder. METHODS The authors realized extensive bibliographic research using the descriptors "Nicotine Receptor α4β2" and "cognition", "depression", "attention-deficit hyperactivity disorder", besides cross-references of the selected articles and after analysis of references in the specific literature. RESULTS As results, it was that found 179 relevant articles presenting the main molecules with affinity to nAChR α4β2 related to the cited diseases. The α4β2 nAChR subtype is a remarkable therapeutic target since this is the most abundant receptor in the central nervous system. CONCLUSION In summary, this review presents perspectives on the pharmacology and therapeutic targeting of α4β2 nAChRs for the treatment of cognition and diseases like nicotine dependence, depression and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Manuela M Laikowski
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Fávero Reisdorfer
- Laboratory of Drug Development and Quality Control, University Federal of Pampa, Brazil
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| |
Collapse
|
4
|
Gabriel J, Höfner G, Wanner KT. A Library Screening Strategy Combining the Concepts of MS Binding Assays and Affinity Selection Mass Spectrometry. Front Chem 2019; 7:665. [PMID: 31637233 PMCID: PMC6787468 DOI: 10.3389/fchem.2019.00665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 01/16/2023] Open
Abstract
The primary objective of early drug development is to identify hits and leads for a target of interest. To achieve this aim, rapid, and reliable screening techniques for a huge number of compounds are needed. Mass spectrometry based binding assays (MS Binding Assays) represent a well-established technique for library screening based on competitive binding experiments revealing active sublibraries due to reduced binding of a reporter ligand and following hit identification for active libraries by deconvolution in further competitive binding experiments. In the present study, we combined the concepts of MS Binding Assays and affinity selection mass spectrometry (ASMS) to improve the efficiency of the hit identification step. In that case, only a single competitive binding experiment is performed that is in the first step analyzed for reduced binding of the reporter ligand and—only if a sublibrary is active—additionally for specific binding of individual library components. Subsequently, affinities of identified hits as well as activities of reduced sublibraries (i.e., all sublibrary components without hit) are assessed in additional competitive binding experiments. We exemplified this screening concept for the identification of ligands addressing the most widespread GABA transporter subtype in the brain (GAT1) studying in the beginning a library composed of 128 and further on a library of 1,280 well-characterized GAT1 inhibitors, drug substances, and pharmacological tool compounds. Determination of sublibraries' activities was done by quantification of bound NO711 as reporter ligand and hit identification for the active ones achieved in a further LC-ESI-MS/MS run in the multiple reaction monitoring mode enabling detection of all sublibrary components followed by hit verification and investigation of reduced sublibraries in further competitive binding experiments. In this way, we could demonstrate that all GAT1 inhibitors reducing reporter ligand binding below 50% at a concentration of 1 μM are detected reliably without generation of false positive or false negative hits. As the described strategy is apart from its reliability also highly efficient, it can be assumed to become a valuable tool in early drug research, especially for membrane integrated drug targets that are often posing problems in established screening techniques.
Collapse
Affiliation(s)
- Jürgen Gabriel
- Department of Pharmacy, Faculty of Chemistry and Pharmacy, Ludwig Maximilian University München, Munich, Germany
| | - Georg Höfner
- Department of Pharmacy, Faculty of Chemistry and Pharmacy, Ludwig Maximilian University München, Munich, Germany
| | - Klaus T Wanner
- Department of Pharmacy, Faculty of Chemistry and Pharmacy, Ludwig Maximilian University München, Munich, Germany
| |
Collapse
|
5
|
Arias HR, Jin XT, Gallino S, Peng C, Feuerbach D, García-Colunga J, Elgoyhen AB, Drenan RM, Ortells MO. Selectivity of (±)-citalopram at nicotinic acetylcholine receptors and different inhibitory mechanisms between habenular α3β4* and α9α10 subtypes. Neurochem Int 2019; 131:104552. [PMID: 31545995 DOI: 10.1016/j.neuint.2019.104552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/31/2023]
Abstract
The inhibitory activity of (±)-citalopram on human (h) α3β4, α4β2, and α7 nicotinic acetylcholine receptors (AChRs) was determined by Ca2+ influx assays, whereas its effect on rat α9α10 and mouse habenular α3β4* AChRs by electrophysiological recordings. The Ca2+ influx results clearly establish that (±)-citalopram inhibits (IC50's in μM) hα3β4 AChRs (5.1 ± 1.3) with higher potency than that for hα7 (18.8 ± 1.1) and hα4β2 (19.1 ± 4.2) AChRs. This is in agreement with the [3H]imipramine competition binding results indicating that (±)-citalopram binds to imipramine sites at desensitized hα3β4 with >2-fold higher affinity than that for hα4β2. The electrophysiological, molecular docking, and in silico mutation results indicate that (±)-citalopram competitively inhibits rα9α10 AChRs (7.5 ± 0.9) in a voltage-independent manner by interacting mainly with orthosteric sites, whereas it inhibits a homogeneous population of α3β4* AChRs at MHb (VI) neurons (7.6 ± 1.0) in a voltage-dependent manner by interacting mainly with a luminal site located in the middle of the ion channel, overlapping the imipramine site, which suggests an ion channel blocking mechanism. In conclusion, (±)-citalopram inhibits α3β4 and α9α10 AChRs with higher potency compared to other AChRs but by different mechanisms. (±)-Citalopram also inhibits habenular α3β4*AChRs, supporting the notion that these receptors are important endogenous targets related to their anti-addictive activities.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, College of Osteopathic Medicine, Oklahoma State University Center for Health Sciences, Tahlequah, OK, USA.
| | - Xiao-Tao Jin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sofía Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Universidad de Buenos Aires, Argentina
| | - Can Peng
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Universidad de Buenos Aires, Argentina; Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, Morón and CONICET, Argentina.
| |
Collapse
|
6
|
Reshma, Vaishanav SK, Yadav T, Sinha S, Tiwari S, Satnami ML, Ghosh KK. Antidepressant drug-protein interactions studied by spectroscopic methods based on fluorescent carbon quantum dots. Heliyon 2019; 5:e01631. [PMID: 31193112 PMCID: PMC6517537 DOI: 10.1016/j.heliyon.2019.e01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
A highly sensitive fluorescent carbon quantum dots (CDs) was designed to measure the interaction of antidepressant drugs and serum albumins (SA). In present investigation the interaction of bovine serum albumin (BSA) and human serum albumin (HSA) with antidepressant drugs viz. amitryptiline hydrochloride (AMT), chlorpromazine hydrochloride (CPZ) and desipramine hydrochloride (DSP) bioconjugated on CDs have been studied by different spectroscopic techniques i.e., Fluorescence, UV-Visible, Dynamic light scattering (DLS) and FT-IR. The CDs were prepared by one-pot method using glucose and PEG-200. The developed CDs showed blue luminescence under irradiation with ultra-violet. The Stern-Volmer quenching constant (K sv ) indicates the presence of static quenching mechanism. The apparent binding constant K a between antidepressant drugs with complex of SA-CDs have been determined. These results illustrated that CPZ shows strong binding with HSA. As further analyzed by FT-IR spectroscopy and DLS technique, the results suggested induced conformational changes on SA, thus confirming the experimental and theoretical results. Thus, a thorough knowledge of the energetics of drug-protein affinities in presence of CDs as attempted in this work is vital in giving way for appropriate drug delivery.
Collapse
Affiliation(s)
- Reshma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Sandeep K. Vaishanav
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
- State Forensic Science Laboratory, Raipur, C.G., 492013, India
| | - Toshikee Yadav
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Srishti Sinha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G., 492010, India
| |
Collapse
|
7
|
Arias HR, Feuerbach D, Schmidt B, Heydenreich M, Paz C, Ortells MO. Drimane Sesquiterpenoids Noncompetitively Inhibit Human α4β2 Nicotinic Acetylcholine Receptors with Higher Potency Compared to Human α3β4 and α7 Subtypes. JOURNAL OF NATURAL PRODUCTS 2018; 81:811-817. [PMID: 29634269 DOI: 10.1021/acs.jnatprod.7b00893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The drimane sesquiterpenoids drimenin, cinnamolide, dendocarbin A, and polygodial were purified from the Canelo tree ( Drimys winteri) and chemically characterized by spectroscopic methods. The pharmacological activity of these natural compounds were determined on hα4β2, hα3β4, and hα7 nicotinic acetylcholine receptors (AChRs) by Ca2+ influx measurements. The results established that drimane sesquiterpenoids inhibit AChRs with the following selectivity: hα4β2 > hα3β4 > hα7. In the case of hα4β2 AChRs, the following potency rank order was determined (IC50's in μM): drimenin (0.97 ± 0.35) > cinnamolide (1.57 ± 0.36) > polygodial (62.5 ± 19.9) ≫ dendocarbin A (no activity). To determine putative structural features underlying the differences in inhibitory potency at hα4β2 AChRs, additional structure-activity relationship and molecular docking experiments were performed. The Ca2+ influx and structural results supported a noncompetitive mechanism of inhibition, where drimenin interacted with luminal and nonluminal (TMD-β2 intrasubunit) sites. The structure-activity relationship results, i.e., the lower the ligand polarity, the higher the inhibitory potency, supported the nonluminal interaction. Ligand binding to both sites might inhibit the hα4β2 AChR by a cooperative mechanism, as shown experimentally ( nH > 1). Drimenin could be used as a molecular scaffold for the development of more potent inhibitors with higher selectivity for the hα4β2 AChR.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Basic Sciences , California Northstate University College of Medicine , Elkgrove , California 95757 , United States
| | - Dominik Feuerbach
- Novartis Institutes for Biomedical Research , Basel CH-4057 , Switzerland
| | - Bernd Schmidt
- Department of Chemistry , University of Potsdam , D-14469 Potsdam , Germany
| | | | - Cristian Paz
- Departamento de Química y Recursos Naturales , Universidad de La Frontera , Francisco Salazar 01145 , Temuco , Chile
| | - Marcelo O Ortells
- Facultad de Medicina , Universidad de Morón and CONICET , Morón 1708 , Argentina
| |
Collapse
|
8
|
Arias HR, Vázquez-Gómez E, Hernández-Abrego A, Gallino S, Feuerbach D, Ortells MO, Elgoyhen AB, García-Colunga J. Tricyclic antidepressants inhibit hippocampal α7* and α9α10 nicotinic acetylcholine receptors by different mechanisms. Int J Biochem Cell Biol 2018; 100:1-10. [PMID: 29704625 DOI: 10.1016/j.biocel.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
The activity of tricyclic antidepressants (TCAs) at α7 and α9α10 nicotinic acetylcholine receptors (AChRs) as well as at hippocampal α7-containing (i.e., α7*) AChRs is determined by using Ca2+ influx and electrophysiological recordings. To determine the inhibitory mechanisms, additional functional tests and molecular docking experiments are performed. The results established that TCAs (a) inhibit Ca2+ influx in GH3-α7 cells with the following potency (IC50 in μM) rank: amitriptyline (2.7 ± 0.3) > doxepin (5.9 ± 1.1) ∼ imipramine (6.6 ± 1.0). Interestingly, imipramine inhibits hippocampal α7* AChRs (42.2 ± 8.5 μM) in a noncompetitive and voltage-dependent manner, whereas it inhibits α9α10 AChRs (0.53 ± 0.05 μM) in a competitive and voltage-independent manner, and (b) inhibit [3H]imipramine binding to resting α7 AChRs with the following affinity rank (IC50 in μM): imipramine (1.6 ± 0.2) > amitriptyline (2.4 ± 0.3) > doxepin (4.9 ± 0.6), whereas imipramine's affinity was no significantly different to that for the desensitized state. The molecular docking and functional results support the notion that imipramine noncompetitively inhibits α7 AChRs by interacting with two overlapping luminal sites, whereas it competitively inhibits α9α10 AChRs by interacting with the orthosteric sites. Collectively our data indicate that TCAs inhibit α7, α9α10, and hippocampal α7* AChRs at clinically relevant concentrations and by different mechanisms of action.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA.
| | - Elizabeth Vázquez-Gómez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Andy Hernández-Abrego
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Sofía Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, Morón, CONICET, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
9
|
Osterstock G, Le Bras B, Arulkandarajah KH, Le Corronc H, Czarnecki A, Mouffle C, Bullier E, Legendre P, Mangin JM. Axoglial synapses are formed onto pioneer oligodendrocyte precursor cells at the onset of spinal cord gliogenesis. Glia 2018; 66:1678-1694. [PMID: 29603384 DOI: 10.1002/glia.23331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Virtually all oligodendrocyte precursors cells (OPCs) receive glutamatergic and/or GABAergic synapses that are lost upon their differentiation into oligodendrocytes in the postnatal and adult brain. Although OPCs are generated at mid-embryonic stages, several weeks before the onset of myelination, it remains unknown when and where OPCs receive their first synapses and become susceptible to the influence of neuronal activity. In the embryonic spinal cord, neuro-epithelial precursors in the pMN domain cease generating cholinergic motor neurons (MNs) to produce OPCs when the first synapses are formed in the ventral-lateral marginal zone. We discovered that when the first synapses form onto MNs, axoglial synapses also form onto the processes of neuro-epithelial precursors located in the marginal zone as they differentiate into OPCs. After leaving the neuro-epithelium, these pioneer OPCs preferentially accumulate in the marginal zone where they are contacted by functional glutamatergic and GABAergic synapses. Spontaneous activity of these axoglial synapses was significantly potentiated by cholinergic signaling acting through presynaptic nicotinic acetylcholine receptors. Moreover, we discovered that chronic nicotine treatment significantly increases early OPC proliferation and density in the marginal zone. Our results demonstrate that OPCs are contacted by functional synapses as soon as they emerge from their precursor domain and that embryonic spinal cord colonization by OPCs can be regulated by cholinergic signaling acting onto these axoglial synapses.
Collapse
Affiliation(s)
- Guillaume Osterstock
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Barbara Le Bras
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Kalaimakan Hervé Arulkandarajah
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Hervé Le Corronc
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France.,Université d'Angers, Angers, 49000, France
| | - Antonny Czarnecki
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Christine Mouffle
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Erika Bullier
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Pascal Legendre
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| | - Jean-Marie Mangin
- Sorbonne Université, UM119, Neuroscience Paris Seine, Paris F-75005, France Centre National de la Recherche Scientifique (CNRS), UMR 8246, Paris F-75005, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1130, Paris, F-75005, France
| |
Collapse
|
10
|
Bupropion and its photoreactive analog (±)-SADU-3-72 interact with luminal and non-luminal sites at human α4β2 nicotinic acetylcholine receptors. Neurochem Int 2016; 100:67-77. [DOI: 10.1016/j.neuint.2016.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 11/20/2022]
|
11
|
Han J, Wang DS, Liu SB, Zhao MG. Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors. Biomol Ther (Seoul) 2016; 24:291-7. [PMID: 27098858 PMCID: PMC4859792 DOI: 10.4062/biomolther.2015.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023] Open
Abstract
Cytisine (CYT), a partial agonist of α4β2-nicotinic receptors, has been used for antidepressant efficacy in several tests. Nicotinic receptors have been shown to be closely associated with depression. However, little is known about the effects of CYT on the depression. In the present study, a mouse model of depression, the unpredictable chronic mild stress (UCMS), was used to evaluate the activities of CYT. UCMS caused significant depression-like behaviors, as shown by the decrease of total distances in open field test, and the prolonged duration of immobility in tail suspension test and forced swimming test. Treatment with CYT for two weeks notably relieved the depression-like behaviors in the UCMS mice. Next, proteins related to depressive disorder in the brain region of hippocampus and amygdala were analyzed to elucidate the underlying mechanisms of CYT. CYT significantly reversed the decreases of 5-HT1A, BDNF, and mTOR levels in the hippocampus and amygdala. These results imply that CYT may act as a potential anti-depressant in the animals under chronic stress.
Collapse
Affiliation(s)
- Jing Han
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Dong-Sheng Wang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
12
|
Vázquez-Gómez E, Arias HR, Feuerbach D, Miranda-Morales M, Mihailescu S, Targowska-Duda KM, Jozwiak K, García-Colunga J. Bupropion-induced inhibition of α7 nicotinic acetylcholine receptors expressed in heterologous cells and neurons from dorsal raphe nucleus and hippocampus. Eur J Pharmacol 2014; 740:103-11. [PMID: 25016090 DOI: 10.1016/j.ejphar.2014.06.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023]
Abstract
The pharmacological activity of bupropion was compared between α7 nicotinic acetylcholine receptors expressed in heterologous cells and hippocampal and dorsal raphe nucleus neurons. The inhibitory activity of bupropion was studied on GH3-α7 cells by Ca2+ influx, as well as on neurons from the dorsal raphe nucleus and interneurons from the stratum radiatum of the hippocampal CA1 region by using a whole-cell voltage-clamp technique. In addition, the interaction of bupropion with the α7 nicotinic acetylcholine receptor was determined by [3H]imipramine competition binding assays and molecular docking. The fast component of acetylcholine- and choline-induced currents from both brain regions was inhibited by methyllycaconitine, indicating the participation of α7-containing nicotinic acetylcholine receptors. Choline-induced currents in hippocampal interneurons were partially inhibited by 10 µM bupropion, a concentration that could be reached in the brain during clinical administration. Additionally, both agonist-induced currents were reversibly inhibited by bupropion at concentrations that coincide with its inhibitory potency (IC50=54 µM) and binding affinity (Ki=63 µM) for α7 nicotinic acetylcholine receptors from heterologous cells. The [3H]imipramine competition binding and molecular docking results support a luminal location for the bupropion binding site(s). This study may help to understand the mechanisms of actions of bupropion at neuronal and molecular levels related with its therapeutic actions on depression and for smoking cessation.
Collapse
Affiliation(s)
- Elizabeth Vázquez-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Hugo R Arias
- Department of Medical Education, California Northstate University College of Medicine, 9700W. Taron Dr., Elk Grove, CA 95757, USA.
| | - Dominik Feuerbach
- Neuroscience Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marcela Miranda-Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla 3001, Querétaro 76230, México
| | - Stefan Mihailescu
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Katarzyna M Targowska-Duda
- Department of Chemistry, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Jozwiak
- Department of Chemistry, Laboratory of Medicinal Chemistry and Neuroengineering, Medical University of Lublin, Lublin, Poland
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla 3001, Querétaro 76230, México.
| |
Collapse
|
13
|
Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors. J Med Chem 2014; 57:8204-23. [PMID: 24901260 PMCID: PMC4207546 DOI: 10.1021/jm401937a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Nicotinic acetylcholine receptors
(nAChRs) have been investigated
for developing drugs that can potentially treat various central nervous
system disorders. Considerable evidence supports the hypothesis that
modulation of the cholinergic system through activation and/or desensitization/inactivation
of nAChR holds promise for the development of new antidepressants.
The introductory portion of this Miniperspective discusses the basic
pharmacology that underpins the involvement of α4β2-nAChRs
in depression, along with the structural features that are essential
to ligand recognition by the α4β2-nAChRs. The remainder
of this Miniperspective analyzes reported nicotinic ligands in terms
of drug design considerations and their potency and selectivity, with
a particular focus on compounds exhibiting antidepressant-like effects
in preclinical or clinical studies. This Miniperspective aims to provide
an in-depth analysis of the potential for using nicotinic ligands
in the treatment of depression, which may hold some promise in addressing
an unmet clinical need by providing relief from depressive symptoms
in refractory patients.
Collapse
Affiliation(s)
- Li-Fang Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
14
|
Bondarenko V, Targowska-Duda KM, Jozwiak K, Tang P, Arias HR. Molecular interactions between mecamylamine enantiomers and the transmembrane domain of the human α4β2 nicotinic receptor. Biochemistry 2014; 53:908-18. [PMID: 24437521 PMCID: PMC3971955 DOI: 10.1021/bi400969x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To characterize the binding sites of mecamylamine enantiomers on the transmembrane domain (TMD) of human (h) (α4)3(β2)2 and (α4)2(β2)3 nicotinic acetylcholine receptors (AChRs), we used nuclear magnetic resonance (NMR), molecular docking, and radioligand binding approaches. The interactions of (S)-(+)- and (R)-(-)-mecamylamine with several residues, determined by high-resolution NMR, within the hα4β2-TMD indicate different modes of binding at several luminal (L) and nonluminal (NL) sites. In general, the residues sensitive to each mecamylamine enantiomer are similar at both receptor stoichiometries. However, some differences were observed. The molecular docking experiments were crucial for delineating the location and orientation of each enantiomer in its binding site. In the (α4)2(β2)3-TMD, (S)-(+)-mecamylamine interacts with the L1 (i.e., between positions -3' and -5') and L2 (i.e., between positions 16' and 20') sites, whereas the β2-intersubunit (i.e., cytoplasmic end of two β2-TMDs) and α4/β2-intersubunit (i.e., cytoplasmic end of α4-TM1 and β2-TM3) sites are shared by both enantiomers. In the (α4)3(β2)2-TMD, both enantiomers bind with different orientations to the L1' (closer to ring 2') and α4-intrasubunit (i.e., at the cytoplasmic ends of α4-TM1 and α4-TM2) sites, but only (R)-(-)-mecamylamine interacts with the L2' (i.e., closer to ring 20') and α4-TM3-intrasubunit sites. Our findings are important because they provide, for the first time, a structural understanding of the allosteric modulation elicited by mecamylamine enantiomers at each hα4β2 stoichiometry. This advancement could be beneficial for the development of novel therapies for the treatment of several neurological disorders.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Department of Anesthesiology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | |
Collapse
|
15
|
Arias HR, López JJ, Feuerbach D, Fierro A, Ortells MO, Pérez EG. Novel 2-(substituted benzyl)quinuclidines inhibit human α7 and α4β2 nicotinic receptors by different mechanisms. Int J Biochem Cell Biol 2013; 45:2420-30. [DOI: 10.1016/j.biocel.2013.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/11/2013] [Accepted: 08/06/2013] [Indexed: 01/12/2023]
|
16
|
Radhakrishnan R, Santamaría A, Escobar L, Arias HR. The β4 nicotinic receptor subunit modulates the chronic antidepressant effect mediated by bupropion. Neurosci Lett 2013; 555:68-72. [PMID: 23981664 DOI: 10.1016/j.neulet.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022]
Abstract
The objective of the current study is to investigate the role of the nicotinic receptor β4 subunit in the antidepressant activity of bupropion. Wild-type (β4+/+) and knockout (β4-/-) mice were intraperitoneally administered with normal saline (control) or bupropion (40mg/kg) daily for the first two weeks. Forced swim tests were performed on day 1 to determine the acute effect of bupropion at 0, 15, 30, 45, or 60min after the injection, and after two weeks of daily treatment to determine the chronic effects. To examine the remnant effects of bupropion after withdrawal, forced swim tests were performed one and two weeks after the last day of treatment with bupropion. Our results indicate that: (1) the acute treatment with bupropion increases the swimming time (i.e., antidepressant effect) in β4+/+ and β4-/- mice from both genders, (2) the antidepressant effect after the chronic treatment is seen only in female β4+/+ mice, and (3) the residual antidepressant effect of bupropion persists only in male β4+/+ mice after one week withdrawal. We conclude that the β4 subunit plays a modulatory role in the chronic antidepressant effect mediated by bupropion, and that its effect is gender-specific.
Collapse
Affiliation(s)
- Rajan Radhakrishnan
- College of Pharmacy, Roseman University of Health Sciences, Utah Campus, South Jordan, UT, USA
| | | | | | | |
Collapse
|
17
|
Molgó J, Aráoz R, Benoit E, Iorga BI. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Expert Opin Drug Discov 2013; 8:1203-23. [DOI: 10.1517/17460441.2013.822365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Arias HR, Ortells MO, Feuerbach D. (-)-Reboxetine inhibits muscle nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites. Neurochem Int 2013; 63:423-31. [PMID: 23917086 DOI: 10.1016/j.neuint.2013.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
Abstract
The interaction of (-)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (-)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca(2+) influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50=3.86±0.49 and 1.92±0.48 μM, respectively, (b) binds to the [(3)H]TCP site with ~13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [(3)H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6' and 13' in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9' is the minimum structural component for (-)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (-)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Medical Education, California Northstate University College of Medicine, Elk Grove, CA, USA.
| | | | | |
Collapse
|
19
|
Therapeutic doses of antidepressants are projected not to inhibit human α4β2 nicotinic acetylcholine receptors. Neuropharmacology 2013; 72:88-95. [PMID: 23639435 DOI: 10.1016/j.neuropharm.2013.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 04/10/2013] [Indexed: 11/22/2022]
Abstract
Inhibition of central α4β2 nAChRs by antidepressants, proposed to contribute to their clinical efficacy, was assessed for monoamine reuptake inhibitors (amitriptyline, nortriptyline, fluoxetine, sertraline, paroxetine, citalopram) by comparing projected human unbound brain drug concentrations (Cu,b) at therapeutic doses with concentrations that inhibit human α4β2 nAChRs in vitro. Inhibitory concentrations (IC50) were determined by patch clamp and ranged from 0.8-3.2 μM, except for nortriptyline (IC50 = 100 nM). Cu,b values were calculated from human unbound plasma drug concentrations (Cu,p) and rat-derived brain-to-plasma and extracellular fluid-to-plasma ratios for the unbound drug, which are near unity, due to much higher brain tissue binding than plasma protein binding of these drugs. Accordingly in humans, antidepressant Cu,b are projected to essentially equal Cu,p, with average values from 3-87 nM, which are 30-to-250-fold below their IC50 concentrations. Based on our model, monoaminergic antidepressants minimally inhibit central nAChRs and it is unlikely that α4β2 nAChR antagonism contributes to their antidepressant activity. Nortriptyline is an exception with a Cu,b that is 2-fold below its IC50, which is comparable to the nAChR antagonist (±)-mecamylamine, for which Cu,b is 4-fold below its IC50; both drugs will inhibit a substantial fraction of α4β2 nAChRs. The Cu,b of the α4β2 nAChR partial agonist varenicline, which has antidepressant-like activity in a murine model, is higher than its IC50 and varenicline is projected to cause ~70% inhibition of α4β2 nAChRs. Taken together these data may help explain the negative outcome of recent antidepressant augmentation trials with mecamylamine and the partial agonist CP-601927.
Collapse
|
20
|
Pérez EG, Ocampo C, Feuerbach D, López JJ, Morelo GL, Tapia RA, Arias HR. Novel 1-(1-benzyl-1H-indol-3-yl)-N,N,N-trimethylmethanaminium iodides are competitive antagonists for the human α4β2 and α7 nicotinic acetylcholine receptors. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00042g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol Ther 2013; 137:22-54. [DOI: 10.1016/j.pharmthera.2012.08.012] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022]
|
22
|
Arias HR, Fedorov NB, Benson LC, Lippiello PM, Gatto GJ, Feuerbach D, Ortells MO. Functional and structural interaction of (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor. J Pharmacol Exp Ther 2012; 344:113-23. [PMID: 23010362 DOI: 10.1124/jpet.112.197905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The interaction of the selective norepinephrine reuptake inhibitor (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor (nAChR) in different conformational states was studied by several functional and structural approaches. Patch-clamp and Ca(2+)-influx results indicate that (-)-reboxetine does not activate hα4β2 nAChRs via interaction with the orthosteric sites, but inhibits agonist-induced hα4β2 activation by a noncompetitive mechanism. Consistently, the results from the electrophysiology-based functional approach suggest that (-)-reboxetine may act via open channel block; therefore, it is capable of producing a use-dependent type of inhibition of the hα4β2 nAChR function. We tested whether (-)-reboxetine binds to the luminal [(3)H]imipramine site. The results indicate that, although (-)-reboxetine binds with low affinity to this site, it discriminates between the resting and desensitized hα4β2 nAChR ion channels. Patch-clamp results also indicate that (-)-reboxetine progressively inhibits the hα4β2 nAChR with two-fold higher potency at the end of one-second application of agonist, compared with the peak current. The molecular docking studies show that (-)-reboxetine blocks the ion channel at the level of the imipramine locus, between M2 rings 6' and 14'. In addition, we found a (-)-reboxetine conformer that docks in the helix bundle of the α4 subunit, near the middle region. According to molecular dynamics simulations, (-)-reboxetine binding is stable for both sites, albeit less stable than imipramine. The interaction of these drugs with the helix bundle might alter allostericaly the functionality of the channel. In conclusion, the clinical action of (-)-reboxetine may be produced (at least partially) by its inhibitory action on hα4β2 nAChRs.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Medical Education, College of Medicine, California Northstate University, Elk Grove, California, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hunter SK, Mendoza JH, D’Anna K, Zerbe GO, McCarthy L, Hoffman C, Freedman R, Ross RG. Antidepressants may mitigate the effects of prenatal maternal anxiety on infant auditory sensory gating. Am J Psychiatry 2012; 169:616-24. [PMID: 22581104 PMCID: PMC3640273 DOI: 10.1176/appi.ajp.2012.11091365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Prenatal maternal anxiety has detrimental effects on the offspring's neurocognitive development, including impaired attentional function. Antidepressants are commonly used during pregnancy, yet their impact on offspring attention and their interaction with maternal anxiety has not been assessed. The authors used P50 auditory sensory gating, a putative marker of early attentional processes measurable in young infants, to assess the impact of maternal anxiety and antidepressant use. METHOD A total of 242 mother-infant dyads were classified relative to maternal history of anxiety and maternal prenatal antidepressant use. Infant P50 auditory sensory gating was recorded during active sleep at a mean age of 76 days (SD=38). RESULTS In the absence of prenatal antidepressant exposure, infants whose mothers had a history of anxiety diagnoses had diminished P50 sensory gating. Prenatal antidepressant exposure mitigated the effect of anxiety. The effect of maternal anxiety was limited to amplitude of response to the second stimulus, while antidepressant exposure had an impact on the amplitude of response to both the first and second stimulus. CONCLUSIONS Maternal anxiety disorders are associated with less inhibition during infant sensory gating, a performance deficit mitigated by prenatal antidepressant exposure. This effect may be important in considering the risks and benefits of antidepressant use during pregnancy. Cholinergic mechanisms are hypothesized for both anxiety and antidepressant effects, although the cholinergic receptors involved are likely different for anxiety and antidepressant effects.
Collapse
|
24
|
NMR structures of the transmembrane domains of the α4β2 nAChR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1261-8. [PMID: 22361591 DOI: 10.1016/j.bbamem.2012.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/30/2012] [Accepted: 02/07/2012] [Indexed: 11/21/2022]
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is the predominant heteromeric subtype of nAChRs in the brain, which has been implicated in numerous neurological conditions. The structural information specifically for the α4β2 and other neuronal nAChRs is presently limited. In this study, we determined structures of the transmembrane (TM) domains of the α4 and β2 subunits in lauryldimethylamine-oxide (LDAO) micelles using solution NMR spectroscopy. NMR experiments and size exclusion chromatography-multi-angle light scattering (SEC-MALS) analysis demonstrated that the TM domains of α4 and β2 interacted with each other and spontaneously formed pentameric assemblies in the LDAO micelles. The Na(+) flux assay revealed that α4β2 formed Na(+) permeable channels in lipid vesicles. Efflux of Na(+) through the α4β2 channels reduced intra-vesicle Sodium Green™ fluorescence in a time-dependent manner that was not observed in vesicles without incorporating α4β2. The study provides structural insight into the TM domains of the α4β2 nAChR. It offers a valuable structural framework for rationalizing extensive biochemical data collected previously on the α4β2 nAChR and for designing new therapeutic modulators.
Collapse
|
25
|
Haenisch B, Bönisch H. Depression and antidepressants: Insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Ther 2011; 129:352-68. [DOI: 10.1016/j.pharmthera.2010.12.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 12/15/2022]
|
26
|
Quek GXJ, Lin D, Halliday JI, Absalom N, Ambrus JI, Thompson AJ, Lochner M, Lummis SCR, McLeod MD, Chebib M. Identifying the binding site of novel methyllycaconitine (MLA) analogs at α4β2 nicotinic acetylcholine receptors. ACS Chem Neurosci 2010; 1:796-809. [PMID: 22778816 DOI: 10.1021/cn100073x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/14/2010] [Indexed: 12/24/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR) are ligand gated ion channels that mediate fast synaptic transmission. Methyllycaconitine (MLA) is a selective and potent antagonist of the α7 nAChR, and its anthranilate ester side-chain is important for its activity. Here we report the influence of structure on nAChR inhibition for a series of novel MLA analogs, incorporating either an alcohol or anthranilate ester side-chain to an azabicyclic or azatricyclic core against rat α7, α4β2, and α3β4 nAChRs expressed in Xenopus oocytes. The analogs inhibited ACh (EC(50)) within an IC(50) range of 2.3-26.6 μM. Most displayed noncompetitive antagonism, but the anthranilate ester analogs exerted competitive behavior at the α7 nAChR. At α4β2 nAChRs, inhibition by the azabicyclic alcohol was voltage-dependent suggesting channel block. The channel-lining residues of α4 subunits were mutated to cysteine and the effect of azabicyclic alcohol was evaluated by competition with methanethiosulfonate ethylammonium (MTSEA) and a thiol-reactive probe in the open, closed, and desensitized states of α4β2 nAChRs. The azabicyclic alcohol was found to compete with MTSEA between residues 6' and 13' in a state-dependent manner, but the reactive probe only bonded with 13' in the open state. The data suggest that the 13' position is the dominant binding site. Ligand docking of the azabicyclic alcohol into a (α4)(3)(β2)(2) homology model of the closed channel showed that the ligand can be accommodated at this location. Thus our data reveal distinct pharmacological differences between different nAChR subtypes and also identify a specific binding site for a noncompetitive channel blocker.
Collapse
Affiliation(s)
| | - Diana Lin
- Faculty of Pharmacy, The University of Sydney, Australia
| | - Jill I. Halliday
- Research School of Chemistry, The Australian National University, Australia
| | - Nathan Absalom
- Faculty of Pharmacy, The University of Sydney, Australia
| | - Joseph I. Ambrus
- Research School of Chemistry, The Australian National University, Australia
| | | | - Martin Lochner
- Department of Chemistry and Biochemistry, University of Bern, Switzerland
| | | | - Malcolm D. McLeod
- Research School of Chemistry, The Australian National University, Australia
| | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Australia
| |
Collapse
|
27
|
Arias HR, Feuerbach D, Targowska-Duda KM, Russell M, Jozwiak K. Interaction of selective serotonin reuptake inhibitors with neuronal nicotinic acetylcholine receptors. Biochemistry 2010; 49:5734-42. [PMID: 20527991 DOI: 10.1021/bi100536t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We compared the interaction of fluoxetine and paroxetine, two selective serotonin reuptake inhibitors (SSRIs), with the human (h) alpha4beta2, alpha3beta4, and alpha7 nicotinic acetylcholine receptors (AChRs) in different conformational states, using Ca(2+) influx, radioligand binding, and molecular docking approaches. The results established that (1) fluoxetine was more potent than paroxetine in inhibiting agonist-activated Ca(2+) influx on halpha4beta2 and halpha7 AChRs, whereas the potency of both SSRIs was practically the same in the halpha3beta4 AChR. [corrected] (2) SSRIs bind to the [(3)H]imipramine locus with a [corrected] higher affinity when the AChRs are in the desensitized states compared to the resting states. (3) The different receptor specificity for fluoxetine determined by their inhibitory potencies or binding affinities suggests different modes of interaction when the AChR is in the closed or activated state. (4) Neutral and protonated fluoxetine interacts with a binding domain located in the middle of the AChR ion channel. In conclusion, SSRIs inhibit the most important neuronal AChRs with potencies and affinities that are clinically relevant by binding to a luminal site that is shared with tricyclic antidepressants.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, Arizona 85308, USA.
| | | | | | | | | |
Collapse
|
28
|
Arias HR. Positive and negative modulation of nicotinic receptors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:153-203. [PMID: 21109220 DOI: 10.1016/b978-0-12-381264-3.00005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (AChRs) are one of the best characterized ion channels from the Cys-loop receptor superfamily. The study of acetylcholine binding proteins and prokaryotic ion channels from different species has been paramount for the understanding of the structure-function relationship of the Cys-loop receptor superfamily. AChR function can be modulated by different ligand types. The neurotransmitter ACh and other agonists trigger conformational changes in the receptor, finally opening the intrinsic cation channel. The so-called gating process couples ligand binding, located at the extracellular portion, to the opening of the ion channel, located at the transmembrane region. After agonist activation, in the prolonged presence of agonists, the AChR becomes desensitized. Competitive antagonists overlap the agonist-binding sites inhibiting the pharmacological action of agonists. Positive allosteric modulators (PAMs) do not bind to the orthostetic binding sites but allosterically enhance the activity elicited by agonists by increasing the gating process (type I) and/or by decreasing desensitization (type II). Instead, negative allosteric modulators (NAMs) produce the opposite effects. Interestingly, this negative effect is similar to that found for another class of allosteric drugs, that is, noncompetitive antagonists (NCAs). However, the main difference between both categories of drugs is based on their distinct binding site locations. Although both NAMs and NCAs do not bind to the agonist sites, NACs bind to sites located in the ion channel, whereas NAMs bind to nonluminal sites. However, this classification is less clear for NAMs interacting at the extracellular-transmembrane interface where the ion channel mouth might be involved. Interestingly, PAMs and NAMs might be developed as potential medications for the treatment of several diseases involving AChRs, including dementia-, skin-, and immunological-related diseases, drug addiction, and cancer. More exciting is the potential combination of specific agonists with specific PAMs. However, we are still in the beginning of understanding how these compounds act and how these drugs can be used therapeutically.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| |
Collapse
|