1
|
Bautista-Bautista G, Salguero-Zacarias S, Villeda-Gabriel G, García-López G, Osorio-Caballero M, Palafox-Vargas ML, Acuña-González RJ, Lara-Pereyra I, Díaz-Ruíz O, Flores-Herrera H. Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual. BMC Pregnancy Childbirth 2024; 24:645. [PMID: 39367340 PMCID: PMC11451097 DOI: 10.1186/s12884-024-06847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. METHODS Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. RESULTS Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. CONCLUSIONS P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Collapse
Affiliation(s)
- Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Santos Salguero-Zacarias
- Departamento de Tococirugia y Urgencias, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes , Ciudad de México, México
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Ricardo Josué Acuña-González
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Irlando Lara-Pereyra
- Departamento de Ginecología, Hospital General de Zona 252, Instituto Mexicano del Seguro Social, Atlacomulco, México
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México.
| |
Collapse
|
2
|
Shao X, Yang Y, Liu Y, Wang Y, Zhao Y, Yu X, Liu J, Li YX, Wang YL. Orchestrated feedback regulation between melatonin and sex hormones involving GPER1-PKA-CREB signaling in the placenta. J Pineal Res 2023; 75:e12913. [PMID: 37746893 DOI: 10.1111/jpi.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Maintaining placental endocrine homeostasis is crucial for a successful pregnancy. Pre-eclampsia (PE), a gestational complication, is a leading cause of maternal and perinatal morbidity and mortality. Aberrant elevation of testosterone (T0 ) synthesis, reduced estradiol (E2 ), and melatonin productions have been identified in preeclamptic placentas. However, the precise contribution of disrupted homeostasis among these hormones to the occurrence of PE remains unknown. In this study, we established a strong correlation between suppressed melatonin production and decreased E2 as well as elevated T0 synthesis in PE placentas. Administration of the T0 analog testosterone propionate (TP; 2 mg/kg/day) to pregnant mice from E7.5 onwards resulted in PE-like symptoms, along with elevated T0 production and reduced E2 and melatonin production. Notably, supplementation with melatonin (10 mg/kg/day) in TP-treated mice had detrimental effects on fetal and placental development and compromised hormone synthesis. Importantly, E2 , but not T0 , actively enhanced melatonin synthetase AANAT expression and melatonin production in primary human trophoblast (PHT) cells through GPER1-PKA-CREB signaling pathway. On the other hand, melatonin suppressed the level of estrogen synthetase aromatase while promoting the expressions of androgen synthetic enzymes including 17β-HSD3 and 3β-HSD1 in PHT cells. These findings reveal an orchestrated feedback mechanism that maintains homeostasis of placental sex hormones and melatonin. It is implied that abnormal elevation of T0 synthesis likely serves as the primary cause of placental endocrine disturbances associated with PE. The suppression of melatonin may represent an adaptive strategy to correct the imbalance in sex hormone levels within preeclamptic placentas. The findings of this study offer novel evidence that identifies potential targets for the development of innovative therapeutic strategies for PE.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yun Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongqing Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- Beijing Center for Disease Prevention and Control, Beijing, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
3
|
Tanski D, Skowronska A, Tanska M, Lepiarczyk E, Skowronski MT. The In Vitro Effect of Steroid Hormones, Arachidonic Acid, and Kinases Inhibitors on Aquaporin 1, 2, 5, and 7 Gene Expression in the Porcine Uterine Luminal Epithelial Cells during the Estrous Cycle. Cells 2021; 10:cells10040832. [PMID: 33917112 PMCID: PMC8067835 DOI: 10.3390/cells10040832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins, which play an important role in water homeostasis in the uterus. According to the literature, the expression of aquaporins in reproductive structures depends on the local hormonal milieu. The current study investigated the effect of selected PKA kinase inhibitor H89 and MAPK kinase inhibitor PD98059, on the expression of AQP1, 2, 5, and 7, and steroid hormones (E2), progesterone (P4), and arachidonic acid (AA) in the porcine endometrium on days 18–20 and 2–4 of the estrous cycle (the follicular phase where estrogen and follicle-stimulating hormone (FSH) are secreted increasingly in preparation for estrus and the luteal phase where the ovarian follicles begin the process of luteinization with the formation of the corpus luteum and progesterone secretion, respectively). The luminal epithelial cells were incubated in vitro in the presence of the aforementioned factors. The expression of mRNA was determined by the quantitative real-time PCR technique. In general, in Experiment 1, steroid hormones significantly increased expression of AQP1, 2, and 5 while arachidonic acid increased expression of AQP2 and AQP7. On the other hand, MAPK kinase inhibitor significantly decreased the expression of AQP1 and 5. In Experiment 2, E2, P4, or AA combined with kinase inhibitors differentially affected on AQPs expression. E2 in combination with PKA inhibitor significantly decreased expression of AQP1 but E2 or P4 combined with this inhibitor increased the expression of AQP5 and 7. On the contrary, E2 with PD98059 significantly increased AQP5 and AQP7 expression. Progesterone in combination with MAPK kinase inhibitor significantly downregulated the expression of AQP5 and upregulated AQP7. Arachidonic acid mixed with H89 or PD98059 caused a decrease in the expression of AQP5 and an increase of AQP7. The obtained results indicate that estradiol, progesterone, and arachidonic acid through PKA and MAPK signaling pathways regulate the expression of AQP1 and AQP5 in the porcine luminal epithelial cells in the periovulatory period.
Collapse
Affiliation(s)
- Damian Tanski
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland
- Correspondence: (D.T.); (M.T.S.)
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland; (A.S.); (E.L.)
| | - Malgorzata Tanska
- Department of Biochemistry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland; (A.S.); (E.L.)
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Correspondence: (D.T.); (M.T.S.)
| |
Collapse
|
4
|
Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Front Physiol 2020; 11:574030. [PMID: 33324237 PMCID: PMC7723848 DOI: 10.3389/fphys.2020.574030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
The protein kinase enzyme family plays a pivotal role in almost every aspect of cellular function, including cellular metabolism, division, proliferation, transcription, movement, and survival. Protein kinase A (PKA), whose activation is triggered by cyclic adenosine monophosphate (cAMP), is widely distributed in various systems and tissues throughout the body and highly related to pathogenesis and progression of various kinds of diseases. The inhibition of PKA activation is essential for the study of PKA functions. Protein kinase inhibitor peptide (PKI) is a potent, heat-stable, and specific PKA inhibitor. It has been demonstrated that PKI can block PKA-mediated phosphorylase activation. Since then, researchers have a lot of knowledge about PKI. PKI is considered to be the most effective and specific method to inhibit PKA and is widely used in related research. In this review, we will first introduce the knowledge on the activation of PKA and mechanisms related on the inhibitory effects of PKI on PKA. Then, we will compare PKI-mediated PKA inhibition vs. several popular methods of PKA inhibition.
Collapse
Affiliation(s)
- Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jingjing Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiaoying Zhang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Marin W. A-kinase anchoring protein 1 (AKAP1) and its role in some cardiovascular diseases. J Mol Cell Cardiol 2019; 138:99-109. [PMID: 31783032 DOI: 10.1016/j.yjmcc.2019.11.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023]
Abstract
A-kinase anchoring proteins (AKAPs) play crucial roles in regulating compartmentalized multi-protein signaling networks related to PKA-mediated phosphorylation. The mitochondrial AKAP - AKAP1 proteins are enriched in heart and play cardiac protective roles. This review aims to thoroughly summarize AKAP1 variants from their sequence features to the structure-function relationships between AKAP1 and its binding partners, as well as the molecular mechanisms of AKAP1 in cardiac hypertrophy, hypoxia-induced myocardial infarction and endothelial cells dysfunction, suggesting AKAP1 as a candidate for cardiovascular therapy.
Collapse
Affiliation(s)
- Wenwen Marin
- Institute for Translational Medicine, Medical Faculty of Qingdao University, Qingdao 266021, China.
| |
Collapse
|
6
|
Wang C, Yang J, Hao Z, Gong C, Tang L, Xu Y, Lu D, Li Z, Zhao M. Suppression of progesterone synthesis in human trophoblast cells by fine particulate matter primarily derived from industry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1172-1180. [PMID: 28935403 DOI: 10.1016/j.envpol.2017.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/09/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Epidemiological studies have exhibited a positive association between fine particulate matter (PM2.5) exposure and adverse pregnancy outcome (APO). However, source-related effect and the potential mechanism have not been thoroughly elucidated in toxicology. In this study, PM2.5 was collected during a severe winter haze episode in an energy-base city of China. We coupled this approach with the source appointment by applying the Lagrangian Integrated Trajectory and Concentration Weighted Trajectory model. We observed that the primary trajectory with high polluted air mass came from the northwest of the sampling site. Approximately 90% or more of PM2.5 was derived from the industry at this haze period. Next, the sampled PM2.5 was used to study the classical hormone synthesis pathway on trophoblast JEG-3 cells. PM2.5 induced the secretion of human chorionic gonadotrophin (HCG) and the proliferation of JEG-3 cells at a noncytotoxic concentration. However, the synthesis of progesterone was significantly suppressed, even if both hCG and cyclic adenosine monophosphate (cAMP) were increased, suggesting that PM2.5 may interfere the downstream of cAMP. As expected, the phosphorylated activity of protein kinase A (PKA) was attenuated. Subsequently, the downstream molecules of steroidogenesis, such as ferredoxin reductase (FDXR), CYP11A1 (encoded P450scc), and 3β-Hydroxysteroid dehydrogenase type 1 (3β-HSD1), were inhibited. Therefore, PM2.5, primarily derived from industry, may directly inhibit the phosphorylation status of PKA in JEG-3 which, in turn, inhibited the proteins expression in progesterone-synthesis to suppress progesterone levels. Considering the pivotal role of progesterone in pregnancy maintenance, the mechanism on hormone synthesis may provide a better understanding for PM2.5-caused APO. Industry-emanated PM2.5, though not specific, could threaten the placenta, which needs to be verified by further epidemiological studies.
Collapse
Affiliation(s)
- Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jinhuan Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhengliang Hao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenxue Gong
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lihua Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingling Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhuoyu Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
7
|
The heat shock protein 60 promotes progesterone synthesis in mitochondria of JEG-3 cells. Reprod Biol 2017; 17:154-161. [DOI: 10.1016/j.repbio.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 11/22/2022]
|
8
|
Datta S, Tomilov A, Cortopassi G. Identification of small molecules that improve ATP synthesis defects conferred by Leber's hereditary optic neuropathy mutations. Mitochondrion 2016; 30:177-86. [PMID: 27497748 DOI: 10.1016/j.mito.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022]
Abstract
Inherited mitochondrial complex I mutations cause blinding Leber's hereditary optic neuropathy (LHON), for which no curative therapy exists. A specific biochemical consequence of LHON mutations in the presence of trace rotenone was observed: deficient complex I-dependent ATP synthesis (CIDAS) and mitochondrial O2 consumption, proportional to the clinical severity of the three primary LHON mutations. We optimized a high-throughput assay of CIDAS to screen 1600 drugs to 2, papaverine and zolpidem, which protected CIDAS in LHON cells concentration-dependently. TSPO and cAMP were investigated as protective mechanisms, but a conclusive mechanism remains to be elucidated; next steps include testing in animal models.
Collapse
Affiliation(s)
- Sandipan Datta
- Dept. of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States.
| | - Alexey Tomilov
- Dept. of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States.
| | - Gino Cortopassi
- Dept. of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, United States.
| |
Collapse
|
9
|
Rivero Osimani VL, Valdez SR, Guiñazú N, Magnarelli G. Alteration of syncytiotrophoblast mitochondria function and endothelial nitric oxide synthase expression in the placenta of rural residents. Reprod Toxicol 2016; 61:47-57. [PMID: 26939719 DOI: 10.1016/j.reprotox.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 12/30/2015] [Accepted: 02/25/2016] [Indexed: 11/24/2022]
Abstract
The impact of environmental organophosphate (OP) pesticide exposure on respiratory complexes, enzymatic antioxidant defense activities, and oxidative damage markers in the syncytiotrophoblast and cytotrophoblast mitochondria was evaluated. Placental progesterone (PG) levels and endothelial nitric oxide synthase (eNOS) expression were studied. Samples from women non-exposed (control group-CG) and women living in a rural area (rural group-RG) were collected during pesticide spraying season (RG-SS) and non-spraying season (RG-NSS). In RG-SS, the exposure biomarker placental carboxylesterase decreased and syncytiotrophoblast cytochrome c oxidase activity increased, while 4-hydroxynonenal levels decreased. PG levels decreased in RG-SS and in the RG. Nitric oxide synthase expression decreased in RG, RG-SS and RG-NSS. No significant changes in mitochondrial antioxidant enzyme activities were found. These results suggest that the alteration of syncytiotrophoblast mitochondrial complex IV activity and steroidogenic function may be associated to pesticide exposure. Reduction in placental PG and eNOS expression may account for low newborn weight in RG.
Collapse
Affiliation(s)
- Valeria L Rivero Osimani
- LIBIQUIMA, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina
| | - Susana R Valdez
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina; IMBECU-CONICET, Mendoza, Argentina
| | - Natalia Guiñazú
- LIBIQUIMA, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina; Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina.
| | - Gladis Magnarelli
- LIBIQUIMA, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina
| |
Collapse
|
10
|
Costa MA, Fonseca BM, Mendes A, Braga J, Teixeira NA, Correia-da-Silva G. The endocannabinoid 2-arachidonoylglycerol dysregulates the synthesis of proteins by the human syncytiotrophoblast. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:205-12. [PMID: 26698196 DOI: 10.1016/j.bbalip.2015.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/18/2015] [Accepted: 12/13/2015] [Indexed: 11/25/2022]
Abstract
In recent years, endocannabinoids emerged as new players in various reproductive events. Recently, we demonstrated the involvement of 2-arachidonoylglycerol (2-AG) in human cytotrophoblast apoptosis and syncytialization. However, 2-AG impact in hormone production by the syncytiotrophoblast (hST) was never studied. In this work, we demonstrate that 2-AG activates cannabinoid (CB) receptors, exerting an inhibitory action on cyclic AMP/protein kinase A (cAMP/PKA) and mitogen-activated protein kinase (MAPK) p38 pathways, and enhancing ERK 1/2 phosphorylation. Furthermore, 2-AG affects the synthesis of human chorionic gonadotropin (hCG), leptin, aromatase, 3-β-hydroxysteroid dehydrogenase (3-β-HSD), and placental protein 13 (PP13). These 2-AG effects are mediated by the activation of CB receptors, in a mechanism that may involve p38, ERK 1/2 and cAMP/PKA pathways, which participate in the regulation of placental proteins expression. To our knowledge, this is the first study that associates the endocannabinoid signalling and endocrine placental function, shedding light on a role for 2-AG in the complex network of molecules that orchestrate the production of placental proteins essential for the gestational success.
Collapse
Affiliation(s)
- M A Costa
- Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - B M Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - A Mendes
- Departamento da Mulher e da Criança, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, Porto, Portugal
| | - J Braga
- Departamento da Mulher e da Criança, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, Porto, Portugal
| | - N A Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
11
|
Martinez F, Olvera-Sanchez S, Esparza-Perusquia M, Gomez-Chang E, Flores-Herrera O. Multiple functions of syncytiotrophoblast mitochondria. Steroids 2015; 103:11-22. [PMID: 26435077 DOI: 10.1016/j.steroids.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/16/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human placenta plays a central role in pregnancy, and the syncytiotrophoblast cells are the main components of the placenta that support the relationship between the mother and fetus, in apart through the production of progesterone. In this review, the metabolic processes performed by syncytiotrophoblast mitochondria associated with placental steroidogenesis are described. The metabolism of cholesterol, specifically how this steroid hormone precursor reaches the mitochondria, and its transformation into progesterone are reviewed. The role of nucleotides in steroidogenesis, as well as the mechanisms associated with signal transduction through protein phosphorylation and dephosphorylation of proteins is discussed. Finally, topics that require further research are identified, including the need for new techniques to study the syncytiotrophoblast in situ using non-invasive methods.
Collapse
Affiliation(s)
- Federico Martinez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico.
| | - Sofia Olvera-Sanchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Mercedes Esparza-Perusquia
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Erika Gomez-Chang
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, Coyoacan 04510, México, D.F., Mexico
| |
Collapse
|
12
|
Costa MA. The endocrine function of human placenta: an overview. Reprod Biomed Online 2015; 32:14-43. [PMID: 26615903 DOI: 10.1016/j.rbmo.2015.10.005] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/13/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022]
Abstract
During pregnancy, several tightly coordinated and regulated processes take place to enable proper fetal development and gestational success. The formation and development of the placenta is one of these critical pregnancy events. This organ plays essential roles during gestation, including fetal nourishment, support and protection, gas exchange and production of several hormones and other mediators. Placental hormones are mainly secreted by the syncytiotrophoblast, in a highly and tightly regulated way. These hormones are important for pregnancy establishment and maintenance, exerting autocrine and paracrine effects that regulate decidualization, placental development, angiogenesis, endometrial receptivity, embryo implantation, immunotolerance and fetal development. In addition, because they are released into maternal circulation, the profile of their blood levels throughout pregnancy has been the target of intense research towards finding potential robust and reliable biomarkers to predict and diagnose pregnancy-associated complications. In fact, altered levels of these hormones have been associated with some pathologies, such as chromosomal anomalies or pre-eclampsia. This review proposes to revise and update the main pregnancy-related hormones, addressing their major characteristics, molecular targets, function throughout pregnancy, regulators of their expression and their potential clinical interest.
Collapse
Affiliation(s)
- Mariana A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
13
|
Gerbaud P, Taskén K, Pidoux G. Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Front Pharmacol 2015; 6:202. [PMID: 26441659 PMCID: PMC4569887 DOI: 10.3389/fphar.2015.00202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023] Open
Abstract
During human placentation, mononuclear cytotrophoblasts fuse to form multinucleated syncytia ensuring hormonal production and nutrient exchanges between the maternal and fetal circulation. Syncytial formation is essential for the maintenance of pregnancy and for fetal growth. The cAMP signaling pathway is the major route to trigger trophoblast fusion and its activation results in phosphorylation of specific intracellular target proteins, in transcription of fusogenic genes and assembly of macromolecular protein complexes constituting the fusogenic machinery at the plasma membrane. Specificity in cAMP signaling is ensured by generation of localized pools of cAMP controlled by cAMP phosphodiesterases (PDEs) and by discrete spatial and temporal activation of protein kinase A (PKA) in supramolecular signaling clusters inside the cell organized by A-kinase-anchoring proteins (AKAPs) and by organization of signal termination by protein phosphatases (PPs). Here we present original observations on the available components of the cAMP signaling pathway in the human placenta including PKA, PDE, and PP isoforms as well as AKAPs. We continue to discuss the current knowledge of the spatiotemporal regulation of cAMP signaling triggering trophoblast fusion.
Collapse
Affiliation(s)
- Pascale Gerbaud
- INSERM, UMR-S-1139, Group Cell Fusion, Université Paris Descartes Paris, France ; Université Paris Descartes Paris, France
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital Oslo, Norway ; Biotechnology Centre, University of Oslo Oslo, Norway ; K.G. Jebsen Inflammation Research Centre, University of Oslo Oslo, Norway ; K.G. Jebsen Centre for Cancer Immunotherapy, University of Oslo Oslo, Norway ; Department of Infectious Diseases, Oslo University Hospital Oslo, Norway
| | - Guillaume Pidoux
- INSERM, UMR-S-1139, Group Cell Fusion, Université Paris Descartes Paris, France ; Université Paris Descartes Paris, France ; INSERM, U1180 Châtenay-Malabry, France ; Faculté de Pharmacie, Université Paris-Sud Châtenay-Malabry, France
| |
Collapse
|
14
|
Costa MA, Fonseca BM, Mendes A, Braga J, Teixeira NA, Correia da Silva G. The endocannabinoid anandamide affects the synthesis of human syncytiotrophoblast-related proteins. Cell Tissue Res 2015. [PMID: 26202891 DOI: 10.1007/s00441-015-2236-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The human syncytiotrophoblast (hST) has a major role in the production of important placental hormones. Several molecules regulate hST endocrine function but the role of endocannabinoids in this process is still unknown. Here, we report that the endocannabinoid anandamide (AEA) decreased cAMP levels, impaired human chorionic gonadotropin secretion, placental alkaline phosphatase activity and decreased aromatase mRNA levels and protein expression, through cannabinoid (CB) receptor activation. AEA also downregulated leptin and placental protein 13 transcription, though via a CB receptor-independent mechanism. All this evidence suggests AEA is a novel modulator of hormone synthesis by the syncytiotrophoblast, supporting the importance of the endocannabinoid signalling in placental function.
Collapse
Affiliation(s)
- M A Costa
- Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - B M Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - A Mendes
- Departamento da Mulher e da Criança, Serviço de Obstetrícia, Centro Materno-Infantil do Norte- Centro Hospitalar do Porto, Porto, Portugal
| | - J Braga
- Departamento da Mulher e da Criança, Serviço de Obstetrícia, Centro Materno-Infantil do Norte- Centro Hospitalar do Porto, Porto, Portugal
| | - N A Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - Georgina Correia da Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| |
Collapse
|
15
|
Zhou Z, Wang R, Yang X, Lu XY, Zhang Q, Wang YL, Wang H, Zhu C, Lin HY, Wang H. The cAMP-responsive element binding protein (CREB) transcription factor regulates furin expression during human trophoblast syncytialization. Placenta 2014; 35:907-18. [PMID: 25175744 DOI: 10.1016/j.placenta.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The multinucleated syncytiotrophoblast is formed and maintained by cytotrophoblast cell fusion and serves multiple functions to ensure a successful pregnancy. We have previously reported that the proprotein convertase furin is required for trophoblast syncytialization by processing type 1 insulin-like growth factor receptor (IGF1R). METHODS Utilizing trophoblast cell fusion models including induced fusion of choriocarcinoma BeWo cells and spontaneous fusion of primary cultured term cytotrophoblast cells, the expression of furin was evaluated by quantitative real-time PCR, Western blotting and immunofluorescence. The key transcription factor regulating the FUR gene promoter and critical responsive elements were identified by luciferase reporter assays, truncated mutants analysis, site-directed mutagenesis and ChIP. RESULTS We demonstrated that the levels of FUR mRNA were significantly stimulated by cAMP/PKA signaling pathway during spontaneous fusion of cytotrophoblast cells and forskolin-induced fusion of BeWo cells. cAMP-responsive element binding protein (CREB) was proven to be the key transcription factor which regulated the FUR P1 promoter during forskolin-induced BeWo cell fusion, and two critical cAMP-responsive elements (CREs) in the P1 promoter were further identified. Finally, we showed that CREB mediated endogenous furin activation and that CREB siRNA attenuated forskolin-induced furin expression and cell fusion in BeWo cells. DISCUSSION This provides the first evidence of the upstream regulator of furin during trophoblast cell fusion. CONCLUSIONS The above results suggest that the FUR transcription is activated by CREB-dependent stimulation of the FUR P1 promoter during human trophoblast syncytialization.
Collapse
Affiliation(s)
- Z Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - R Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - X Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, PR China
| | - X-Y Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - Q Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Y-L Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - C Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - H-Y Lin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
16
|
Gomez-Chang E, Espinosa-Garcia MT, Olvera-Sanchez S, Flores-Herrera O, Martinez F. PKA tightly bound to human placental mitochondria participates in steroidogenesis and is not modified by cAMP. Placenta 2014; 35:748-62. [PMID: 25012296 DOI: 10.1016/j.placenta.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Protein phosphorylation plays an important role in the modulation of steroidogenesis and it depends on the activation of different signaling cascades. Previous data showed that PKA activity is related to steroidogenesis in mitochondria from syncytiotrophoblast of human placenta (HPM). PKA localization and contribution in progesterone synthesis and protein phosphorylation of HPM was assessed in this work. METHODS Placental mitochondria and submitochondrial fractions were used. Catalytic and regulatory PKA subunits were identified by Western blot. PKA activity was determined by the incorporation of (32)P into proteins in the presence or absence of specific inhibitors. The effect of PKA activators and inhibitors on steroidogenesis and protein phosphorylation in HPM was tested by radioimmunoassay and autoradiography. RESULTS The PKAα catalytic subunit was distributed in all the submitochondrial fractions whereas βII regulatory subunit was the main isoform observed in both the outer and inner membranes of HPM. PKA located in the inner membrane showed the highest activity. Progesterone synthesis and mitochondrial protein phosphorylation are modified by inhibitors of PKA catalytic subunit but are neither sensitive to inhibitors of the regulatory subunit nor to activators of the holoenzyme. DISCUSSION The lack of response in the presence of PKA activators and inhibitors of the regulatory subunit suggests that the activation of intramitochondrial PKA cannot be prevented or further activated. CONCLUSIONS The phosphorylating activity of PKA inside HPM could be an important component of the steroidogenesis transduction cascade, probably exerting its effects by direct phosphorylation of its substrates or by modulating other kinases and phosphatases.
Collapse
Affiliation(s)
- E Gomez-Chang
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, Mexico City, Mexico
| | - M T Espinosa-Garcia
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, Mexico City, Mexico
| | - S Olvera-Sanchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, Mexico City, Mexico
| | - O Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, Mexico City, Mexico
| | - F Martinez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, Coyoacán 04510, Mexico City, Mexico.
| |
Collapse
|
17
|
Magnarelli G, Fonovich T. Protein phosphorylation pathways disruption by pesticides. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.35050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Weedon-Fekjær MS, Taskén K. Review: Spatiotemporal dynamics of hCG/cAMP signaling and regulation of placental function. Placenta 2011; 33 Suppl:S87-91. [PMID: 22103973 DOI: 10.1016/j.placenta.2011.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 02/06/2023]
Abstract
The pregnancy hormone human chorionic gonadotropin (hCG) is essential to sustain early pregnancy and involved in regulation of progesterone production, decidualization, and cytotrophoblast differentiation. It binds to and activates the G-protein coupled luteinizing hormone/hCG-receptor, activating the cAMP/protein kinase A (PKA) pathway which results in the phosphorylation of specific intracellular target proteins. Specificity in cAMP signaling is ensured by generation of localized pools of cAMP controlled by phosphodiesterases and by discrete spatial and temporal activation of PKA in supramolecular signaling clusters inside the cell organized by A-kinase-anchoring proteins. Here we discuss spatiotemporal regulation of PKA signaling in response to hCG controlling placental function.
Collapse
|