1
|
Khormizi FZ, Saadi HF, Khatami M, Heidari MM, Tabrizi F, Hashemi A, Khanjarpanah Z. Identification of rare and pathogenic TAL2 gene mutations in B-lineage acute lymphoblastic leukemia (B-ALL) using mutational screening and comprehensive bioinformatics analysis. Mol Biol Rep 2025; 52:125. [PMID: 39821746 DOI: 10.1007/s11033-025-10229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
BACKGROUND Recent genomic research has identified several genetic factors contributing to B-cell acute lymphoblastic leukemia (B-ALL). However, the exact cause of the disease is still not fully understood. It is known that mutations in the TAL2 gene play important roles in the development of acute lymphoblastic leukemia. This study aimed to analyze the molecular and computational profile of the TAL2 mutations in a group of Iranian B-ALL patients for the first time. METHODS AND RESULTS In this study, 188 patients were enrolled, and the TAL2 gene was sequenced to identify gene variations. The study included structural/functional analysis, homology modeling, molecular docking, and molecular dynamics (MD) simulations to assess the potential impact of the missense mutations on the protein's structure. Three nucleotide variations in the exon, three variations in the 3'UTR, and one deletion variant in the 3'UTR were detected in patients. Through in-silico analysis, it was found that the p. Asp35Glu missense mutation is located in the bHLH domain of the TAL2 protein. Also, the structural and functional analyses predicted that this mutation is a pathogenic or likely pathogenic variant in B-ALL patients. Moreover, a multiple nucleotide deletion (g.659_668del) was found in the 3'UTR in most patients. This deletion occurs at the site of poly-A tail attachment and appears to have significant implications. CONCLUSIONS These findings offer new insights into the impact of genetic variants in the TAL2 gene on the development of B-ALL and their potential role as tumor biomarkers for the B-ALL. Further research is needed to explore the relationship between specific TAL2 mutations and the clinical presentation of B-ALL.
Collapse
Affiliation(s)
| | | | | | | | | | - Azam Hashemi
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zohre Khanjarpanah
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Casasnovas-Nieves JJ, Rodríguez Y, Franco HL, Cadilla CL. Mechanisms of Regulation of the CHRDL1 Gene by the TWIST2 and ADD1/SREBP1c Transcription Factors. Genes (Basel) 2023; 14:1733. [PMID: 37761873 PMCID: PMC10530651 DOI: 10.3390/genes14091733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Setleis syndrome (SS) is a rare focal facial dermal dysplasia caused by recessive mutations in the basic helix-loop-helix (bHLH) transcription factor, TWIST2. Expression microarray analysis showed that the chordin-like 1 (CHRDL1) gene is up-regulated in dermal fibroblasts from three SS patients with the Q119X TWIST2 mutation. METHODS Putative TWIST binding sites were found in the upstream region of the CHRDL1 gene and examined by electrophoretic mobility shift (EMSA) and reporter gene assays. RESULTS EMSAs showed specific binding of TWIST1 and TWIST2 homodimers, as well as heterodimers with E12, to the more distal E-boxes. An adjoining E-box was bound by ADD1/SREBP1c. EMSA analysis suggested that TWIST2 and ADD1/SREBP1c could compete for binding. Luciferase (luc) reporter assays revealed that the CHRDL1 gene upstream region drives its expression and ADD1/SREBP1c increased it 2.6 times over basal levels. TWIST2, but not the TWIST2-Q119X mutant, blocked activation by ADD1/SREBP1c, but overexpression of TWIST2-Q119X increased luc gene expression. In addition, EMSA competition assays showed that TWIST2, but not TWIST1, competes with ADD1/SREBP1c for DNA binding to the same site. CONCLUSIONS Formation of an inactive complex between the TWIST2 Q119X and Q65X mutant proteins and ADD1/SREBP1c may prevent repressor binding and allow the binding of other regulators to activate CHRDL1 gene expression.
Collapse
Affiliation(s)
- José J. Casasnovas-Nieves
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (J.J.C.-N.); (Y.R.); (H.L.F.)
| | - Yacidzohara Rodríguez
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (J.J.C.-N.); (Y.R.); (H.L.F.)
| | - Hector L. Franco
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (J.J.C.-N.); (Y.R.); (H.L.F.)
- Department of Genetics, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (J.J.C.-N.); (Y.R.); (H.L.F.)
| |
Collapse
|
3
|
Dorafshan S, Razmi M, Safaei S, Gentilin E, Madjd Z, Ghods R. Periostin: biology and function in cancer. Cancer Cell Int 2022; 22:315. [PMID: 36224629 PMCID: PMC9555118 DOI: 10.1186/s12935-022-02714-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Periostin (POSTN), a member of the matricellular protein family, is a secreted adhesion-related protein produced in the periosteum and periodontal ligaments. Matricellular proteins are a nonstructural family of extracellular matrix (ECM) proteins that regulate a wide range of biological processes in both normal and pathological conditions. Recent studies have demonstrated the key roles of these ECM proteins in the tumor microenvironment. Furthermore, periostin is an essential regulator of bone and tooth formation and maintenance, as well as cardiac development. Also, periostin interacts with multiple cell-surface receptors, especially integrins, and triggers signals that promote tumor growth. According to recent studies, these signals are implicated in cancer cell survival, epithelial-mesenchymal transition (EMT), invasion, and metastasis. In this review, we will summarize the most current data regarding periostin, its structure and isoforms, expressions, functions, and regulation in normal and cancerous tissues. Emphasis is placed on its association with cancer progression, and also future potential for periostin-targeted therapeutic approaches will be explored.
Collapse
Affiliation(s)
- Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, via G. Orus, 2b, 35129, Padua, Italy
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
4
|
Kim JY, Park M, Ohn J, Seong RH, Chung JH, Kim KH, Jo SJ, Kwon O. Twist2-driven chromatin remodeling governs the postnatal maturation of dermal fibroblasts. Cell Rep 2022; 39:110821. [PMID: 35584664 DOI: 10.1016/j.celrep.2022.110821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
Dermal fibroblasts lose stem cell potency after birth, which prevents regenerative healing. However, the underlying intracellular mechanisms are largely unknown. We uncover the postnatal maturation of papillary fibroblasts (PFs) driven by the extensive Twist2-mediated remodeling of chromatin accessibility. A loss of the regenerative ability of postnatal PFs occurs with decreased H3K27ac levels. Single-cell transcriptomics, assay for transposase-accessible chromatin sequencing (ATAC-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) reveal the postnatal maturation trajectory associated with the loss of the regenerative trajectory in PFs, which is characterized by a marked decrease in chromatin accessibility and H3K27ac modifications. Histone deacetylase inhibition delays spontaneous chromatin remodeling, thus maintaining the regenerative ability of postnatal PFs. Genomic analysis identifies Twist2 as a major regulator within chromatin regions with decreased accessibility during the postnatal period. When Twist2 is genetically deleted in dermal fibroblasts, the intracellular cascade of postnatal maturation is significantly delayed. Our findings reveal the comprehensive intracellular mechanisms underlying intrinsic postnatal changes in dermal fibroblasts.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea; Department of Dermatology, Columbia University, New York 10032, NY, USA
| | - Minji Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jungyoon Ohn
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Rho Hyun Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea.
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
5
|
Gao F, Bai R, Qin W, Liang B, Yang Z, Yang H. Angiotensin II induces the expression of periostin to promote foam cell formation in oxLDL-treated macrophages. Int J Cardiol 2022; 347:46-53. [PMID: 34793856 DOI: 10.1016/j.ijcard.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 11/05/2022]
Abstract
A matricellular protein periostin has been documented to promote macrophage recruitment in atherosclerotic lesions. However, the role of periostin in macrophage foam cell formation is still unknown. In this study, we examined the expression and function of periostin in cholesterol homeostasis in macrophages. The role of periostin in mediating Ang II-induced foam cell formation was also investigated. The mechanism by which Ang II induced the expression of periostin was explored. It was found that oxLDL treatment significantly increased the expression and secretion of periostin in THP-1 macrophages. Knockdown of periostin blocked oxLDL-induced lipid accumulation and enhanced cholesterol efflux. In contrast, treatment with recombinant periostin protein enhanced oxLDL-induced macrophage foam cell formation. Ang II caused a time-dependent induction of periostin in THP-1 macrophages, which was ascribed to Twist2-mediated transactivation of periostin. Ang II treatment significantly augmented lipid accumulation in THP-1 macrophages, and knockdown of periostin blocked the effect of Ang II on foam cell formation. Moreover, periostin depletion restored cholesterol efflux in Ang II-treated THP-1 macrophages. Clinically, there was a significant positive correlation between serum periostin and Ang II levels in patients with atherosclerosis. Collectively, we show that periostin is essential for Ang II-induced enhancement of macrophage foam cell formation via suppression of cholesterol efflux.
Collapse
Affiliation(s)
- Fen Gao
- Departments of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Bai
- Departments of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Weiwei Qin
- Departments of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Liang
- Departments of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhiming Yang
- Departments of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huiyu Yang
- Departments of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
Crespo NE, Torres-Bracero A, Renta JY, Desnick RJ, Cadilla CL. Expression Profiling Identifies TWIST2 Target Genes in Setleis Syndrome Patient Fibroblast and Lymphoblast Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1997. [PMID: 33669496 PMCID: PMC7922891 DOI: 10.3390/ijerph18041997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Background: Setleis syndrome (SS) is a focal facial dermal dysplasia presenting with bilateral temporal skin lesions, eyelash abnormalities and absent meibomian glands. SS is a rare autosomal recessive disorder caused by mutations in the TWIST2 gene, which codes for a transcription factor of the bHLH family known to be involved in skin and facial development. Methods: We obtained gene expression profiles by microarray analyses from control and SS patient primary skin fibroblast and lymphoblastoid cell lines. Results: Out of 983 differentially regulated genes in fibroblasts (fold change ≥ 2.0), 479 were down-regulated and 509 were up-regulated, while in lymphoblasts, 1248 genes were down-regulated and 73 up-regulated. RT-PCR reactions confirmed altered expression of selected genes. Conclusions: TWIST2 is described as a repressor, but expression profiling suggests an important role in gene activation as well, as evidenced by the number of genes that are down-regulated, with a much higher proportion of down-regulated genes found in lymphoblastoid cells from an SS patient. As expected, both types of cell types showed dysregulation of cytokine genes. These results identify potential TWIST2 target genes in two important cell types relevant to rare disorders caused by mutations in this bHLH gene.
Collapse
Affiliation(s)
- Noe E. Crespo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Alexandra Torres-Bracero
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Jessicca Y. Renta
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Carmen L. Cadilla
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico; (N.E.C.); (A.T.-B.); (J.Y.R.)
| |
Collapse
|
7
|
Imam N, Alam A, Siddiqui MF, Ahmed MM, Malik MZ, Ikbal Khan MJ, Ishrat R. Identification of key regulators in parathyroid adenoma using an integrative gene network analysis. Bioinformation 2020; 16:910-922. [PMID: 34803267 PMCID: PMC8573468 DOI: 10.6026/97320630016910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Parathyroid adenoma (PA) is marked by a certain benign outgrowth in the surface of parathyroid glands. The transcriptome analysis of parathyroid adenomas can provide a deep insight into actively expressed genes and transcripts. Hence, we analyzed and compared the gene expression profiles of parathyroid adenomas and healthy parathyroid gland tissues from Gene Expression Omnibus (GEO) database. We identified a total of 280 differentially expressed genes (196 up-regulated, 84 down-regulated), which are involved in a wide array of biological processes. We further constructed a gene interaction network and analyzed its topological properties to know the network structure and its hidden mechanism. This will help to understand the molecular mechanisms underlying parathyroid adenoma development. We thus identified 13 key regulators (PRPF19, SMC3, POSTN, SNIP1, EBF1, MEIS2, PAX9, SCUBE2, WNT4, ARHGAP10, DOCK5, CAV1 and VSIR), which are deep-rooted from top to bottom in the gene interaction network forming a backbone for the network. The structural features of the network are probably maintained by crosstalk between important genes within the network along with associated functional modules.Thus, gene-expression profiling and network approach could be used to provide an independent platform to glen insights from available clinical data.
Collapse
Affiliation(s)
- Nikhat Imam
- Institute of Computer Science and Information Technology, Department of Mathematics, Magadh University, Bodh Gaya-824234, Bihar, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Mohd Faizan Siddiqui
- International Medical Faculty, Osh State University, Osh City, 723500, Kyrgyz Republic, Kyrgyzstan
| | - Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Md. Zubbair Malik
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Md. Jawed Ikbal Khan
- Institute of Computer Science and Information Technology, Department of Mathematics, Magadh University, Bodh Gaya-824234, Bihar, India
- Department of Mathematics, Mirza Ghalib College, Magadh University, Bodh Gaya-824234, Bihar, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
8
|
Zhong H, Li X, Zhang J, Wu X. Overexpression of periostin is positively associated with gastric cancer metastasis through promoting tumor metastasis and invasion. J Cell Biochem 2019; 120:9927-9935. [PMID: 30637809 DOI: 10.1002/jcb.28275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gastric tumors generally have a poor prognosis and molecular markers to improve early detection and predict outcomes are greatly needed. The present study reports that periostin (POSTN), a secretory protein that can alter the remodeling of the extracellular matrix, is highly expressed in gastric tumors. MATERIALS AND METHODS Gastric tissues were collected from patients at the Department of Thoracic Surgery/Huiqiao Medical Center, Nanfang Hospital, Southern Medical University. These patients provided an informed consent and were approved by the institute. Normal, cancer, and metastatic gastric tissues from lymph nodes and tissues adjacent to the tumor were collected from patients diagnosed with gastric cancer. RESULTS Periostin expression gradually increased as the risk grade of the NIH classification increased, and this was closely correlated with disease-free survival and overall survival. Compared with adjacent normal gastric mucosa tissues, protein expression of POSTN in gastric cancer tissues and metastases was significantly higher by immunohistochemistry and Western blot analysis. In addition, POSTN was upregulated in advanced gastric cancer tissues than in early gastric cancer tissues. Moreover, the ectopic expression of POSTN in the immortalized human gastric cell line could increase the metastasis and invasion of gastric cancer cells. CONCLUSION The present results could establish the significance of POSTN in driving oncogenesis and metastasis in gastric tumors, with implications for its potential use as a diagnostic or prognostic biomarker, and as a candidate therapeutic target.
Collapse
Affiliation(s)
- Hai Zhong
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,Department of Cardiothoracic Surgery, The second Hospital of Yinzhou District, Ningbo, People's Republic of China
| | - Xiang Li
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junhua Zhang
- Departmentof Operating Room, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xu Wu
- Department of Thoracic Surgery, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:7-20. [PMID: 31037620 DOI: 10.1007/978-981-13-6657-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although many studies have described the role of periostin in various diseases, the functions of periostin derived from alternative splicing and proteinase cleavage at its C-terminus remain unknown. Further experiments investigating the periostin structures that are relevant to diseases are essential for an in-depth understanding of their functions, which would accelerate their clinical applications by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress .
Collapse
|
10
|
González-González L, Alonso J. Periostin: A Matricellular Protein With Multiple Functions in Cancer Development and Progression. Front Oncol 2018; 8:225. [PMID: 29946533 PMCID: PMC6005831 DOI: 10.3389/fonc.2018.00225] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
Tumor microenvironment is considered nowadays as one of the main players in cancer development and progression. Tumor microenvironment is highly complex and consists of non-tumor cells (i.e., cancer-associated fibroblast, endothelial cells, or infiltrating leukocytes) and a large list of extracellular matrix proteins and soluble factors. The way that microenvironment components interact among them and with the tumor cells is very complex and only partially understood. However, it is now clear that these interactions govern and modulate many of the cancer hallmarks such as cell proliferation, the resistance to death, the differentiation state of tumor cells, their ability to migrate and metastasize, and the immune response against tumor cells. One of the microenvironment components that have emerged in the last years with strength is a heterogeneous group of multifaceted proteins grouped under the name of matricellular proteins. Matricellular proteins are a family of non-structural matrix proteins that regulate a variety of biological processes in normal and pathological situations. Many components of this family such as periostin (POSTN), osteopontin (SPP1), or the CNN family of proteins have been shown to regulate key aspect of tumor biology, including proliferation, invasion, matrix remodeling, and dissemination to pre-metastatic niches in distant organs. Matricellular proteins can be produced by tumor cells themselves or by tumor-associated cells, and their synthesis can be affected by intrinsic and/or extrinsic tumor cell factors. In this review, we will focus on the role of POSTN in the development and progression of cancer. We will describe their functions in normal tissues and the mechanisms involved in their regulation. We will analyze the tumors in which their expression is altered and their usefulness as a biomarker of tumor progression. Finally, we will speculate about future directions for research and therapeutic approaches targeting POSTN.
Collapse
Affiliation(s)
- Laura González-González
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Kudo A. Introductory review: periostin-gene and protein structure. Cell Mol Life Sci 2017; 74:4259-4268. [PMID: 28884327 PMCID: PMC11107487 DOI: 10.1007/s00018-017-2643-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023]
Abstract
Although many studies have described the role of periostin in various diseases, the function of the periostin protein structures derived from alternative splicing and proteinase cleavage at the C-terminal remain unknown. Further experiments revealing the protein structures that are highly related to diseases are essential to understand the function of periostin in depth, which would accelerate its clinical application by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, S3-8, 2-12-1 Oookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
12
|
Budnick I, Hamburg-Shields E, Chen D, Torre E, Jarrell A, Akhtar-Zaidi B, Cordovan O, Spitale RC, Scacheri P, Atit RP. Defining the identity of mouse embryonic dermal fibroblasts. Genesis 2016; 54:415-30. [PMID: 27265328 DOI: 10.1002/dvg.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 01/14/2023]
Abstract
Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase-seq and histone modification ChiP-seq data on various cell-types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell-types. We found a subset of the signature genes whose expression is dependent on Wnt/β-catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415-430, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isadore Budnick
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | | | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Eduardo Torre
- Epithelial Biology Program, Department of Dermatology, Stanford University, California
| | - Andrew Jarrell
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Batool Akhtar-Zaidi
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Olivia Cordovan
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Rob C Spitale
- Epithelial Biology Program, Department of Dermatology, Stanford University, California.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Peter Scacheri
- Department of Pharmaceutical Sciences, University of California, Irvine, California
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Pharmaceutical Sciences, University of California, Irvine, California.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
13
|
Goodnough LH, Dinuoscio GJ, Atit RP. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining Wnt signaling responsiveness. Dev Dyn 2015; 245:144-56. [PMID: 26677825 DOI: 10.1002/dvdy.24367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Specification of cranial bone and dermal fibroblast progenitors in the supraorbital arch mesenchyme is Wnt/β-catenin signaling-dependent. The mechanism underlying how these cells interpret instructive signaling cues and differentiate into these two lineages is unclear. Twist1 is a target of the Wnt/β-catenin signaling pathway and is expressed in cranial bone and dermal lineages. RESULTS Here, we show that onset of Twist1 expression in the mouse cranial mesenchyme is dependent on ectodermal Wnts and mesenchymal β-catenin activity. Conditional deletion of Twist1 in the supraorbital arch mesenchyme leads to cranial bone agenesis and hypoplastic dermis, as well as craniofacial malformation of eyes and palate. Twist1 is preferentially required for cranial bone lineage commitment by maintaining Wnt responsiveness. In the conditional absence of Twist1, the cranial dermis fails to condense and expand apically leading to extensive cranial dermal hypoplasia with few and undifferentiated hair follicles. CONCLUSIONS Thus, Twist1, a target of canonical Wnt/β-catenin signaling, also functions to maintain Wnt responsiveness and is a key effector for cranial bone fate selection and dermal condensation.
Collapse
Affiliation(s)
- L Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Gregg J Dinuoscio
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
14
|
Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, Huang H, Valkanas E, Pusey B, Schanze D, Venselaar H, Vulto-van Silfhout AT, Wolfe LA, Tifft CJ, Zerfas PM, Zambruno G, Kariminejad A, Sabbagh-Kermani F, Lee J, Tsokos MG, Lee CCR, Ferraz V, da Silva EM, Stevens CA, Roche N, Bartsch O, Farndon P, Bermejo-Sanchez E, Brooks BP, Maduro V, Dallapiccola B, Ramos FJ, Chung HYB, Le Caignec C, Martins F, Jacyk WK, Mazzanti L, Brunner HG, Bakkers J, Lin S, Malicdan MCV, Boerkoel CF, Gahl WA, de Vries BBA, van Haelst MM, Zenker M, Markello TC. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes. Am J Hum Genet 2015; 97:99-110. [PMID: 26119818 DOI: 10.1016/j.ajhg.2015.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022] Open
Abstract
Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding.
Collapse
Affiliation(s)
- Shannon Marchegiani
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD 20892, USA
| | - Taylor Davis
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Gijs van Haaften
- Department of Medical Genetics, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Francesco Brancati
- Department of Medical, Oral, and Biotechnological Sciences, University of G. d' Annunzio Chieti and Pescara, Chieti 66100, Italy
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Haigen Huang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elise Valkanas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Barbara Pusey
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Denny Schanze
- Medizinische Fakultät und Universitätsklinikum Magdeburg, Institute of Human Genetics, 39120 Magdeburg, Germany
| | - Hanka Venselaar
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, NIH, Bethesda, MD 20892, USA
| | - Giovanna Zambruno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome 00167, Italy
| | | | | | - Janice Lee
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Maria G Tsokos
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chyi-Chia R Lee
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victor Ferraz
- Departamento de Genetica, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo 14049, Brazil
| | - Eduarda Morgana da Silva
- Departamento de Genetica, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo 14049, Brazil
| | - Cathy A Stevens
- Department of Medical Genetics, T.C. Thompson Children's Hospital, Chattanooga, TN 37403, USA
| | - Nathalie Roche
- Department of Plastic and Reconstructive Surgery, University Hospital of Ghent, Ghent 9000, Belgium
| | - Oliver Bartsch
- Institute of Human Genetics, Johannes Gutenberg University, Mainz 55131, Germany
| | - Peter Farndon
- Clinical Genetics Unit, Birmingham Women's Healthcare Trust, Birmingham B15 2TG, UK
| | - Eva Bermejo-Sanchez
- ECEMC (Spanish Collaborative Study of Congenital Malformations), CIAC, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III; and CIBER de Enfermedades Raras (CIBERER)-U724, Madrid 28029, Spain
| | - Brian P Brooks
- Unit on Pediatric, Developmental, and Genetic Eye Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Valerie Maduro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Bruno Dallapiccola
- Department of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Feliciano J Ramos
- Unidad de Genética Médica, Servicio de Pediatría, GCV-CIBERER Hospital Clínico Universitario "Lozano Blesa," Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Hon-Yin Brian Chung
- Department of Paediatrics and Adolescent Medicine, Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Cédric Le Caignec
- Service de genetique medicale, CHU Nantes, 44093 Nantes, France and Inserm, UMR957, Faculté de Médecine, 44093 Nantes, France
| | - Fabiana Martins
- Special Care Dentistry Center, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-070, Brazil
| | - Witold K Jacyk
- Department of Dermatology, University of Pretoria, Pretoria 0028, Republic of South Africa
| | - Laura Mazzanti
- Department of Pediatrics, S. Orsola-Malpighi Hospital University of Bologna, 40138 Bologna, Italy
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, PO Box 5800, 6202AZ Maastricht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Shuo Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA.
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA.
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mieke M van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Martin Zenker
- Medizinische Fakultät und Universitätsklinikum Magdeburg, Institute of Human Genetics, 39120 Magdeburg, Germany
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Rosti RO, Uyguner ZO, Nazarenko I, Bekerecioglu M, Cadilla CL, Ozgur H, Lee BH, Aggarwal AK, Pehlivan S, Desnick RJ. Setleis syndrome: clinical, molecular and structural studies of the first TWIST2 missense mutation. Clin Genet 2014; 88:489-493. [PMID: 25410422 DOI: 10.1111/cge.12539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
Setleis syndrome is characterized by bitemporal scar-like lesions and other characteristic facial features. It results from recessive mutations that truncate critical functional domains in the basic helix-loop-helix (bHLH) transcription factor, TWIST2, which regulates expression of genes for facial development. To date, only four nonsense or small deletion mutations have been reported. In the current report, the clinical findings in a consanguineous Turkish family were characterized. Three affected siblings had the characteristic features of Setleis syndrome. Homozygosity for the first TWIST2 missense mutation, c.326T>C (p.Leu109Pro), was identified in the patients. In silico analyses predicted that the secondary structure of the mutant protein was sustained, but the empirical force field energy increased to an unfavorable level with the proline substitution (p.Leu109Pro). On a crystallographically generated dimer, p.Leu109 lies near the dimer interface, and the proline substitution is predicted to hinder dimer formation. Therefore, p.Leu109Pro-TWIST2 alters the three dimensional structure and is unable to dimerize, thereby hindering the binding of TWIST2 to its target genes involved in facial development.
Collapse
Affiliation(s)
- R Ozgur Rosti
- Department of Neurosciences University of California San Diego, San Diego, CA, USA
| | - Z Oya Uyguner
- Department of Medical Genetics, Istanbul University, Istanbul Medical Faculty, Istanbul Turkey
| | - Irina Nazarenko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mehmet Bekerecioglu
- Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University, Meram Faculty of Medicine, Konya, Turkey
| | - Carmen L Cadilla
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, PR, USA
| | - Hilal Ozgur
- Department of Medical Genetics, Istanbul University, Istanbul Medical Faculty, Istanbul Turkey
| | - Beom Hee Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Aneel K Aggarwal
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacide Pehlivan
- Department of Medical Biology, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Slavotinek AM, Mehrotra P, Nazarenko I, Tang PLF, Lao R, Cameron D, Li B, Chu C, Chou C, Marqueling AL, Yahyavi M, Cordoro K, Frieden I, Glaser T, Prescott T, Morren MA, Devriendt K, Kwok PY, Petkovich M, Desnick RJ. Focal facial dermal dysplasia, type IV, is caused by mutations in CYP26C1. Hum Mol Genet 2012; 22:696-703. [PMID: 23161670 DOI: 10.1093/hmg/dds477] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Focal facial dermal dysplasia (FFDD) Type IV is a rare syndrome characterized by facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. To identify the causative gene(s), exome sequencing was performed in a family with two affected siblings. Assuming autosomal recessive inheritance, two novel sequence variants were identified in both siblings in CYP26C1-a duplication of seven base pairs, which was maternally inherited, c.844_851dupCCATGCA, predicting p.Glu284fsX128 and a missense mutation, c.1433G>A, predicting p.Arg478His, that was paternally inherited. The duplication predicted a frameshift mutation that led to a premature stop codon and premature chain termination, whereas the missense mutation was not functional based on its in vitro expression in mammalian cells. The FFDD skin lesions arise along the sites of fusion of the maxillary and mandibular prominences early in facial development, and Cyp26c1 was expressed exactly along the fusion line for these facial prominences in the first branchial arch in mice. Sequencing of four additional, unrelated Type IV FFDD patients and eight Type II or III TWIST2-negative FFDD patients revealed that three of the Type IV patients were homozygous for the duplication, whereas none of the Type II or III patients had CYP26C1 mutations. The seven base pairs duplication was present in 0.3% of healthy controls and 0.3% of patients with other birth defects. These findings suggest that the phenotypic manifestations of FFDD Type IV can be non-penetrant or underascertained. Thus, FFDD Type IV results from the loss of function mutations in CYP26C1.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143-0316, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|