1
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
2
|
Sun J, Eleniste PP, Utreja A, Turkkahraman H, Liu SSY, Bruzzaniti A. Pyk2 deficiency enhances bone mass during midpalatal suture expansion. Orthod Craniofac Res 2020; 23:501-508. [PMID: 32562339 DOI: 10.1111/ocr.12402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/13/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine if Pyk2 deficiency increases midpalatal suture bone mass and preserves sutural integrity after maxillary expansion. SETTING AND SAMPLE Thirty-six male Pyk2 knockout (KO) and control (WT) mice at 6 weeks of age. MATERIALS AND METHODS Mice received nickel-titanium spring expanders delivering 0 g (no intervention control), 10 or 20 g force for 14 days. High-resolution micro-CT was used to determine bone volume/tissue volume (BV/TV), sutural width and intermolar width. Effects on osteoclasts, chondrocytes and suture morphology were determined by histomorphometry. RESULTS Pyk2-KO controls (0 g) had 7% higher BV/TV compared with WT controls. Expanded Pyk2-KO maxillae also exhibited 12% (10 g) and 18% (20 g) higher BV/TV than WT mice. Although bone loss following expansion occurred in both genotypes, BV/TV was decreased to a greater extent in WT maxillae (-10% at 10g; -22% at 20 g) compared with Pyk2-KO maxillae (-11% only at 20 g). Expanded WT maxillae also showed a greater increase in sutural width, intermolar width and fibrous connective tissue width compared with expanded Pyk2-KO maxillae. Moreover, osteoclast number was increased 77% (10 g) and 132% (20 g) in expanded WT maxillae, but remained unchanged in expanded Pyk2-KO, compared to their respective controls. Cartilage area and chondrocyte number were increased to the same extent in expanded WT and Pyk2-KO sutures. CONCLUSIONS These findings suggest that midpalatal suture expansion increases osteoclast formation in WT but not Pyk2-KO mice, leading to higher BV/TV in expanded Pyk2-KO maxillae. These studies suggest Pyk2-targeted strategies may be beneficial to increase bone density and preserve sutural integrity during maxillary expansion.
Collapse
Affiliation(s)
- Jun Sun
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Pierre P Eleniste
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Achint Utreja
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Sean Shih-Yao Liu
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
3
|
Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells. Cell Signal 2020; 65:109434. [DOI: 10.1016/j.cellsig.2019.109434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022]
|
4
|
Lee C, Rhee I. Important roles of protein tyrosine phosphatase PTPN12 in tumor progression. Pharmacol Res 2019; 144:73-78. [DOI: 10.1016/j.phrs.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
|
5
|
Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev Biol 2017; 428:283-292. [PMID: 28728679 DOI: 10.1016/j.ydbio.2017.03.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023]
Abstract
Protein-tyrosine phosphatases (PTPs) remove phosphate groups from tyrosine residues, and thereby propagate or inhibit signal transduction, and hence influence cellular processes such as cell proliferation and differentiation. The importance of tightly controlled PTP activity is reflected by the numerous mechanisms employed by the cell to control PTP activity, including a variety of post-translational modifications, and restricted subcellular localization. This review highlights the strides made in the last decade and discusses the important role of PTPs in key aspects of embryonic development: the regulation of stem cell self-renewal and differentiation, gastrulation and somitogenesis during early embryonic development, osteogenesis, and angiogenesis. The tentative importance of PTPs in these processes is highlighted by the diseases that present upon aberrant activity.
Collapse
|
6
|
Abstract
Osteoclasts, specialized cells that degrade bone, are key components of the cellular system that regulates and maintains bone homeostasis. Aberrant function of osteoclasts can lead to pathological loss or gain of bone mass, such as in osteopetrosis, osteoporosis, and several types of cancer that metastasize to bone. Phosphorylation of osteoclast proteins on tyrosine residues is critical for formation of osteoclasts and for their proper function and responses to physiological signals. Here we describe preparation and growth of osteoclasts from bone marrow of mice, use of viral vectors to downregulate expression of endogenous proteins and to express exogenous proteins in osteoclasts, and analysis of signaling processes triggered by M-CSF, estrogen, and physical contact with matrix in these cells.
Collapse
|
7
|
Thirukonda GJ, Uehara S, Nakayama T, Yamashita T, Nakamura Y, Mizoguchi T, Takahashi N, Yagami K, Udagawa N, Kobayashi Y. The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts. J Bone Miner Metab 2016; 34:395-405. [PMID: 26063501 DOI: 10.1007/s00774-015-0683-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/09/2015] [Indexed: 01/02/2023]
Abstract
The cytoskeletal organization of osteoclasts is required for bone resorption. Binding of dynamin with guanosine triphosphate (GTP) was previously suggested to be required for the organization of the actin cytoskeleton. However, the role of the GTPase activity of dynamin in the organization of the actin cytoskeleton as well as in the bone-resorbing activity of osteoclasts remains unclear. This study investigated the effects of dynasore, an inhibitor of the GTPase activity of dynamin, on the bone-resorbing activity of and actin ring formation in mouse osteoclasts in vitro and in vivo. Dynasore inhibited the formation of resorption pits in osteoclast cultures by suppressing actin ring formation and rapidly disrupting actin rings in osteoclasts. A time-lapse image analysis showed that dynasore shrank actin rings in osteoclasts within 30 min. The intraperitoneal administration of dynasore inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced trabecular bone loss in mouse femurs. These in vitro and in vivo results suggest that the GTPase activity of dynamin is critical for the bone-resorbing activity of osteoclasts and that dynasore is a seed for the development of novel anti-resorbing agents.
Collapse
Affiliation(s)
- Gnanasagar J Thirukonda
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Takahiro Nakayama
- Department of Periodontology, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan
| | - Kimitoshi Yagami
- Department of Oral Implantology, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri-shi, Nagano, 399-0781, Japan.
| |
Collapse
|
8
|
Eleniste PP, Patel V, Posritong S, Zero O, Largura H, Cheng YH, Himes ER, Hamilton M, Ekwealor JTB, Kacena MA, Bruzzaniti A. Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms. J Cell Biochem 2015; 117:1396-406. [PMID: 26552846 DOI: 10.1002/jcb.25430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity, and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2(Y402F) ) and kinase-mutant (Pyk2(K457A) ) in Pyk2-KO osteoblasts. Both Pyk2(Y402F) and Pyk2(K457A) reduced ALP activity, whereas only kinase-inactive Pyk2(K457A) inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although, Pyk2-KO osteoblasts exhibited increased migration compared to wild-type osteoblasts, Pyk2 expression was not required necessary for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases.
Collapse
Affiliation(s)
- Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Vruti Patel
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Odette Zero
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Heather Largura
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Evan R Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew Hamilton
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jenna T B Ekwealor
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| |
Collapse
|
9
|
Verma SK, Leikina E, Melikov K, Chernomordik LV. Late stages of the synchronized macrophage fusion in osteoclast formation depend on dynamin. Biochem J 2014; 464:293-300. [PMID: 25336256 PMCID: PMC6335963 DOI: 10.1042/bj20141233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophage fusion that leads to osteoclast formation is one of the most important examples of cell-cell fusion in development, tissue homoeostasis and immune response. Protein machinery that fuses macrophages remains to be identified. In the present study, we explored the fusion stage of osteoclast formation for RAW macrophage-like murine cells and for macrophages derived from human monocytes. To uncouple fusion from the preceding differentiation processes, we accumulated fusion-committed cells in the presence of LPC (lysophosphatidylcholine) that reversibly blocks membrane merger. After 16 h, we removed LPC and observed cell fusion events that would normally develop within 16 h develop instead within 30-90 min. Thus, whereas osteoclastogenesis, generally, takes several days, our approach allowed us to focus on an hour in which we observe robust fusion between the cells. Complementing syncytium formation assay with a novel membrane merger assay let us study the synchronized fusion events downstream of a local merger between two plasma membranes, but before expansion of nascent membrane connections and complete unification of the cells. We found that the expansion of membrane connections detected as a growth of multinucleated osteoclasts depends on dynamin activity. In contrast, a merger between the plasma membranes of the two cells was not affected by inhibitors of dynamin GTPase. Thus dynamin that was recently found to control late stages of myoblast fusion also controls late stages of macrophage fusion, revealing an intriguing conserved mechanistic motif shared by diverse cell-cell fusion processes.
Collapse
Affiliation(s)
- Santosh K. Verma
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Kamran Melikov
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| |
Collapse
|
10
|
Finkelshtein E, Lotinun S, Levy-Apter E, Arman E, den Hertog J, Baron R, Elson A. Protein tyrosine phosphatases ε and α perform nonredundant roles in osteoclasts. Mol Biol Cell 2014; 25:1808-18. [PMID: 24694598 PMCID: PMC4038506 DOI: 10.1091/mbc.e14-03-0788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The closely related tyrosine phosphatases PTPa and PTPe fulfill distinct roles in osteoclasts. The various effects of each PTP on podosome organization in osteoclasts are caused by their distinct N-termini. The function of PTPe in these cells requires the presence of its 12 N-terminal residues, in particular serine 2. Female mice lacking protein tyrosine phosphatase ε (PTP ε) are mildly osteopetrotic. Osteoclasts from these mice resorb bone matrix poorly, and the structure, stability, and cellular organization of their podosomal adhesion structures are abnormal. Here we compare the role of PTP ε with that of the closely related PTP α in osteoclasts. We show that bone mass and bone production and resorption, as well as production, structure, function, and podosome organization of osteoclasts, are unchanged in mice lacking PTP α. The varying effects of either PTP on podosome organization in osteoclasts are caused by their distinct N-termini. Osteoclasts express the receptor-type PTP α (RPTPa), which is absent from podosomes, and the nonreceptor form of PTP ε (cyt-PTPe), which is present in these structures. The presence of the unique 12 N-terminal residues of cyt-PTPe is essential for podosome regulation; attaching this sequence to the catalytic domains of PTP α enables them to function in osteoclasts. Serine 2 within this sequence regulates cyt-PTPe activity and its effects on podosomes. We conclude that PTPs α and ε play distinct roles in osteoclasts and that the N-terminus of cyt-PTPe, in particular serine 2, is critical for its function in these cells.
Collapse
Affiliation(s)
- Eynat Finkelshtein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Einat Levy-Apter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esther Arman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jeroen den Hertog
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen and University Medical Center Utrecht, 3584 CX Utrecht, NetherlandsInstitute of Biology Leiden, Leiden University, 2333 BE Leiden, Netherlands
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Ari Elson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Eleniste PP, Huang S, Wayakanon K, Largura HW, Bruzzaniti A. Osteoblast differentiation and migration are regulated by dynamin GTPase activity. Int J Biochem Cell Biol 2013; 46:9-18. [PMID: 24387844 DOI: 10.1016/j.biocel.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Abstract
Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation.
Collapse
Affiliation(s)
- Pierre P Eleniste
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Su Huang
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Kornchanok Wayakanon
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Heather W Largura
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Angela Bruzzaniti
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
12
|
Briñas L, Vassilopoulos S, Bonne G, Guicheney P, Bitoun M. Role of dynamin 2 in the disassembly of focal adhesions. J Mol Med (Berl) 2013; 91:803-9. [DOI: 10.1007/s00109-013-1040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
13
|
Zheng Y, Lu Z. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-,and threonine-rich sequence (PEST). CHINESE JOURNAL OF CANCER 2012; 32:75-83. [PMID: 23237212 PMCID: PMC3845610 DOI: 10.5732/cjc.012.10084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process.
Collapse
Affiliation(s)
- Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
14
|
Focal adhesion kinases in adhesion structures and disease. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:296450. [PMID: 22888421 PMCID: PMC3409539 DOI: 10.1155/2012/296450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 01/07/2023]
Abstract
Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.
Collapse
|