1
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
2
|
Oh CK, Cho YS. Pathogenesis and biomarkers of colorectal cancer by epigenetic alteration. Intest Res 2024; 22:131-151. [PMID: 38295766 PMCID: PMC11079515 DOI: 10.5217/ir.2023.00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in cancer incidence and stands as the second leading cause of cancer-related deaths globally. CRC tumorigenesis results from a cumulative set of genetic and epigenetic alterations, disrupting cancer-regulatory processes like cell proliferation, metabolism, angiogenesis, cell death, invasion, and metastasis. Key epigenetic modifications observed in cancers encompass abnormal DNA methylation, atypical histone modifications, and irregularities in noncoding RNAs, such as microRNAs and long noncoding RNAs. The advancement in genomic technologies has positioned these genetic and epigenetic shifts as potential clinical biomarkers for CRC patients. This review concisely covers the fundamental principles of CRC-associated epigenetic changes, and examines in detail their emerging role as biomarkers for early detection, prognosis, and treatment response prediction.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Rezkitha YAA, Panenggak NSR, Lusida MI, Rianda RV, Mahmudah I, Pradana AD, Uchida T, Miftahussurur M. Detecting colorectal cancer using genetic and epigenetic biomarkers: screening and diagnosis. J Med Life 2024; 17:4-14. [PMID: 38737656 PMCID: PMC11080499 DOI: 10.25122/jml-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/01/2023] [Indexed: 05/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent types of cancer, with high incidence rates and mortality globally. The extended timeframe for developing CRC allows for the potential screening and early identification of the disease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are made at earlier stages. Recent research suggests that the development of CRC, including its precancerous lesion, is influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due to the variability of CRC, it shows promise as a potential method for understanding and addressing the disease. This review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In addition, we also discussed the feasibility of translating these methodologies into clinical settings. Several markers show promising potential, including the methylation of vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully optimized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. biomarkers, diagnostic biomarkers.
Collapse
Affiliation(s)
- Yudith Annisa Ayu Rezkitha
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Inge Lusida
- Institute of Tropical Disease, Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Raissa Virgy Rianda
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Isna Mahmudah
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aditya Doni Pradana
- Department of Emergency Services, Kendal Islamic Hospital, Kendal, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Darbandi S, Darbandi M, Khorram Khorshid HR, Sengupta P. Electrophysiology of Human Gametes: A Systematic Review. World J Mens Health 2022; 40:442-455. [PMID: 35021309 PMCID: PMC9253800 DOI: 10.5534/wjmh.210107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Oocytes and spermatozoa are electrogenic cells with the ability to respond to electrical stimuli and modulate their electrical properties accordingly. Determination of the ionic events during the gamete maturation helps to design suitable culture media for gametes in assisted reproductive technology (ART). The present systematic review focuses on the electrophysiology of human gametes during different stages of maturation and also during fertilization. MATERIALS AND METHODS The reports published in the English language between January 2000 and July 2021 were extracted from various electronic scientific databases following the PRISMA checklist using specific MeSH keywords. RESULTS Subsequent to the screening process with defined inclusion and exclusion criteria, 60 articles have been included in this review. Among them, 11 articles were directly related to the electrophysiology of human oocytes and 49 physiology department to the electrophysiology of human spermatozoa. CONCLUSIONS Gametes generate electrical currents by ionic exchange, particularly Na+, K+, Cl-, H+, Zn2+, Cu2+, Se2+, Mg2+, HCO3-, and Ca2+ through specific ion channels in different stages of gamete maturation. The ionic concentrations, pH, and other physicochemical variables are modulated during the gametogenesis, maturation, activation, and the fertilization process following gamete function and metabolism. The electrical properties of human gametes change during different stages of maturation. Although it is demonstrated that the electrical properties are significant regulators of cell signaling and are fundamental to gamete maturation and fertilization, their exact roles in these processes are still poorly understood. Further research is required to unveil the intricate electrophysiological processes of human gamete maturation.
Collapse
Affiliation(s)
- Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Biosciences and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, India.
| |
Collapse
|
5
|
Epigenetic insights in the diagnosis, prognosis, and treatment selection in CRC, an updated review. Mol Biol Rep 2022; 49:10013-10022. [PMID: 35727475 DOI: 10.1007/s11033-022-07569-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM The gradual accumulation of genetic and epigenetic alterations can lead to the development of colorectal cancer. In the last decade much research has been done to discover how methylation as an epigenetic alteration leads to carcinogenesis. While Methylation is a biological process, it can influence gene expression by affecting the promoter activity. This article reviews the role of methylation in critical pathways in CRC. METHODS In this study using appropriate keywords, all research and review articles related to the role of methylation on different cancers were collected and analyzed. Also, existing information on methylation detection methods and therapeutic sensitivity or resistance due to DNA methylation were reviewed. RESULTS The results of this survey revealed that while Methylation is a biological process, it can influence gene expression by affecting the promoter activity. Promoter methylation is associated with up or downregulation of genes involved in critical pathways, including cell cycle, DNA repair, and cell adherence. Hence promoter methylation can be used as a molecular tool for early diagnosis, improving treatment, and predicting treatment resistance. CONCLUSION Current knowledge on potential methylation biomarkers for diagnosis and prognoses of CRC has also been discussed. Our survey proposes that a multi-biomarker panel is more efficient than a single biomarker in the early diagnosis of CRC.
Collapse
|
6
|
Huang Z, Yang M. Molecular Network of Colorectal Cancer and Current Therapeutic Options. Front Oncol 2022; 12:852927. [PMID: 35463300 PMCID: PMC9018988 DOI: 10.3389/fonc.2022.852927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), a leading cause of cancer-related mortalities globally, results from the accumulation of multiple genetic and epigenetic alterations in the normal colonic and rectum epithelium, leading to the progression from colorectal adenomas to invasive carcinomas. Almost half of CRC patients will develop metastases in the course of the disease and most patients with metastatic CRC are incurable. Particularly, the 5-year survival rate of patients with stage 4 CRC at diagnosis is less than 10%. Although genetic understanding of these CRC tumors and paired metastases has led to major advances in elucidating early driver genes responsible for carcinogenesis and metastasis, the pathophysiological contribution of transcriptional and epigenetic aberrations in this malignancy which influence many central signaling pathways have attracted attention recently. Therefore, treatments that could affect several different molecular pathways may have pivotal implications for their efficacy. In this review, we summarize our current knowledge on the molecular network of CRC, including cellular signaling pathways, CRC microenvironment modulation, epigenetic changes, and CRC biomarkers for diagnosis and predictive/prognostic use. We also provide an overview of opportunities for the treatment and prevention strategies in this field.
Collapse
Affiliation(s)
- Zhe Huang
- The Department of 11 General Surgery, Minimally Invasive Colorectal Hernia Unit, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Yang
- The Department of 3Oncology, Gastrointestinal Cancer Unit, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingli Yang,
| |
Collapse
|
7
|
Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2020; 501:66-82. [PMID: 33385486 DOI: 10.1016/j.canlet.2020.12.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer related deaths worldwide. Despite recent advancements in surgical and molecular targeted therapies that improved the therapeutic efficacy in CRC, the 5 years survival rate of CRC patients still remains frustratingly poor. Accumulated evidences indicate that microRNAs (miRNAs) play a crucial role in the progression and metastasis of CRC. Dysregulated miRNAs are closely associated with cancerous phenotypes (e.g. enhanced proliferative and invasive ability, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis) by regulating their target genes. In this review, we provide an updated overview of tumor suppressive and oncogenic miRNAs, circulatory miRNAs, and the possible causes of dysregulated miRNAs in CRC. In addition, we discuss the important functions of miRNAs in drug resistance of CRC.
Collapse
Affiliation(s)
- Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Xiaodong Zhang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaotang Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Congying Xie
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
8
|
Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 2020; 17:111-130. [PMID: 31900466 PMCID: PMC7228650 DOI: 10.1038/s41575-019-0230-y] [Citation(s) in RCA: 447] [Impact Index Per Article: 111.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC), a leading cause of cancer-related death worldwide, evolves as a result of the stepwise accumulation of a series of genetic and epigenetic alterations in the normal colonic epithelium, leading to the development of colorectal adenomas and invasive adenocarcinomas. Although genetic alterations have a major role in a subset of CRCs, the pathophysiological contribution of epigenetic aberrations in this malignancy has attracted considerable attention. Data from the past couple of decades has unequivocally illustrated that epigenetic marks are important molecular hallmarks of cancer, as they occur very early in disease pathogenesis, involve virtually all key cancer-associated pathways and, most importantly, can be exploited as clinically relevant disease biomarkers for diagnosis, prognostication and prediction of treatment response. In this Review, we summarize the current knowledge on the best-studied epigenetic modifications in CRC, including DNA methylation and histone modifications, as well as the role of non-coding RNAs as epigenetic regulators. We focus on the emerging potential for the bench-to-bedside translation of some of these epigenetic alterations into clinical practice and discuss the burgeoning evidence supporting the potential of emerging epigenetic therapies in CRC as we usher in the era of precision medicine.
Collapse
Affiliation(s)
- Gerhard Jung
- Gastroenterology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Eva Hernández-Illán
- Gastroenterology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.,;
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA.,Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California, USA.,;
| |
Collapse
|
9
|
Karami J, Aslani S, Tahmasebi MN, Mousavi MJ, Sharafat Vaziri A, Jamshidi A, Farhadi E, Mahmoudi M. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol Cell Biol 2020; 98:171-186. [PMID: 31856314 DOI: 10.1111/imcb.12311] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by immune dysfunctions and chronic inflammation that mainly affects diarthrodial joints. Genetics has long been surveyed in searching for the etiopathogenesis of the disease and partially clarified the conundrums within this context. Epigenetic alterations, such as DNA methylation, histone modifications, and noncoding RNAs, which have been considered to be involved in RA pathogenesis, likely explain the nongenetic risk factors. Epigenetic modifications may influence RA through fibroblast-like synoviocytes (FLSs). It has been shown that FLSs play an essential role in the onset and exacerbation of RA, and therefore, they may illustrate some aspects of RA pathogenesis. These cells exhibit a unique DNA methylation profile in the early stage of the disease that changes with disease progression. Histone acetylation profile in RA FLSs is disrupted through the imbalance of histone acetyltransferases and histone deacetylase activity. Furthermore, dysregulation of microRNAs (miRNAs) is immense. Most of these miRNAs have shown an aberrant expression in FLSs that are involved in proliferation and cytokine production. Besides, dysregulation of long noncoding RNAs in FLSs has been revealed and attributed to RA pathogenesis. Further investigations are needed to get a better view of epigenetic alterations and their interactions. We also discuss the role of these epigenetic alterations in RA pathogenesis and their therapeutic potential.
Collapse
Affiliation(s)
- Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Naghi Tahmasebi
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Qin J, Wen B, Liang Y, Yu W, Li H. Histone Modifications and their Role in Colorectal Cancer (Review). Pathol Oncol Res 2019; 26:2023-2033. [PMID: 31055775 PMCID: PMC7471167 DOI: 10.1007/s12253-019-00663-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
The development of colorectal cancer is a complex and multistep process mediated by a variety of factors including the dysregulation of genetic and epigenetic under the influence of microenvironment. It is evident that epigenetics that affects gene activity and expression has been recognized as a critical role in the carcinogenesis. Aside from DNA methylation, miRNA level, and genomic imprinting, histone modification is increasingly recognized as an essential mechanism underlying the occurrence and development of colorectal cancer. Aberrant regulation of histone modification like acetylation, methylation and phosphorylation levels on specific residues is implicated in a wide spectrum of cancers, including colorectal cancer. In addition, as this process is reversible and accompanied by a plethora of deregulated enzymes, inhibiting those histone-modifying enzymes activity and regulating its level has been thought of as a potential path for tumor therapy. This review provides insight into the basic information of histone modification and its application in the colorectal cancer treatment, thereby offering new potential targets for treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jingchun Qin
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Bin Wen
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Yuqi Liang
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weitao Yu
- Lianyungang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Huixuan Li
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
11
|
Puccini A, Lenz HJ, Marshall JL, Arguello D, Raghavan D, Korn WM, Weinberg BA, Poorman K, Heeke AL, Philip PA, Shields AF, Goldberg RM, Salem ME. Impact of Patient Age on Molecular Alterations of Left-Sided Colorectal Tumors. Oncologist 2019; 24:319-326. [PMID: 30018131 PMCID: PMC6519749 DOI: 10.1634/theoncologist.2018-0117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The incidence of colorectal cancer (CRC) in younger patients is rising, mostly due to tumors in the descending colon and rectum. Therefore, we aimed to explore the molecular differences of left-sided CRC between younger (≤45 years) and older patients (≥65). SUBJECTS, MATERIALS, AND METHODS In total, 1,126 CRC tumor samples from the splenic flexure to (and including) the rectum were examined by next-generation sequencing (NGS), immunohistochemistry, and in situ hybridization. Microsatellite instability (MSI) and tumor mutational burden (TMB) were assessed by NGS. RESULTS Younger patients (n = 350), when compared with older patients (n = 776), showed higher mutation rates in genes associated with cancer-predisposing syndromes (e.g., Lynch syndrome), such as MSH6 (4.8% vs. 1.2%, p = .005), MSH2 (2.7% vs. 0.0%, p = .004), POLE (1.6% vs. 0.0%, p = .008), NF1 (5.9% vs. 0.5%, p < .001), SMAD4 (14.3% vs. 8.3%, p = .024), and BRCA2 (3.7% vs. 0.5%, p = .002). Genes involved in histone modification were also significantly more mutated: KDM5C (1.9% vs. 0%, p = .036), KMT2A (1.1% vs. 0%, p = .033), KMT2C (1.6% vs. 0%, p = .031), KMT2D (3.8% vs. 0.7%, p = .005), and SETD2 (3.2% vs. 0.9%, p = .039). Finally, TMB-high (9.7% vs. 2.8%, p < .001) and MSI-high (MSI-H; 8.1% vs. 1.9%, p = .009) were more frequent in younger patients. CONCLUSION Our findings highlight the importance of genetic counseling and screening in younger CRC patients. MSI-H and TMB-high tumors could benefit from immune-checkpoint inhibitors, now approved for the treatment of MSI-H/deficient mismatch repair metastatic CRC patients. Finally, histone modifiers could serve as a new promising therapeutic target. With confirmatory studies, these results may influence our approach to younger adults with CRC. IMPLICATIONS FOR PRACTICE The increasing rate of colorectal cancers (CRC), primarily distal tumors, among young adults poses a global health issue. This study investigates the molecular differences between younger (≤45 years old) and older (≥65) adults with left-sided CRCs. Younger patients more frequently harbor mutations in genes associated with cancer-predisposing syndromes. Higher rates of microsatellite instability-high and tumor mutational burden-high tumors occur in younger patients, who could benefit from immune-checkpoint inhibitors. Finally, histone modifiers are more frequently mutated in younger patients and could serve as a new promising therapeutic target. This study provides new insights into mutations that may guide development of novel tailored therapy in younger CRC patients.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Medical Oncology, Ospedale Policlinico San Martino, Genova, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John L Marshall
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Derek Raghavan
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, USA
| | | | - Benjamin A Weinberg
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Arielle L Heeke
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Richard M Goldberg
- West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| | - Mohamed E Salem
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, USA
| |
Collapse
|
12
|
Chiocchetti GM, Vélez D, Devesa V. Effect of chronic exposure to inorganic arsenic on intestinal cells. J Appl Toxicol 2019; 39:899-907. [PMID: 30748021 DOI: 10.1002/jat.3778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023]
Abstract
Chronic exposure to inorganic arsenic (As)-As(III) + As(V)-is associated with type 2 diabetes, vascular diseases and various types of cancer. Although the oral route is the main way of exposure to inorganic As, the adverse gastrointestinal effects produced by chronic exposure are not well documented. The aim of the present study is to evaluate the effect of chronic exposure to As(III) on the intestinal epithelium. For this purpose, NCM460 cells, non-transformed epithelial cells from the human colon, were exposed to As(III) (0.01-0.2 mg/L) for 6 months and monitored for acquisition of a tumor-like phenotype. Secretion of matrix metalloproteinases, histone modifications (H3 acetylation), hyperproliferation capacity, formation of floating spheres, anchorage-independent growth, release of cytokine interleukin-8 and expression of relevant genes in colon tumorigenesis were assessed. The results show a maintained proinflammatory response from the beginning, with an increase in interleukin-8 secretion (≤570%). Downregulation of CDX1 and CDX2 was also observed. After 14 weeks of exposure, cells presented marked increases in matrix metalloproteinase-2 secretion and histone modifications. As(III)-treated cells were hyperproliferative, grew in low-serum media and were able to form free-floating spheres. Overall, these data suggest that exposure of human colon epithelial cells to As(III) facilitates acquisition of transformed cell characteristics.
Collapse
Affiliation(s)
- Gabriela M Chiocchetti
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
13
|
|
14
|
Zhou C, Pan R, Hu H, Li B, Dai J, Ying X, Yu H, Zhong J, Mao Y, Zhang Y, Wu D, Duan S. TNFRSF10C methylation is a new epigenetic biomarker for colorectal cancer. PeerJ 2018; 6:e5336. [PMID: 30225159 PMCID: PMC6139245 DOI: 10.7717/peerj.5336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background Abnormal methylation of TNFRSF10C was found to be associated with different types of cancers, excluding colorectal cancer (CRC). In this paper, the performance of TNFRSF10C methylation in CRC was studied in two stages. Method The discovery stage was involved with 38 pairs of CRC tumor and paired adjacent non-tumor tissues, and 69 pairs of CRC tumor and paired adjacent non-tumor tissues were used for the validation stage. Quantitative methylation specific PCR (qMSP) method and percentage of methylated reference (PMR) were used to test and represent the methylation level of TNFRSF10C, respectively. A dual-luciferase reporter gene experiment was conducted to evaluate the promoter activity of TNFRSF10C fragment. Results A significant association of TNFRSF10C promoter hypermethylation with CRC was found and validated (discovery stage: 24.67 ± 7.52 vs. 3.36 ± 0.89; P = 0.003; validation stage: 31.21 ± 12.48 vs. 4.52 ± 1.47; P = 0.0005). Subsequent analyses of TCGA data among 46 pairs of CRC samples further confirmed our findings (cg23965061: P = 4E - 6; cg14015044: P = 1E - 7). Dual-luciferase reporter gene assay revealed that TNFRSF10C fragment was able to significantly promote gene expression (Fold change = 2.375, P = 0.013). Our data confirmed that TNFRSF10C promoter hypermethylation can predict shorter overall survival of CRC patients (P = 0.032). Additionally, bioinformatics analyses indicated that TNFRSF10C hypermethylation was significantly associated with lower TNFRSF10C expression. Conclusion Our work suggested that TNFRSF10C hypermethylation was significantly associated with the risk of CRC.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Yihan Zhang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Darling AL, Uversky VN. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Front Genet 2018; 9:158. [PMID: 29780404 PMCID: PMC5945825 DOI: 10.3389/fgene.2018.00158] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins and domains that devoid stable secondary and/or tertiary structure. IDPs/IDPRs are abundantly present in various proteomes, where they are involved in regulation, signaling, and control, thereby serving as crucial regulators of various cellular processes. Various mechanisms are utilized to tightly regulate and modulate biological functions, structural properties, cellular levels, and localization of these important controllers. Among these regulatory mechanisms are precisely controlled degradation and different posttranslational modifications (PTMs). Many normal cellular processes are associated with the presence of the right amounts of precisely activated IDPs at right places and in right time. However, wrecked regulation of IDPs/IDPRs might be associated with various human maladies, ranging from cancer and neurodegeneration to cardiovascular disease and diabetes. Pathogenic transformations of IDPs/IDPRs are often triggered by altered PTMs. This review considers some of the aspects of IDPs/IDPRs and their normal and aberrant regulation by PTMs.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
16
|
Perez M, Lucena-Cacace A, Marín-Gómez LM, Padillo-Ruiz J, Robles-Frias MJ, Saez C, Garcia-Carbonero R, Carnero A. Dasatinib, a Src inhibitor, sensitizes liver metastatic colorectal carcinoma to oxaliplatin in tumors with high levels of phospho-Src. Oncotarget 2018; 7:33111-24. [PMID: 27105527 PMCID: PMC5078079 DOI: 10.18632/oncotarget.8880] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
Despite the development of new antineoplastic agents for the treatment of colorectal cancer (CRC), oxaliplatin and fluoropyrimidines remain the most commonly employed drugs for the treatment of both early and advanced disease. Intrinsic or acquired resistance is, however, an important limitation to pharmacological therapy, and the development of chemosensitization strategies constitute a major goal with important clinical implications. In the present work, we determined that high levels of activated Src kinase, measured as phospho-Src at the Tyr419 residue in CRC cell lines, can promote colorectal carcinoma cell resistance to oxaliplatin, but not to 5-fluorouracil (5FU), and that inhibition of this protein restores sensitivity to oxaliplatin. Similar results were observed with in vivo patient-derived xenograft (PDX) models that were orthotopically grown in murine livers. In PDX tumor lines derived from human CRC liver metastasis, dasatinib, a Src inhibitor, increases sensitivity to oxaliplatin only in tumors with high p-Src. However, dasatinib did not modify sensitivity to 5FU in any of the models. Our data suggest that chemoresistance induced by p-Src is specific to oxaliplatin, and that p-Src levels can be used to identify patients who may benefit from this combination therapy. These results are relevant for clinicians as they identify a novel biomarker of drug resistance that is suitable to pharmacological manipulation.
Collapse
Affiliation(s)
- Marco Perez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Luis Miguel Marín-Gómez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of General Surgery, Virgen del Rocío University Hospital, Seville, Spain
| | - Javier Padillo-Ruiz
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of General Surgery, Virgen del Rocío University Hospital, Seville, Spain
| | - Maria Jose Robles-Frias
- Department of Pathology, Virgen del Rocío University Hospital, Seville, Spain.,Present address: HUVR-IBiS Biobank, Virgen del Rocío University Hospital, Seville, Spain
| | - Carmen Saez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain.,Department of Pathology, Virgen del Rocío University Hospital, Seville, Spain
| | - Rocio Garcia-Carbonero
- Department of Medical Oncology, Virgen del Rocío University Hospital, Seville, Spain.,Present address: Department of Medical Oncology, 12 of October University Hospital, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/ Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
17
|
Porcellini E, Laprovitera N, Riefolo M, Ravaioli M, Garajova I, Ferracin M. Epigenetic and epitranscriptomic changes in colorectal cancer: Diagnostic, prognostic, and treatment implications. Cancer Lett 2018; 419:84-95. [PMID: 29360561 DOI: 10.1016/j.canlet.2018.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
A cancer cell is the final product of a complex mixture of genetic, epigenetic and epitranscriptomic alterations, whose final interplay contribute to cancer onset and progression. This is specifically true for colorectal cancer, a tumor with a strong epigenetic component, which acts earlier than any other genetic alteration in promoting cancer cell malignant transformation. The pattern of progressive, and usually subtype-specific, DNA and histone modifications that occur in colorectal cancer has been extensively studied in the last decade, providing plenty of data to explore. For this tumor, it became recently evident that also RNA modifications play a relevant role in the activation of oncogenes or repression of tumor suppressor genes. In this review we provide a brief overview of all epigenetic and epitranscriptomic changes that have been found associated to colorectal cancer till now. We explore the impact of these alterations in cancer prognosis and response to treatment and discuss their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Noemi Laprovitera
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Ingrid Garajova
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
18
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
19
|
Katzenmaier EM, Kloor M, Gabius HJ, Gebert J, Kopitz J. Analyzing epigenetic control of galectin expression indicates silencing of galectin-12 by promoter methylation in colorectal cancer. IUBMB Life 2017; 69:962-970. [PMID: 29098769 DOI: 10.1002/iub.1690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/07/2017] [Indexed: 12/24/2022]
Abstract
Galectins, a class of lectins with specificity for ß-galactoside containing glycoconjugates, modulate several cellular processes that are involved in the control of normal cell growth, differentiation, cell-cell, and cell matrix interactions. Pathological alterations of the galectin expression pattern have been implicated in the development and progression of cancer. We therefore analyzed epigenetic mechanisms for control of galectin expression in 9 colorectal cancer (CRC) cell lines. Our data demonstrate that expression of galectins-1, -2, -7, -8, and -9 can be regulated by histone acetylation in CRC cell lines. In addition, the same set of galectins was also found to be modulated by DNA methylation. Of particular note, galectin-12 is silenced in all tested CRC cell lines but known to be re-expressed upon butyrate-induced differentiation and present in normal colonic mucosa. Loss of galectin-12 expression in undifferentiated CRC cells is associated with promoter hypermethylation and for the first time we provide detailed methylation analysis of the promoter region. In CRC tumor tissue, galectin-12 expression was downregulated in 66% of CRC tissue specimens as compared to adjacent normal tissue hinting to a possible tumor-suppressing function in CRC. © 2017 IUBMB Life, 69(12):962-970, 2017.
Collapse
Affiliation(s)
- Eva-Maria Katzenmaier
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Hans-Joachim Gabius
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center), Heidelberg, Germany
| | - Juergen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center), Heidelberg, Germany
| |
Collapse
|
20
|
Puccini A, Berger MD, Naseem M, Tokunaga R, Battaglin F, Cao S, Hanna DL, McSkane M, Soni S, Zhang W, Lenz HJ. Colorectal cancer: epigenetic alterations and their clinical implications. Biochim Biophys Acta Rev Cancer 2017; 1868:439-448. [PMID: 28939182 DOI: 10.1016/j.bbcan.2017.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with distinct molecular and clinical features, which reflects the wide range of prognostic outcomes and treatment responses observed among CRC patients worldwide. Our understanding of the CRC epigenome has been largely developed over the last decade and it is now believed that among thousands of epigenetic alterations present in each tumor, a small subgroup of these may be considered as a CRC driver event. DNA methylation profiles have been the most widely studied in CRC, which includes a subset of patients with distinct molecular and clinical features now categorized as CpG island methylator phenotype (CIMP). Major advances have been made in our capacity to detect epigenetic alterations, providing us with new potential biomarkers for diagnostic, prognostic and therapeutic purposes. This review aims to summarize our current knowledge about epigenetic alterations occurring in CRC, underlying their potential future clinical implications in terms of diagnosis, prognosis and therapeutic strategies for CRC patients.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Diana L Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
21
|
Alipour S, Nouri M, Sakhinia E, Samadi N, Roshanravan N, Ghavami A, Khabbazi A. Epigenetic alterations in chronic disease focusing on Behçet's disease: Review. Biomed Pharmacother 2017; 91:526-533. [PMID: 28482290 DOI: 10.1016/j.biopha.2017.04.106] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE 'Epigenetics' is specified as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly overspreading scientific field, and the study of epigenetic regulation in chronic disease is emerging. This study aims to evaluate epigenetic changes including DNA methylation, histone modification, and non-coding RNAs (ncRNAs) in inflammatory disease, with focus on Behçet's disease. In this review, first we describe the history and classification of epigenetic changes, and then the role of epigenetic alterations in chronic diseases is explained. METHODS Systematic search of MEDLINE, Embase, and Cochrane Library was conducted for all comparative studies since 2000 to 2015 with the limitations of the English language. RESULTS For a notable period of time, researchers have mainly focused on the epigenetic pathways that are involved in the modulation of inflammatory and anti-inflammatory genes. Recent studies have proposed a central role for chronic inflammation in the pathogenesis of chronic disease, including Behçet's disease. CONCLUSION Studies have been reported on the epigenetic of BD showed the role of alterations in the methylation level of IRS elements; histone modifications such as H3K4me27 and H3K4me3; up regulation of miR-182 and miR-3591-3p; down regulation of miR-155, miR-638 and miR-4488 in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Shahriar Alipour
- Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Iran
| | - Mohammad Nouri
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Dept. of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abed Ghavami
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
22
|
Shen Z, Wang B, Luo J, Jiang K, Zhang H, Mustonen H, Puolakkainen P, Zhu J, Ye Y, Wang S. Global-scale profiling of differential expressed lysine acetylated proteins in colorectal cancer tumors and paired liver metastases. J Proteomics 2016; 142:24-32. [PMID: 27178108 DOI: 10.1016/j.jprot.2016.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Lysine acetylated modification was indicated to impact colorectal cancer (CRC)'s distant metastasis. However, the global acetylated proteins in CRC and the differential expressed acetylated proteins and acetylated sites between CRC primary and distant metastatic tumor remains unclear. Our aim was to construct a complete atlas of acetylome in CRC and paired liver metastases. Combining high affinity enrichment of acetylated peptides with high sensitive mass spectrometry, we identified 603 acetylation sites from 316 proteins, among which 462 acetylation sites corresponding to 243 proteins were quantified. We further classified them into groups according to cell component, molecular function and biological process and analyzed the metabolic pathways, domain structures and protein interaction networks. Finally, we evaluated the differentially expressed lysine acetylation sites and revealed that 31 acetylated sites of 22 proteins were downregulated in CRC liver metastases compared to that in primary CRC while 40 acetylated sites of 32 proteins were upregulated, of which HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. These results provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC. BIOLOGICAL SIGNIFICANCE This study described provides, for the first time, that full-scale profiling of lysine acetylated proteins were identified and quantified in colorectal cancer (CRC) and paired liver metastases. The novelty of the study is that we constructed a complete atlas of acetylome in CRC and paired liver metastases. Moreover, we analyzed these differentially expressed acetylated proteins in cell component, molecular function and biological process. In addition, metabolic pathways, domain structures and protein interaction networks of acetylated proteins were also investigated. Our approaches shows that of the differentially expressed proteins, HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. Our findings provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC.
Collapse
Affiliation(s)
- Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center, Beijing 100191, PR China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Hui Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Harri Mustonen
- Department of Surgery, Helsinki University Central Hospital and University of Helsinki, Helsinki 00290, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Helsinki University Central Hospital and University of Helsinki, Helsinki 00290, Finland
| | - Jun Zhu
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, PR China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China.
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China.
| |
Collapse
|
23
|
Guo Y, Liu Y, Zhang C, Su ZY, Li W, Huang MT, Kong AN. The epigenetic effects of aspirin: the modification of histone H3 lysine 27 acetylation in the prevention of colon carcinogenesis in azoxymethane- and dextran sulfate sodium-treated CF-1 mice. Carcinogenesis 2016; 37:616-624. [PMID: 27207670 DOI: 10.1093/carcin/bgw042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Chronic inflammation appears to enhance the risk of CRC. Emerging evidence has suggested that epigenetic mechanisms play an important role in CRC. Aspirin [acetylsalicylic acid (ASA)] has been shown to prevent CRC; however, the epigenetic mechanisms of its action remain unknown. This study investigated the protective role of ASA in azoxymethane (AOM)-initiated and dextran sulfate sodium (DSS)-promoted colitis-associated colon cancer (CAC) and examined the epigenetic effects, particularly on histone 3 lysine 27 acetylation (H3K27ac), underlying the preventive effect of ASA. CF-1 mice were fed with AIN-93M diet with or without 0.02% ASA from 1 week prior to AOM initiation until the mice were killed 20 weeks after AOM injection. Our results showed that AOM/DSS + ASA significantly suppressed inflammatory colitis symptoms and tumor multiplicity. AOM/DSS + ASA reduced AOM/DSS-induced protein expression and the activity of histone deacetylases (HDACs) and globally restored H3K27ac. Furthermore, AOM/DSS + ASA inhibited AOM/DSS-induced enrichment of H3K27ac in the promoters of inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) that corresponded to the dramatic suppression of the messenger RNA (mRNA) and protein levels. Surprisingly, no significant changes in the H3K27ac abundance in the prostaglandin-endoperoxide synthase 2 (Cox-2) promoters or in the Cox-2 mRNA and protein expression were observed. Collectively, our results suggest that a potential novel epigenetic mechanism underlies the chemopreventive effects of ASA, and this mechanism attenuates CAC in AOM/DSS-induced CF-1 mice via the inhibition of HDACs and the modification of H3K27ac marks that suppress iNOS, TNF-α and IL-6.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Sciences.,Department of Pharmaceutics and.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yue Liu
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chengyue Zhang
- Graduate Program in Pharmaceutical Sciences.,Department of Pharmaceutics and.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli City, Taoyuan 32023, Taiwan and
| | - Wenji Li
- Department of Pharmaceutics and.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mou-Tuan Huang
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics and.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
24
|
Puerta-García E, Cañadas-Garre M, Calleja-Hernández MÁ. Molecular biomarkers in colorectal carcinoma. Pharmacogenomics 2015; 16:1189-222. [PMID: 26237292 DOI: 10.2217/pgs.15.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is a tumor with increasing incidence which represents one of the first leading causes of death worldwide. Gene alterations described for colorectal cancer include genome instability (microsatellite and chromosomal instability), CpG islands methylator phenotype, microRNA, histone modification, protein biomarkers, gene mutations (RAS, BRAF, PI3K, TP53, PTEN) and polymorphisms (APC, CTNNB1, DCC). In this article, biomarkers with prognostic value commonly found in colorectal cancer will be reviewed.
Collapse
Affiliation(s)
- Elena Puerta-García
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain
| | - Marisa Cañadas-Garre
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain
| | - Miguel Ángel Calleja-Hernández
- Pharmacogenetics Unit, UGC Provincial de Farmacia de Granada, Instituto de Investigación Biosanitaria de Granada, Complejo Hospitalario Universitario de Granada, Avda. Fuerzas Armadas, 2, 18014 Granada, Spain
| |
Collapse
|
25
|
Abstract
BACKGROUND Gastric cancer and colorectal cancer, the two most frequent cancers within the gastrointestinal tract, account for a large proportion of human malignancies worldwide. The initiation and progression of gastrointestinal cancer (GIC) is controlled by both genetic and epigenetic events. Epigenetic alterations, including changes in DNA methylation, specific histone modifications, chromatin remodeling and noncoding RNA-mediated gene silencing, are potentially reversible and heritable. SUMMARY In this article, we summarize the current advances in epigenetic biomarkers as potential substrates for GIC detection. The combined screening of a panel of methylated genes, hyperacetylated histones, microRNAs or other noncoding RNAs is currently under evaluation to improve sensitivity. KEY MESSAGE Current studies concentrated on the development of cost-effective epigenetic diagnostic biomarkers for GIC based on noninvasive blood or stool samples. The combined blood or stool test with a relatively high sensitivity could be a cost-effective screening tool for the detection of patients with asymptomatic cancers who could therefore choose whether or not to go for further examinations, such as endoscopy or colonoscopy. PRACTICAL IMPLICATIONS A better understanding of epigenetic mechanisms has not only offered new insights into a deeper understanding of the underlying mechanisms of carcinogenesis, but has also allowed identification of clinically relevant putative biomarkers for the early detection, disease monitoring, prognosis and risk assessment of GIC. In particular, noninvasive biomarkers in serum or fecal samples for the detection of GIC could have potential for better compliance and can be incorporated into routine clinical practice in the foreseeable future, pending their validation in large-scale prospective trials.
Collapse
Affiliation(s)
- Hui-Mi Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jing-Yua Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
26
|
Kostaki M, Manona AD, Stavraka I, Korkolopoulou P, Levidou G, Trigka EA, Christofidou E, Champsas G, Stratigos AJ, Katsambas A, Papadopoulos O, Piperi C, Papavassiliou AG. High-frequency p16(INK) (4A) promoter methylation is associated with histone methyltransferase SETDB1 expression in sporadic cutaneous melanoma. Exp Dermatol 2014; 23:332-8. [PMID: 24673285 DOI: 10.1111/exd.12398] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
Epigenetic mechanisms participate in melanoma development and progression. The effect of histone modifications and their catalysing enzymes over euchromatic promoter DNA methylation in melanoma remains unclear. This study investigated the potential association of p16(INK) (4A) promoter methylation with histone methyltransferase SETDB1 expression in Greek patients with sporadic melanoma and their correlation with clinicopathological characteristics. Promoter methylation was detected by methylation-specific PCR in 100 peripheral blood samples and 58 melanoma tissues from the same patients. Cell proliferation (Ki-67 index), p16(INK) (4A) and SETDB1 expression were evaluated by immunohistochemistry. High-frequency promoter methylation (25.86%) was observed in tissue samples and correlated with increased cell proliferation (P = 0.0514). p16(INK) (4A) promoter methylation was higher in vertical growth-phase (60%) melanomas than in radial (40%, P = 0.063) and those displaying epidermal involvement (P = 0.046). Importantly, p16(INK) (4A) methylation correlated with increased melanoma thickness according to Breslow index (P = 0.0495) and marginally with increased Clark level (I/II vs III/IV/V, P = 0.070). Low (1-30%) p16(INK) (4A) expression was detected at the majority (19 of 54) of melanoma cases (35.19%), being marginally correlated with tumor lymphocytic infiltration (P = 0.078). SETDB1 nuclear immunoreactivity was observed in 47 of 57 (82.46%) cases, whereas 27 of 57 (47.37%) showed cytoplasmic immunoexpression. Cytoplasmic SETDB1 expression correlated with higher frequency of p16(INK) (4A) methylation and p16(INK) (4A) expression (P = 0.033, P = 0.011, respectively). Increased nuclear SETDB1 levels were associated with higher mitotic count (0-5/mm(2) vs >5/mm(2) , P = 0.0869), advanced Clark level (III-V, P = 0.0380), epidermal involvement (P = 0.0331) and the non-chronic sun exposure-associated melanoma type (P = 0.0664). Our data demonstrate for the first time the association of histone methyltransferase SETDB1 with frequent methylation of the euchromatic p16(INK) (4A) promoter and several prognostic parameters in melanomas.
Collapse
Affiliation(s)
- Maria Kostaki
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Colorectal cancer (CRC) results from a stepwise accumulation of genetic and epigenetic alterations that transform the normal colonic epithelium into cancer. DNA methylation represents one of the most studied epigenetic marks in CRC, and three common epigenotypes have been identified characterized by high, intermediate and low methylation profiles, respectively. Combining DNA methylation data with gene mutations and cytogenetic alterations occurring in CRC is nowadays allowing the characterization of different CRC subtypes, but the crosstalk between DNA methylation and other epigenetic mechanisms, such as histone tail modifications and the deregulated expression of non-coding RNAs is not yet clearly defined. Epigenetic biomarkers are increasingly recognized as promising diagnostic and prognostic tools in CRC, and the potential of therapeutic applications aimed at targeting the epigenome is under investigation.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
28
|
Benard A, Goossens-Beumer IJ, van Hoesel AQ, Horati H, de Graaf W, Putter H, Zeestraten ECM, Liefers GJ, van de Velde CJH, Kuppen PJK. Nuclear expression of histone deacetylases and their histone modifications predicts clinical outcome in colorectal cancer. Histopathology 2014; 66:270-82. [PMID: 25307864 DOI: 10.1111/his.12534] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/14/2014] [Indexed: 12/17/2022]
Abstract
AIMS Epigenetic changes are of crucial importance in cancer development and are potentially reversible; they are therefore targets of interest for anti-cancer therapy. The aim of this study was to investigate the clinical prognostic value of the histone deacetylases SIRT1, HDAC1 and HDAC2 and the histone modifications H4K16Ac and H3K56Ac in colorectal cancer. METHODS AND RESULTS The epigenetic markers were immunohistochemically stained on tissue microarrays containing colorectal tumours (n = 254) and normal colorectal tissues (n = 50). Nuclear expression was assessed on the semi-automated Ariol system. Multivariate trend survival analyses of the combined markers showed better patient survival and less tumour recurrence when more markers showed high nuclear expression. For the combination of the histone deacetylases and H3K56Ac, the hazard ratio (HR) for overall survival (OS) was 0.82 [95% confidence interval (CI) 0.72-0.94; P = 0.005] and the HR for distant recurrence-free survival (DRFS) was 0.77 (95% CI 0.64-0.92; P = 0.003) per additional marker showing high expression. Similarly, for the combination of histone deactylases and H4K16Ac, HRs of 0.86 (95% CI 0.76-0.97; P = 0.01) for OS and 0.79 (95% CI 0.68-0.93; P = 0.006) for DRFS were observed per additional marker showing high expression. CONCLUSIONS The studied epigenetic markers showed clinical prognostic value in colorectal cancer, both as individual markers and when combined into multimarker analyses. These results indicate that epigenetic mechanisms play an important role in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Anne Benard
- Department of Surgical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6. [PMID: 25988147 PMCID: PMC4428494 DOI: 10.3389/fmolb.2014.00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
30
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
31
|
Karczmarski J, Rubel T, Paziewska A, Mikula M, Bujko M, Kober P, Dadlez M, Ostrowski J. Histone H3 lysine 27 acetylation is altered in colon cancer. Clin Proteomics 2014; 11:24. [PMID: 24994966 PMCID: PMC4071346 DOI: 10.1186/1559-0275-11-24] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/17/2014] [Indexed: 12/20/2022] Open
Abstract
Background Histone post-translational modifications (PTMs) play an important role in the regulation of the expression of genes, including those involved in cancer development and progression. However, our knowledge of PTM patterns in human tumours is limited. Methods MS-based analyses were used to quantify global alterations of histone PTMs in colorectal cancer (CRC) samples. Histones isolated from 12 CRCs and their corresponding normal mucosa by acidic extraction were separated by SDS-PAGE and analysed by liquid chromatography-mass spectrometry. Results Among 96 modified peptides, 41 distinct PTM sites were identified, of which 7, 13, 11, and 10 were located within the H2A, H2B, H3, and H4 sequences, respectively, and distributed among the amino-terminal tails and the globular domain of the four histones. Modification intensities were quantified for 33 sites, of which 4 showed significant (p-value ≤ 0.05) differences between CRC tissues and healthy mucosa samples. We identified histone H3 lysine 27 acetylation (H3K27Ac) as a modification upregulated in CRC, which had not been shown previously. Conclusions The present results indicate the usefulness of a bottom-up proteomic approach for the detection of histone modifications at a global scale. The differential abundance of H3K27Ac mark in CRC, a PTM associated with active enhancers, suggests its role in regulating genes whose expression changes in CRC.
Collapse
Affiliation(s)
- Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Tymon Rubel
- Institute of Radioelectronics, Warsaw University of Technology, Warsaw 00-665, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 01-813, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland ; Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 01-813, Poland
| |
Collapse
|
32
|
Gargalionis AN, Karamouzis MV, Papavassiliou AG. The molecular rationale of Src inhibition in colorectal carcinomas. Int J Cancer 2014; 134:2019-2029. [DOI: 10.1002/ijc.28299] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Antonios N. Gargalionis
- Molecular Oncology Unit; Department of Biological Chemistry, University of Athens Medical School; Athens Greece
| | - Michalis V. Karamouzis
- Molecular Oncology Unit; Department of Biological Chemistry, University of Athens Medical School; Athens Greece
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit; Department of Biological Chemistry, University of Athens Medical School; Athens Greece
| |
Collapse
|
33
|
Khatami M. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis! Cancers (Basel) 2014; 6:297-322. [PMID: 24473090 PMCID: PMC3980605 DOI: 10.3390/cancers6010297] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 01/06/2023] Open
Abstract
Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates) is heavy investment on numerous genetic mutations (molecular false-flags) in the chaotic molecular landscape of site-specific cancers which are used for "targeted" therapies or "personalized" medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation ("Yin"-"Yang" or immune surveillance). Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our "accidental" discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs) demonstrated at least three stages of interactions between resident (host) and recruited immune cells: (a), acute phase; activation of mast cells (MCs), IgE Abs, histamine and prostaglandin synthesis; (b), intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos) infiltrations into epithelia and goblet cells (GCs), tissue hypertrophy and neovascularization; and (c), chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mfs), increased (irregular size) B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth) and/or thinning (necrosis) and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune dysfunction in the direction of tumorigenesis. Activated MFs (TAMs or M2) and Eos that are recruited by tissues (e.g., conjunctiva or perhaps lung airways) whose principal resident immune cells are MCs and lymphocytes are suggested to play crucial synergistic roles in enhancing growth promoting capacities of host toward tumorigenesis. Under oxidative stress, M-CSF may produce signals that are cumulative/synergistic with host mediators (e.g., low levels of histamine), facilitating tumor-directed expression of decoy receptors and immune suppressive factors (e.g., dTNFR, IL-5, IL-10, TGF-b, PGE2). M-CSF, possessing superior sensitivity and specificity, compared with conventional markers (e.g., CA-125, CA-19-9) is potentially a suitable biomarker for cancer diagnosis and technology development. Systematic monitoring of interactions between resident and recruited cells should provide key information not only about early events in loss of immune surveillance, but it would help making informed decisions for balancing the inherent tumoricidal (Yin) and tumorigenic (Yang) properties of immune system and effective preventive and therapeutic approaches and accurate risk assessment toward improvement of public health.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation and Cancer Biology, National Cancer Institute (Ret), the National Institutes of Health, Bethesda, MD 20817, USA.
| |
Collapse
|
34
|
Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhsng CZ, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013; 45:1134-40. [PMID: 24071852 PMCID: PMC3966983 DOI: 10.1038/ng.2760] [Citation(s) in RCA: 1342] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Determining how somatic copy number alterations (SCNAs) promote cancer is an important goal. We characterized SCNA patterns in 4,934 cancers from The Cancer Genome Atlas Pan-Cancer data set. Whole-genome doubling, observed in 37% of cancers, was associated with higher rates of every other type of SCNA, TP53 mutations, CCNE1 amplifications and alterations of the PPP2R complex. SCNAs that were internal to chromosomes tended to be shorter than telomere-bounded SCNAs, suggesting different mechanisms underlying their generation. Significantly recurrent focal SCNAs were observed in 140 regions, including 102 without known oncogene or tumor suppressor gene targets and 50 with significantly mutated genes. Amplified regions without known oncogenes were enriched for genes involved in epigenetic regulation. When levels of genomic disruption were accounted for, 7% of region pairs were anticorrelated, and these regions tended to encompass genes whose proteins physically interact, suggesting related functions. These results provide insights into mechanisms of generation and functional consequences of cancer-related SCNAs.
Collapse
Affiliation(s)
- Travis I Zack
- Broad Institute, Cambridge, Massachusetts, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Biophysics Program, Harvard University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shang G, Gao P, Zhao Z, Chen Q, Jiang T, Zhang N, Li H. 3,5-Diiodo-l-thyronine ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Biochim Biophys Acta Mol Basis Dis 2013; 1832:674-84. [DOI: 10.1016/j.bbadis.2013.01.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/13/2013] [Accepted: 01/29/2013] [Indexed: 12/26/2022]
|
36
|
Miao CG, Yang YY, He X, Li J. New advances of DNA methylation and histone modifications in rheumatoid arthritis, with special emphasis on MeCP2. Cell Signal 2013; 25:875-82. [DOI: 10.1016/j.cellsig.2012.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/21/2012] [Indexed: 01/04/2023]
|
37
|
Luo YB, Ma JY, Zhang QH, Lin F, Wang ZW, Huang L, Schatten H, Sun QY. MBTD1 is associated with Pr-Set7 to stabilize H4K20me1 in mouse oocyte meiotic maturation. Cell Cycle 2013; 12:1142-50. [PMID: 23475131 DOI: 10.4161/cc.24216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
H4K20me1 is a critical histone lysine methyl modification in eukaryotes. It is recognized and "read" by various histone lysine methyl modification binding proteins. In this study, the function of MBTD1, a member of the Polycomb protein family containing four MBT domains, was comprehensively studied in mouse oocyte meiotic maturation. The results showed that depletion of MBTD1 caused reduced expression of histone lysine methyl transferase Pr-Set7 and H4K20me1 as well as increased oocyte arrest at the GV stage. Increased γH2AX foci were formed, and DNA damage repair checkpoint protein 53BP1 was downregulated. Furthermore, depletion of MBTD1 activated the cell cycle checkpoint protein Chk1 and downregulated the expression of cyclin B1 and cdc2. MBTD1 knockdown also affected chromosome configuration in GV stage oocytes and chromosome alignment at the MII stage. All these phenotypes were reproduced when the H4K20 methyl transferase Pr-Set7 was depleted. Co-IP demonstrated that MBTD1 was correlated with Pr-Set7 in mouse oocytes. Our results demonstrate that MBTD1 is associated with Pr-Set7 to stabilize H4K20me1 in mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yi-Bo Luo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ohta K, Haraguchi N, Kano Y, Kagawa Y, Konno M, Nishikawa S, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Noguchi Y, Ozaki M, Kudo T, Sakai D, Satoh T, Fukami M, Ishii M, Yamamoto H, Doki Y, Mori M, Ishii H. Depletion of JARID1B induces cellular senescence in human colorectal cancer. Int J Oncol 2013; 42:1212-8. [PMID: 23354547 DOI: 10.3892/ijo.2013.1799] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022] Open
Abstract
The global incidence of colorectal cancer (CRC) is increasing. Although there are emerging epigenetic factors that contribute to the occurrence, development and metastasis of CRC, the biological significance of epigenetic molecular regulation in different subpopulations such as cancer stem cells remains to be elucidated. In this study, we investigated the functional roles of the H3K4 demethylase, jumonji, AT rich interactive domain 1B (JARID1B), an epigenetic factor required for the continuous cell growth of melanomas, in CRC. We found that CD44(+)/aldehyde dehydrogenase (ALDH)(+) slowly proliferating immature CRC stem cell populations expressed relatively low levels of JARID1B and the differentiation marker, CD20, as well as relatively high levels of the tumor suppressor, p16/INK4A. Of note, lentiviral‑mediated continuous JARID1B depletion resulted in the loss of epithelial differentiation and suppressed CRC cell growth, which was associated with the induction of phosphorylation by the c‑Jun N‑terminal kinase (Jnk/Sapk) and senescence‑associated β‑galactosidase activity. Moreover, green fluorescent‑labeled cell tracking indicated that JARID1B‑positive CRC cells had greater tumorigenicity than JARID1B‑negative CRC cells after their subcutaneous inoculation into immunodeficient mice, although JARID1B‑negative CRC cells resumed normal growth after a month, suggesting that continuous JARID1B inhibition is necessary for tumor eradication. Thus, JARID1B plays a role in CRC maintenance. JARID1B may be a novel molecular target for therapy‑resistant cancer cells by the induction of cellular senescence.
Collapse
Affiliation(s)
- Katsuya Ohta
- Department of Frontier Science for Cancer and Chemotherapy, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|