1
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
4
|
Solchenberger B, Russell C, Kremmer E, Haass C, Schmid B. Granulin knock out zebrafish lack frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis pathology. PLoS One 2015; 10:e0118956. [PMID: 25785851 PMCID: PMC4365039 DOI: 10.1371/journal.pone.0118956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/26/2015] [Indexed: 02/04/2023] Open
Abstract
Loss of function mutations in granulin (GRN) are linked to two distinct neurological disorders, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). It is so far unknown how a complete loss of GRN in NCL and partial loss of GRN in FTLD can result in such distinct diseases. In zebrafish, there are two GRN homologues, Granulin A (Grna) and Granulin B (Grnb). We have generated stable Grna and Grnb loss of function zebrafish mutants by zinc finger nuclease mediated genome editing. Surprisingly, the grna and grnb single and double mutants display neither spinal motor neuron axonopathies nor a reduced number of myogenic progenitor cells as previously reported for Grna and Grnb knock down embryos. Additionally, grna−/−;grnb−/− double mutants have no obvious FTLD- and NCL-related biochemical and neuropathological phenotypes. Taken together, the Grna and Grnb single and double knock out zebrafish lack any obvious morphological, pathological and biochemical phenotypes. Loss of zebrafish Grna and Grnb might therefore either be fully compensated or only become symptomatic upon additional challenge.
Collapse
Affiliation(s)
- Barbara Solchenberger
- Adolf-Butenandt-Institute—Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Christian Haass
- Adolf-Butenandt-Institute—Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Bettina Schmid
- Adolf-Butenandt-Institute—Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
5
|
Saenger Y, Magidson J, Liaw B, de Moll E, Harcharik S, Fu Y, Wassmann K, Fisher D, Kirkwood J, Oh WK, Friedlander P. Blood mRNA expression profiling predicts survival in patients treated with tremelimumab. Clin Cancer Res 2014; 20:3310-8. [PMID: 24721645 DOI: 10.1158/1078-0432.ccr-13-2906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tremelimumab (ticilimumab, Pfizer), is a monoclonal antibody (mAb) targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). Ipilimumab (Yervoy, BMS), another anti-CTLA-4 antibody, is approved by the U.S. Federal Drug Administration (FDA). Biomarkers are needed to identify the subset of patients who will achieve tumor control with CTLA-4 blockade. EXPERIMENTAL DESIGN Pretreatment peripheral blood samples from 218 patients with melanoma who were refractory to prior therapy and receiving tremelimumab in a multicenter phase II study were measured for 169 mRNA transcripts using reverse transcription polymerase chain reaction (RT-PCR). A two-class latent model yielded a risk score based on four genes that were highly predictive of survival (P < 0.001). This signature was validated in an independent population of 260 treatment-naïve patients with melanoma enrolled in a multicenter phase III study of tremelimumab. RESULTS Median follow-up was 297 days for the training population and 386 days for the test population. Expression levels of the 169 genes were closely correlated across the two populations (r = 0.9939). A four-gene model, including cathepsin D (CTSD), phopholipase A2 group VII (PLA2G7), thioredoxin reductase 1 (TXNRD1), and interleukin 1 receptor-associated kinase 3 (IRAK3), predicted survival in the test population (P = 0.001 by log-rank test). This four-gene model added to the predictive value of clinical predictors (P < 0.0001). CONCLUSIONS Expression levels of CTSD, PLA2G7, TXNRD1, and IRAK3 in peripheral blood are predictive of survival in patients with melanoma treated with tremelimumab. Blood mRNA signatures should be further explored to define patient subsets likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Yvonne Saenger
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, CanadaAuthors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - Jay Magidson
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - Bobby Liaw
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - Ellen de Moll
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - Sara Harcharik
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - Yichun Fu
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - Karl Wassmann
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - David Fisher
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - John Kirkwood
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - William K Oh
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| | - Philip Friedlander
- Authors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, CanadaAuthors' Affiliations: Division of Hematology and Oncology, Tisch Cancer Institute, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York; Statistical Innovations, Belmont; Department of Dermatology, Harvard Medical School, Boston, Massachusetts; Departments of Medicine, Dermatology and Translational Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Gene News, Ontario, Canada
| |
Collapse
|