1
|
Thi HV, Ngo AD, Chu DT. Epigenetic regulation in ovarian cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:77-98. [PMID: 39179349 DOI: 10.1016/bs.ircmb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Ovarian cancer is one of the diseases that have the highest mortality rate for women, especially women over 50 years old. In the future, incidence and mortality rates are predicted to extend in countries with low HDI. Instability in the structure and function of genetic factors has long been known as a cause of cancer, including ovarian cancer. Besides understanding gene mutations, epigenetic alterations have emerged as another aspect leading to the pathogenesis of ovarian neoplasm. The development and progression of this fatal disease have been found to be associated with abnormalities of epigenetic regulation. DNA methylation, histone modification, and non-coding RNAs-based gene silencing are processes of interest in developing ovarian carcinoma and are also new targets for cancer detection or treatment.
Collapse
Affiliation(s)
- Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
2
|
Shahin RK, Elkady MA, Abulsoud AI, Abdelmaksoud NM, Abdel Mageed SS, El-Dakroury WA, Zewail MB, Elazazy M, Sobhy MH, Nomier Y, Elazazy O, Elballal MS, Mohammed OA, Midan HM, Elrebehy MA, Ziada BO, Doghish AS. miRNAs orchestration of gallbladder cancer - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154684. [PMID: 37454489 DOI: 10.1016/j.prp.2023.154684] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Gallbladder cancer (GBC) is characterized by a highly invasive nature and a poor prognosis, with adenocarcinoma being the main histological subtype. According to statistical data, patients diagnosed with advanced GBC have a survival rate of less than 5% for 5 years. Despite the novel therapeutic techniques, the unsatisfactory results could be related to the underlying biology of tumor cells and resistance to chemotherapy. Early diagnosis is more important than clinical therapy as it assists in determining the pathological stage of cancer and facilitates the selection of appropriate medication. Hence, it is very important to understand the precise pathogenesis of GBC and to discover potential novel biomarkers for early diagnosis of GBC. Non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have been found to influence the transcriptional regulation of target genes associated with cancer, either directly or indirectly. microRNAs are a group of small, non-coding, single-stranded RNAs that are expressed endogenously. miRNAs play significant roles in various fundamental cellular processes. Therefore, miRNAs have the potential to serve as valuable biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud Elazazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Sobhy
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Yousra Nomier
- Pharmacology Department, Pharmacy College, Jazan University, Saudi Arabia
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Bassant O Ziada
- Research Department, Utopia Pharmaceuticals, Nasr City, 11765 Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
3
|
Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, Giordano C, Catalano S, Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023; 13:1084. [PMID: 37509120 PMCID: PMC10377641 DOI: 10.3390/biom13071084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.
Collapse
Affiliation(s)
- Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
4
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:2485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
5
|
Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett 2022; 540:215724. [DOI: 10.1016/j.canlet.2022.215724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
|
6
|
Kandettu A, Adiga D, Devi V, Suresh PS, Chakrabarty S, Radhakrishnan R, Kabekkodu SP. Deregulated miRNA clusters in ovarian cancer: Imperative implications in personalized medicine. Genes Dis 2022; 9:1443-1465. [PMID: 36157483 PMCID: PMC9485269 DOI: 10.1016/j.gendis.2021.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/04/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.
Collapse
|
7
|
Shen T, Cheng X, Liu X, Xia C, Zhang H, Pan D, Zhang X, Li Y. Circ_0026344 restrains metastasis of human colorectal cancer cells via miR-183. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4038-4045. [PMID: 31608699 DOI: 10.1080/21691401.2019.1669620] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: CircRNA circ_0026344 was previously revealed as a tumour-suppressive gene in colorectal cancer (CRC) progression. The purpose of this research was to investigate the role of circ_0026344 in CRC cells metastasis induced by chemokines. Methods: Two human CRC cell lines SW480 and Caco-2 were treated by CCL20 and CXCL8. Cell proliferation, migration/invasion, expression of epithelial-mesenchymal transition (EMT) inducers and the expression of circ_0026344 were measured using sulforhodamine B assay, Transwell chamber, western blot and qRT-PCR, respectively. The effects of circ_0026344 on CRC cells migration/invasion and the expression of EMT inducers were evaluated. Moreover, the downstream miRNA and signalling pathways of circ_0026344 were studied. Results: CCL20 and CXCL8 synergized to facilitate the proliferation, migration and invasion of CRC cells. At the meantime, E-cadherin was downregulated, whereas N-cadherin, Vimentin and Snail were up-regulated by CCL20 and CXCL8 co-stimulation, which was accompanied by the mobilization of PI3K/AKT/ERK signalling. More interestingly, the expression of circ_0026344 was down-regulated by CCL20 and CXCL8 co-stimulation. Silence of circ_0026344 increased the migratory and invasive capacities of CRC cells and increased EMT process as well. Overexpression of circ_0026344 led to a contrary impact. miR-183 was negatively regulated by circ_0026344, and the inhibitory effects of circ_0026344 overexpression on Wnt/β-catenin pathway were reversed when miR-183 was overexpressed. Conclusion: Overexpression of circ_0026344 restrained CRC metastasis and EMT induced by CCL20 and CXCL8 synergistical treatment. miR-183 was a downstream effector of circ_0026344, and the anti-tumour function of circ_0026344 might be involved in the repressed Wnt/β-catenin signalling. Highlights CCL20 and CXCL8 synergize to decrease the expression of circ_0026344; Silence of circ_0026344 promotes CRC cells migration, invasion and EMT process; miR-183 is a downstream effector of circ_0026344.
Collapse
Affiliation(s)
- Tao Shen
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xianshuo Cheng
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xin Liu
- Tumor Institute, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Cuifeng Xia
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Hongtao Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Dingguo Pan
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Xuan Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| | - Yunfeng Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University , Kunming , China
| |
Collapse
|
8
|
Wu CJ, Sundararajan V, Sheu BC, Huang RYJ, Wei LH. Activation of STAT3 and STAT5 Signaling in Epithelial Ovarian Cancer Progression: Mechanism and Therapeutic Opportunity. Cancers (Basel) 2019; 12:cancers12010024. [PMID: 31861720 PMCID: PMC7017004 DOI: 10.3390/cancers12010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecologic malignancies. Despite advances in surgical and chemotherapeutic options, most patients with advanced EOC have a relapse within three years of diagnosis. Unfortunately, recurrent disease is generally not curable. Recent advances in maintenance therapy with anti-angiogenic agents or Poly ADP-ribose polymerase (PARP) inhibitors provided a substantial benefit concerning progression-free survival among certain women with advanced EOC. However, effective treatment options remain limited in most recurrent cases. Therefore, validated novel molecular therapeutic targets remain urgently needed in the management of EOC. Signal transducer and activator of transcription-3 (STAT3) and STAT5 are aberrantly activated through tyrosine phosphorylation in a wide variety of cancer types, including EOC. Extrinsic tumor microenvironmental factors in EOC, such as inflammatory cytokines, growth factors, hormones, and oxidative stress, can activate STAT3 and STAT5 through different mechanisms. Persistently activated STAT3 and, to some extent, STAT5 increase EOC tumor cell proliferation, survival, self-renewal, angiogenesis, metastasis, and chemoresistance while suppressing anti-tumor immunity. By doing so, the STAT3 and STAT5 activation in EOC controls properties of both tumor cells and their microenvironment, driving multiple distinct functions during EOC progression. Clinically, increasing evidence indicates that the activation of the STAT3/STAT5 pathway has significant correlation with reduced survival of recurrent EOC, suggesting the importance of STAT3/STAT5 as potential therapeutic targets for cancer therapy. This review summarizes the distinct role of STAT3 and STAT5 activities in the progression of EOC and discusses the emerging therapies specifically targeting STAT3 and STAT5 signaling in this disease setting.
Collapse
Affiliation(s)
- Chin-Jui Wu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Bor-Ching Sheu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore 119077, Singapore;
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Lin-Hung Wei
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 71570); Fax: +886-2-2311-4965
| |
Collapse
|
9
|
Wróblewski A, Strycharz J, Świderska E, Drewniak K, Drzewoski J, Szemraj J, Kasznicki J, Śliwińska A. Molecular Insight into the Interaction between Epigenetics and Leptin in Metabolic Disorders. Nutrients 2019; 11:nu11081872. [PMID: 31408957 PMCID: PMC6723573 DOI: 10.3390/nu11081872] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022] Open
Abstract
Nowadays, it is well-known that the deregulation of epigenetic machinery is a common biological event leading to the development and progression of metabolic disorders. Moreover, the expression level and actions of leptin, a vast adipocytokine regulating energy metabolism, appear to be strongly associated with epigenetics. Therefore, the aim of this review was to summarize the current knowledge of the epigenetic regulation of leptin as well as the leptin-induced epigenetic modifications in metabolic disorders and associated phenomena. The collected data indicated that the deregulation of leptin expression and secretion that occurs during the course of metabolic diseases is underlain by a variation in the level of promoter methylation, the occurrence of histone modifications, along with miRNA interference. Furthermore, leptin was proven to epigenetically regulate several miRNAs and affect the activity of the histone deacetylases. These epigenetic modifications were observed in obesity, gestational diabetes, metabolic syndrome and concerned various molecular processes like glucose metabolism, insulin sensitivity, liver fibrosis, obesity-related carcinogenesis, adipogenesis or fetal/early postnatal programming. Moreover, the circulating miRNA profiles were associated with the plasma leptin level in metabolic syndrome, and miRNAs were found to be involved in hypothalamic leptin sensitivity. In summary, the evidence suggests that leptin is both a target and a mediator of epigenetic changes that develop in numerous tissues during metabolic disorders.
Collapse
Affiliation(s)
- Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland.
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Karolina Drewniak
- Student Scientific Society of the Civilization Diseases, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland.
| |
Collapse
|
10
|
Wei S, Zheng Y, Jiang Y, Li X, Geng J, Shen Y, Li Q, Wang X, Zhao C, Chen Y, Qian Z, Zhou J, Li W. The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine 2019; 44:182-193. [PMID: 31160270 PMCID: PMC6604667 DOI: 10.1016/j.ebiom.2019.05.032] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Non-small cell lung carcinomas (NSCLC) are prevalent, lethal cancers with especially grim prospects due to late-stage detection and chemoresistance. Circular RNAs (circRNAs) are non-coding RNAs that participate in tumor development. However, the role of circRNAs in NSCLC is not well known. This study investigated the role of one circRNA - circPTPRA- in NSCLC and characterized its molecular mechanism of action. METHODS circPTPRA expression was analyzed in human NSCLC tumors and matched healthy lung tissue. We performed functional characterization in NSCLC cell lines and a mouse xenograft model of NSCLC to elucidate the molecular role of circPTPRA in epithelial-mesenchymal transitioning (EMT). We also assessed the regulatory action of circPTPRA on the microRNA miR-96-5p and its target the tumor suppressor Ras association domain-containing protein 8 (RASSF8). FINDINGS circPTPRA was significantly downregulated in NSCLC tumors relative to matched healthy lung tissue. Lower circPTPRA levels correlated with metastasis and inferior survival outcomes in NSCLC patients. circPTPRA suppressed EMT in NSCLC cell lines and reduced metastasis in the murine xenograft model by sequestering miR-96-5p and upregulating RASSF8. Correlation analyses in patient-derived NSCLC tumor specimens supported the involvement of the circPTPRA/miR-96-5p/RASSF8/E-cadherin axis dysregulation in NSCLC tumor progression. INTERPRETATION circPTPRA suppresses EMT and metastasis of NSCLC cell lines by sponging miR-96-5p, which upregulates the downstream tumor suppressor RASSF8. The circPTPRA/miR-96-5p/RASSF8/E-cadherin axis can be leveraged as a potential treatment avenue in NSCLC. FUND: The Key research and development projects of Anhui Province (201904a0720079), the Natural Science Foundation of Anhui Province (1908085MH240), the Graduate Innovation Program of Bengbu Medical College (Byycx1843), the National Natural Science Foundation of Tibet (XZ2017ZR-ZY033) and the Science and Technology Project of Shannan (SNKJYFJF2017-3) and Academic Subsidy Project for Top Talents in Universities of Anhui in 2019 (gxbjZD16).
Collapse
Affiliation(s)
- Siliang Wei
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Yuanyuan Zheng
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Yanru Jiang
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Xiaojun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Jian Geng
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233004, China; Anhui Province Key Laboratory of Translational Cancer Research, 233004, China
| | - Yuanbing Shen
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Qin Li
- Department of Respiratory Disease, The Second Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Xiaojing Wang
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Chengling Zhao
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Yuqing Chen
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China
| | - Zhongqing Qian
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233003, China
| | - Jihong Zhou
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233004, China; Anhui Province Key Laboratory of Translational Cancer Research, 233004, China.
| | - Wei Li
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China; Provincial Key Laboratory of Respiratory Disease in Anhui, Bengbu 233004, China; Anhui Province Key Laboratory of Translational Cancer Research, 233004, China.
| |
Collapse
|
11
|
Salem M, Shan Y, Bernaudo S, Peng C. miR-590-3p Targets Cyclin G2 and FOXO3 to Promote Ovarian Cancer Cell Proliferation, Invasion, and Spheroid Formation. Int J Mol Sci 2019; 20:E1810. [PMID: 31013711 PMCID: PMC6515004 DOI: 10.3390/ijms20081810] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the leading cause of death from gynecological cancers. MicroRNAs (miRNAs) are small, non-coding RNAs that interact with the 3' untranslated region (3' UTR) of target genes to repress their expression. We have previously reported that miR-590-3p promoted ovarian cancer growth and metastasis, in part by targeting Forkhead box A (FOXA2). In this study, we further investigated the mechanisms by which miR-590-3p promotes ovarian cancer development. Using luciferase reporter assays, real-time PCR, and Western blot analyses, we demonstrated that miR-590-3p targets cyclin G2 (CCNG2) and Forkhead box class O3 (FOXO3) at their 3' UTRs. Silencing of CCNG2 or FOXO3 mimicked, while the overexpression of CCNG2 or FOXO3 reversed, the stimulatory effect of miR-590-3p on cell proliferation and invasion. In hanging drop cultures, the overexpression of mir-590 or the transient transfection of miR-590-3p mimics induced the formation of compact spheroids. Transfection of the CCNG2 or FOXO3 plasmid into the mir-590 cells resulted in the partial disruption of the compact spheroid formation. Since we have shown that CCNG2 suppressed β-catenin signaling, we investigated if miR-590-3p regulated β-catenin activity. In the TOPFlash luciferase reporter assays, mir-590 increased β-catenin/TCF transcriptional activity and the nuclear accumulation of β-catenin. Silencing of β-catenin attenuated the effect of mir-590 on the compact spheroid formation. Taken together, these results suggest that miR-590-3p promotes ovarian cancer development, in part by directly targeting CCNG2 and FOXO3.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Stefanie Bernaudo
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
- Centre for Research on Molecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
12
|
Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY. Signal Transducer and Activator of Transcription (STATs) Proteins in Cancer and Inflammation: Functions and Therapeutic Implication. Front Oncol 2019; 9:48. [PMID: 30847297 PMCID: PMC6393348 DOI: 10.3389/fonc.2019.00048] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) pathway is connected upstream with Janus kinases (JAK) family protein and capable of integrating inputs from different signaling pathways. Each family member plays unique functions in signal transduction and crucial in mediating cellular responses to different kind of cytokines. STAT family members notably STAT3 and STAT5 have been involved in cancer progression whereas STAT1 plays opposite role by suppressing tumor growth. Persistent STAT3/5 activation is known to promote chronic inflammation, which increases susceptibility of healthy cells to carcinogenesis. Here, we review the role of STATs in cancers and inflammation while discussing current therapeutic implications in different cancers and test models, especially the delivery of STAT3/5 targeting siRNA using nanoparticulate delivery system.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Ahmed Fadhil Naema
- Center of Biotechnology Researches, University of Al-Nahrain, Baghdad, Iraq
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
13
|
Jasinski-Bergner S, Kielstein H. Adipokines Regulate the Expression of Tumor-Relevant MicroRNAs. Obes Facts 2019; 12:211-225. [PMID: 30999294 PMCID: PMC6547259 DOI: 10.1159/000496625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing prevalence of obesity requires the investigation of respective comorbidities, including tumor diseases like colorectal, renal, post-menopausal breast, prostate cancer, and leukemia. To date, molecular mechanisms of the malignant transformation of these peripheral tissues induced by obesity remain unclear. Adipose tissue secretes factors with hormone-like functions, the adipokines, and is therefore categorized as an endocrine organ. Current research demonstrates the ability of adipose tissue to alter DNA methylation and gene expression in peripheral tissues, probably affecting microRNA (miR) expression. METHODS Literature was analyzed for adipokine-regulated miRs. Many of these adipokine upregulated or downregulated miRs exert either oncogenic or anti-tumoral potential. RESULTS The three selected and analyzed adipokines, adiponectin, leptin, and resistin, induce more strongly oncogenic miRs and simultaneously reduce anti-tumoral miRs than vice versa. This effect is not only true for the pure number of regulated miRs, it is also the case by consideration of the abundance of the respective miR expression based on actual data sets derived from next-generation sequencing. CONCLUSION The link of obesity and cancer is analyzed under the aspect of adipokine-regulated miRs. At the same time the impact of miR abundance is considered as a regulatory variable. This context offers new strategies for tumor therapy and diagnostics.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Heike Kielstein
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
MicroRNA-96 is responsible for sevoflurane-induced cognitive dysfunction in neonatal rats via inhibiting IGF1R. Brain Res Bull 2018; 144:140-148. [PMID: 30217735 DOI: 10.1016/j.brainresbull.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Abstract
Sevoflurane is an experimental potent yet volatile anesthesia agent characterized by a low blood/gas partition coefficient. However, exposure to sevoflurane in neonatal mice has been speculated to result in learning deficits and abnormal social behavior. The aim of the present study was to investigate the relationship between sevoflurane and miR-96, in an attempt to identify the means by which it mediates IGF1R to influence the cognitive dysfunction (CD) in neonatal rats. Relationship between differentially expressed miRNAs and sevoflurane concentration was identified. The potential underlying regulatory mechanisms involved with sevoflurane were investigated through the administration of varying concentrations of the agent (1%, 2% and 4%), combined with miR-96 mimic or an inhibitor. A target prediction program was utilized, while the luciferase activity was determined in order to verify whether miR-96 targets IGF1R. The mRNA and protein levels of IGF1R, Bcl-2, Bax, and caspase-3 were measured followed by the determination of hippocampal neuron apoptosis. Learning and memory performance was assessed using the Morris water maze (MWM) test and step-down test. The obtained results highlighted a positive correlation between miR-96 and the concentration of sevoflurane, while miR-96 was confirmed to negatively target IGF1R. Our analyses indicated that 4% sevoflurane had a significantly stronger effect on reducing the levels of IGF1R and Bcl-2, while elevating the levels of miR-96, Bax and caspase-3 more so than that of 1% or 2% sevoflurane, which resulted in increased hippocampal neuron apoptosis but diminished the learning and memory performance of the rats. The addition of miR-96 mimic was demonstrated to exacerbate the influence of sevoflurane on hippocampal neurons as well as the cognitive function of the rats. The key findings of our study highlighted the role of miR-96 in the potential mechanism of sevoflurane anesthesia-induced CD in neonatal rats through the downregulation of IGF1R.
Collapse
|
15
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
16
|
Urbánek P, Klotz L. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br J Pharmacol 2017; 174:1514-1532. [PMID: 26920226 PMCID: PMC5446586 DOI: 10.1111/bph.13471] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
Forkhead box, class O (FOXO) transcription factors are major regulators of diverse cellular processes, including fuel metabolism, oxidative stress response and redox signalling, cell cycle progression and apoptosis. Their activities are controlled by multiple posttranslational modifications and nuclear-cytoplasmic shuttling. Recently, post-transcriptional regulation of FOXO synthesis has emerged as a new regulatory level of their functions. Accumulating evidence suggests that this post-transcriptional mode of regulation of FOXO activity operates in response to stressful stimuli, including oxidative stress. Here, we give a brief overview on post-transcriptional regulation of FOXO synthesis by microRNAs (miRNAs) and by RNA-binding regulatory proteins, human antigen R (HuR) and quaking (QKI). Aberrant post-transcriptional regulation of FOXOs is frequently connected with various disease states. We therefore discuss characteristic examples of FOXO regulation at the post-transcriptional level under various physiological and pathophysiological conditions, including oxidative stress and cancer. The picture emerging from this summary points to a diversity of interactions between miRNAs/miRNA-induced silencing complexes and RNA-binding regulatory proteins. Better insight into these complexities of post-transcriptional regulatory interactions will add to our understanding of the mechanisms of pathological processes and the role of FOXO proteins. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- P Urbánek
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| | - L‐O Klotz
- Institute of Nutrition, Department of NutrigenomicsFriedrich‐Schiller‐Universität JenaJenaGermany
| |
Collapse
|
17
|
Spitschak A, Meier C, Kowtharapu B, Engelmann D, Pützer BM. MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit. Mol Cancer 2017; 16:24. [PMID: 28122586 PMCID: PMC5267421 DOI: 10.1186/s12943-016-0563-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Background Dominant-activating mutations in the RET proto-oncogene, a receptor tyrosine kinase, are responsible for the development of medullary thyroid carcinoma (MTC) and causative for multiple endocrine neoplasia (MEN) type 2A and 2B. These tumors are highly aggressive with a high propensity for early metastasis and chemoresistance. This attribute makes this neoplasia an excellent model for probing mechanisms underlying cancer progression. Methods The expression level of miR-182 was measured in MTC tumor specimens and in TT cells by real-time RT-PCR. TT cells and modified NThy-ori 3.1 that stably express RETM918T were used to investigate RET-dependent regulation of miR-182. Identification and validation of miR-182 targets and pathways was accomplished with luciferase assays, qRT-PCR, Western blotting and immunofluorescence. In vitro, overexpression and knockdown experiments were carried out to examine the impact of miR-182 and HES1 on invasion and migration. Results We found that miR-182 expression is significantly upregulated in MTC patient samples and tumor-derived cell lines harboring mutated RET. Inhibition of RET oncogenic signaling through a dominant-negative RET∆TK mutant in TT cells reduces miR-182, whereas overexpression of RETM918T in NThy-ori 3.1 cells increases miR-182 levels. We further show that overexpression of this miRNA in NThy.miR-182 cells promotes the invasive and migratory properties without affecting cell proliferation. MiR-182 is upregulated after RET induced NF-κB translocation into the nucleus via binding of NF-κB to the miR-182 promoter. Database analysis revealed that HES1, a repressor of the Notch pathway, is a target of miR-182, whose upregulation correlates with loss of HES1 transcription in MTC tissue samples and mutant RET cell lines. Moreover, we demonstrated that the 3′UTR of the HES1 mRNA bearing the targeting sequence for miR-182 clearly reduced luciferase reporter activity in cells expressing miR-182. Decreased expression of HES1 promotes migration by upregulating Notch1 inhibitor Deltex1 and consequent repression of Notch1. Conclusion We demonstrate a novel mechanism for MTC aggressiveness in which mutated RET/NF-κB-driven expression of miR-182 impedes HES1 activation in a negative feedback loop. This observation might open new possibilities to treat RET oncogene associated metastatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0563-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Bhavani Kowtharapu
- Current address: Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
18
|
Xiao Y, Zhang L, Song Z, Guo C, Zhu J, Li Z, Zhu S. Potential Diagnostic and Prognostic Value of Plasma Circulating MicroRNA-182 in Human Glioma. Med Sci Monit 2016; 22:855-62. [PMID: 26978735 PMCID: PMC4795091 DOI: 10.12659/msm.897164] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Previous studies showed the aberrant expression of microRNA-182 (miR-182) in glioma tissue. However, the exact role of circulating miR-182 in glioma remains unclear. Here, we confirmed the expression of plasma circulating miR-182 in glioma patients, and further explored its potential diagnostic and prognostic value. Material/Methods Real-time quantitative PCR (RT-PCR) was used to measure circulating cell-free miR-182 from 112 glioma patients and 54 healthy controls. Results Our findings showed that the level of circulating miR-182 in glioma patients was higher than that in healthy controls (P<0.001), which was significantly associated with KPS score (P=0.025) and WHO grade (P<0.001). The area under the receiver operating characteristic (ROC) curve (AUC) was 0.778. The optimal cut-off value was 1.56, and the sensitivity and specificity were 58.5% and 85.2%, respectively. Interestingly, a high predictive value of circulating miR-182 was observed in high-grade glioma (AUC=0.815). However, the AUC was lower in low-grade glioma (AUC=0.621). Kaplan-Meier analysis demonstrated that the cumulative 5-year overall survival rate in the high miR-182 group was significantly lower than that in the low miR-182 group in both overall survival (OS) (P=0.003) and disease-free survival (DFS) (P=0.006). Moreover, multivariate Cox analysis revealed that circulating miR-182 was an independent prognostic indicator for OS (P=0.034) and DFS (P=0.013). Conclusions These results suggest that circulating miR-182 may be a potential noninvasive biomarker for the diagnosis and prognosis of human glioma.
Collapse
Affiliation(s)
- Yilei Xiao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lina Zhang
- Department of Intensive Care Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Zikun Song
- Department of Intensive Care Medicine, The People's Second Hospital of Liaocheng, Linqing, Shandong, China (mainland)
| | - Chuanjun Guo
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Jianxin Zhu
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Zhongmin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Shugan Zhu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
19
|
Yuan D, Li K, Zhu K, Yan R, Dang C. Plasma miR-183 predicts recurrence and prognosis in patients with colorectal cancer. Cancer Biol Ther 2015; 16:268-75. [PMID: 25629978 DOI: 10.1080/15384047.2014.1002327] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. The prognosis for this cancer is poor, and the development of novel biomarkers, particularly non-invasive surrogate biomarkers, is urgently needed. Recent studies have demonstrated that microRNAs (miRNAs) are stably detectable in the blood and can serve as useful biomarkers for various types of cancer. In this study, the miR-183 expression levels were found to be significantly overexpressed in plasma samples from CRC patients compared with controls, and the postoperative plasma miR-183 levels were significantly reduced compared with the preoperative levels. The value of the area under the receiver operating characteristic (ROC) curve obtained for miR-183 was 0.829, which was higher than those for carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). High plasma miR-183 expression was significantly associated with lymph node metastasis, distant metastasis, higher pTNM stage (III-IV), and tumor recurrence. CRC patients with elevated miR-183 expression in plasma displayed shorter disease-free survival (DFS) and lower overall survival (OS). More importantly, plasma miR-183 was independently correlated with tumor recurrence and a lower OS. Collectively, our results suggested that the elevated miR-183 in the plasma could be a promising biomarker for predicting the risk of tumor recurrence and poor survival in CRC patients.
Collapse
Key Words
- AUC, area under curve
- CA19–9, carbohydrate antigen 19–9
- CEA, carcinoembryonic antigen
- CI, confidence interval
- CRC, colorectal cancer
- DFS, disease-free survival
- HR, hazard ratio
- MiR-183
- MiRNAs, microRNAs
- MicroRNA
- OS, overall survival
- PCR, polymerase chain reaction
- ROC, receiver operating characteristic
- biomarker
- colorectal cancer
- pTNM, pathological tumor-node-metastasis
- plasma
- prognosis
- recurrence
Collapse
Affiliation(s)
- Dawei Yuan
- a Department of Surgical Oncology ; First Affiliated Hospital of Xi'an Jiaotong University ; Xi'an , China
| | | | | | | | | |
Collapse
|
20
|
Sun Y, Guo F, Bagnoli M, Xue FX, Sun BC, Shmulevich I, Mezzanzanica D, Chen KX, Sood AK, Yang D, Zhang W. Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer. CHINESE JOURNAL OF CANCER 2015; 34:28-40. [PMID: 25556616 PMCID: PMC4302087 DOI: 10.5732/cjc.014.10284] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition (EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas (TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This “paradox” can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating mRNA and microRNA (miRNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major miRNAs and 214 mRNAs. Among the 8 miRNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 miRNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer.
Collapse
Affiliation(s)
- Yan Sun
- Departments of Pathology, The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P. R. China. ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Role of microRNAs in cancers of the female reproductive tract: insights from recent clinical and experimental discovery studies. Clin Sci (Lond) 2014; 128:153-80. [PMID: 25294164 DOI: 10.1042/cs20140087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are small RNA molecules that represent the top of the pyramid of many tumorigenesis cascade pathways as they have the ability to affect multiple, intricate, and still undiscovered downstream targets. Understanding how miRNA molecules serve as master regulators in these important networks involved in cancer initiation and progression open up significant innovative areas for therapy and diagnosis that have been sadly lacking for deadly female reproductive tract cancers. This review will highlight the recent advances in the field of miRNAs in epithelial ovarian cancer, endometrioid endometrial cancer and squamous-cell cervical carcinoma focusing on studies associated with actual clinical information in humans. Importantly, recent miRNA profiling studies have included well-characterized clinical specimens of female reproductive tract cancers, allowing for studies correlating miRNA expression with clinical outcomes. This review will summarize the current thoughts on the role of miRNA processing in unique miRNA species present in these cancers. In addition, this review will focus on current data regarding miRNA molecules as unique biomarkers associated with clinically significant outcomes such as overall survival and chemotherapy resistance. We will also discuss why specific miRNA molecules are not recapitulated across multiple studies of the same cancer type. Although the mechanistic contributions of miRNA molecules to these clinical phenomena have been confirmed using in vitro and pre-clinical mouse model systems, these studies are truly only the beginning of our understanding of the roles miRNAs play in cancers of the female reproductive tract. This review will also highlight useful areas for future research regarding miRNAs as therapeutic targets in cancers of the female reproductive tract.
Collapse
|
22
|
Circulating microRNA-182 in plasma and its potential diagnostic and prognostic value for pancreatic cancer. Med Oncol 2014; 31:225. [PMID: 25326859 DOI: 10.1007/s12032-014-0225-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
MicroRNA-182 (miR-182) is overexpressed in several tumors and is found to be associated with adverse clinical characteristics. However, less information on the circulating miR-182 in pancreatic cancer (PCa) is available. The aim of this study was to detect the circulating miR-182 in plasma and to explore its potential diagnostic and prognostic value in PCa. Real-time quantitative PCR was employed to detect circulating miR-182 from 109 PCa and 38 chronic pancreatitis (CP) as well as 50 healthy controls. Our findings revealed that the level of circulating miR-182 in PCa patients was higher than that in CP patients and healthy controls (both at P < 0.05), which was significantly associated with clinical stages (P < 0.001) and lymph node metastasis (P = 0.018). The area under the receiver operating characteristic curve was 0.775, and the optimal cutoff value was 1.63, thus providing a sensitivity of 64.1 % and a specificity of 82.6 %. The diagnosis capability of circulating miR-182 was significantly higher than that of CA19-9, and the combination of two molecules had higher diagnosis capacity (sensitivity of 84.68 % and specificity of 86.77 %). Kaplan-Meier analysis demonstrated that the elevated circulating miR-182 was closely correlated with both shorten overall survival (OS) (P < 0.001) and disease-free survival (DFS) (P < 0.001). Cox analysis indicated that it was an independent prognostic factor for OS and DFS. Our data suggest that circulating miR-182 may be a potential and useful noninvasive tumor marker for diagnosis and prognosis of pancreatic cancer.
Collapse
|
23
|
Noncoding RNAs as novel biomarkers in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:591703. [PMID: 25243154 PMCID: PMC4163346 DOI: 10.1155/2014/591703] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/04/2014] [Indexed: 01/29/2023]
Abstract
Prostate cancer (PCa) is the second most common diagnosed malignant disease in men worldwide. Although serum PSA test dramatically improved the early diagnosis of PCa, it also led to an overdiagnosis and as a consequence to an overtreatment of patients with an indolent disease. New biomarkers for diagnosis, prediction, and monitoring of the disease are needed. These biomarkers would enable the selection of patients with aggressive or progressive disease and, hence, would contribute to the implementation of individualized therapy of the cancer patient. Since the FDA approval of the long noncoding PCA3 RNA-based urine test for the diagnosis of PCa patients, many new noncoding RNAs (ncRNAs) associated with PCa have been discovered. According to their size and function, ncRNAs can be divided into small and long ncRNAs. NcRNAs are expressed in (tumor) tissue, but many are also found in circulating tumor cells and in all body fluids as protein-bound or incorporated in extracellular vesicles. In these protected forms they are stable and so they can be easily analyzed, even in archival specimens. In this review, the authors will focus on ncRNAs as novel biomarker candidates for PCa diagnosis, prediction, prognosis, and monitoring of therapeutic response and discuss their potential for an implementation into clinical practice.
Collapse
|
24
|
Wang L, Zhu MJ, Ren AM, Wu HF, Han WM, Tan RY, Tu RQ. A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer. PLoS One 2014; 9:e96472. [PMID: 24816756 PMCID: PMC4015980 DOI: 10.1371/journal.pone.0096472] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most common gynecologic malignancy. To identify the micro-ribonucleic acids (miRNAs) expression profile in EOC tissues that may serve as a novel diagnostic biomarker for EOC detection, the expression of 1722 miRNAs from 15 normal ovarian tissue samples and 48 ovarian cancer samples was profiled by using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. A ten-microRNA signature (hsa-miR-1271-5p, hsa-miR-574-3p, hsa-miR-182-5p, hsa-miR-183-5p, hsa-miR-96-5p, hsa-miR-15b-5p, hsa-miR-182-3p, hsa-miR-141-5p, hsa-miR-130b-5p, and hsa-miR-135b-3p) was identified to be able to distinguish human ovarian cancer tissues from normal tissues with 97% sensitivity and 92% specificity. Two miRNA clusters of miR183-96-183 (miR-96-5p, and miR-182, miR183) and miR200 (miR-141-5p, miR200a, b, c and miR429) are significantly up-regulated in ovarian cancer tissue samples compared to those of normal tissue samples, suggesting theses miRNAs may be involved in ovarian cancer development.
Collapse
Affiliation(s)
- Lin Wang
- Department of Obstetrics and Gynecology, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Ai-Min Ren
- Department of Obstetrics and Gynecology, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong-Fei Wu
- Biovue Technology (China) Ltd., Shanghai, China
| | - Wu-Mei Han
- Biovue Technology (China) Ltd., Shanghai, China
| | | | - Rui-Qin Tu
- Department of Obstetrics and Gynecology, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Saldanha SN, Tollefsbol TO. Pathway modulations and epigenetic alterations in ovarian tumorbiogenesis. J Cell Physiol 2014; 229:393-406. [PMID: 24105793 DOI: 10.1002/jcp.24466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022]
Abstract
Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell, and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review.
Collapse
Affiliation(s)
- Sabita N Saldanha
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Biological Sciences, Alabama State University, Montgomery, Alabama
| | | |
Collapse
|
26
|
Dong Z, Fu S, Xu X, Yang Y, Du L, Li W, Kan S, Li Z, Zhang X, Wang L, Li J, Liu H, Qu X, Wang C. Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration. Br J Cancer 2014; 110:1801-10. [PMID: 24548863 PMCID: PMC3974087 DOI: 10.1038/bjc.2014.70] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/19/2013] [Accepted: 01/21/2014] [Indexed: 01/06/2023] Open
Abstract
Background: Our previous study indicates that leptin enhances gastric cancer (GC) invasion. However, the exact effect of leptin on GC metastasis and its underlying mechanism remain unclear. Intercellular adhesion molecule-1 (ICAM-1), a major molecule in stabilising cell–cell and cell–extracellular matrix interactions, is overexpressed and has crucial roles in tumour metastasis. Methods: Here, we investigated leptin and ICAM-1 expression in GC tissues. Furthermore, we characterised the influence of leptin on ICAM-1 expression in GC cells and elucidated the underlying mechanism. Results: Leptin and ICAM-1 were overexpressed in GC tissues, and a strong positive correlation was observed. They were also related with clinical stage or lymph node metastasis. Furthermore, leptin induced GC cell (AGS and MKN-45) migration by upregulating ICAM-1, and knockdown of ICAM-1 by small interference RNA (siRNA) blocked this process. Cell surface ICAM-1, as well as soluble ICAM-1 (sICAM-1), was also enhanced by leptin. Moreover, leptin increased ICAM-1 expression through Rho/ROCK pathway, which was attenuated by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated protein kinase (ROCK) (Y-27632). Conclusions: Our findings indicate that leptin enhances GC cell migration by increasing ICAM-1 through Rho/ROCK pathway, which might provide new insight into the significance of leptin in GC.
Collapse
Affiliation(s)
- Z Dong
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - S Fu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - X Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Y Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - L Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - W Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - S Kan
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Z Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - X Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - L Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - J Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - H Liu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - X Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - C Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| |
Collapse
|
27
|
Xin YH, Bian BSJ, Yang XJ, Cui W, Cui HJ, Cui YH, Zhang X, Xu C, Bian XW. POU5F1 enhances the invasiveness of cancer stem-like cells in lung adenocarcinoma by upregulation of MMP-2 expression. PLoS One 2013; 8:e83373. [PMID: 24386189 PMCID: PMC3875455 DOI: 10.1371/journal.pone.0083373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related human deaths. Exploration of the mechanisms underlying the metastasis of cancer stem-like cells (CSLCs) will open new avenues in lung cancer diagnosis and therapy. Here, we demonstrated that CSLCs-derived from lung adenocarcinoma (LAC) cells displayed highly invasive and migratory capabilities via expressing high levels of POU5F1 and MMP-2. We found that POU5F1 directly regulated MMP-2 transcription via interaction with the promoter of MMP-2. POU5F1 knockdown in LACSLCs reduced MMP-2 protein abundance, leading to inhibition of the cell invasion, migration and tumorigenesis potentials of LAC cells. Clinically, aberrantly high expressions of POU5F1 and MMP-2 were inversely correlated with the survival of LAC patients, and the double-positive POU5F1 and MMP-2 showed the worst prediction for the patient’s poor survival. These results indicate that POU5F1 can bind to the MMP-2 promoter for the degradation of surrounding extracellular matrix, and therefore promote invasive and migratory capabilities of LACSLCs. Moreover, our data implicate that the pathological detection of the double-positive expressions for POU5F1 and MMP-2 will be useful as diagnostic and prognostic biomarkers in LAC to advance anti-metastasis therapy.
Collapse
Affiliation(s)
- Yan-hong Xin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Bai-shi-jiao Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
- Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-jun Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wei Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hong-juan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - You-hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chuan Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
- Department of Oncology, General Hospital of PLA Chengdu Military Area Command, Chengdu, China
- * E-mail: (CX); (XB)
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
- * E-mail: (CX); (XB)
| |
Collapse
|
28
|
Zhang QH, Sun HM, Zheng RZ, Li YC, Zhang Q, Cheng P, Tang ZH, Huang F. Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene 2013; 527:26-32. [PMID: 23791657 DOI: 10.1016/j.gene.2013.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/25/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023]
Abstract
MicroRNA-183 (miR-183) family is proposed as promising biomarkers for early cancer detection and accurate prognosis as well as targets for more efficient treatment. The results of their expression feature in cancer tissues are inconsistent and controversy still exists in identifying them as new biomarkers of cancers. Therefore, to systemically evaluate the most frequently reported cancers in which miR-183 family members were up- or down-regulated is critical for further investigation on physiological impact of its aberrant regulation in specific cancers. The published studies that compared the level of miR-183 family expression in cancer tissues with those in noncancerous tissues were reviewed by the meta-analysis with a vote-counting strategy. Among the 49 included studies, a total of 18 cancers were reported, with 11 cancers reported in at least two studies. In the panel of miR-183 family members' expression analysis, colorectal cancer and prostate cancer ranked at the top among consistently reported cancer types with up-regulated feature. Bladder cancer, lung cancer and hepatocellular carcinoma were the third most frequently reported cancer types with significant over-expression of miR-96, miR-182 and miR-183 respectively. Breast cancer and gastric cancer were presented with inconsistent regulations and the members of this family had their own distinct regulated features in other different cancers. MiR-183 family, either individually or as a cluster, may be useful prognostic markers and/or therapeutic targets in several cancers. Further studies and repeat efforts are still required to determine the role of miR-183 family in various cancer progressions.
Collapse
Affiliation(s)
- Qing-He Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, PR China.
| | | | | | | | | | | | | | | |
Collapse
|