1
|
MAP kinase-dependent autophagy controls phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. Life Sci 2022; 297:120481. [PMID: 35304128 DOI: 10.1016/j.lfs.2022.120481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
We investigated the mechanisms and the role of autophagy in the differentiation of HL-60 human acute myeloid leukemia cells induced by protein kinase C (PKC) activator phorbol myristate acetate (PMA). PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase in intracellular acidification, accumulation/punctuation of autophagosome marker LC3-II, and the increase in autophagic flux. PMA also increased nuclear translocation of autophagy transcription factors TFEB, FOXO1, and FOXO3, as well as the expression of several autophagy-related (ATG) genes in HL-60 cells. PMA failed to activate autophagy inducer AMP-activated protein kinase (AMPK) and inhibit autophagy suppressor mechanistic target of rapamycin complex 1 (mTORC1). On the other hand, it readily stimulated the phosphorylation of mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) via a protein kinase C-dependent mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear translocation of TFEB and FOXO1/3, ATG expression, dissociation of pro-autophagic beclin-1 from its inhibitor BCL2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells. Pharmacological or genetic inhibition of autophagy also blocked PMA-induced macrophage differentiation of HL-60 cells. Therefore, MAP kinases ERK and JNK control PMA-induced macrophage differentiation of HL-60 leukemia cells through AMPK/mTORC1-independent, TFEB/FOXO-mediated transcriptional and beclin-1-dependent post-translational activation of autophagy.
Collapse
|
2
|
Kumbrink J, Li P, Pók-Udvari A, Klauschen F, Kirchner T, Jung A. p130Cas Is Correlated with EREG Expression and a Prognostic Factor Depending on Colorectal Cancer Stage and Localization Reducing FOLFIRI Efficacy. Int J Mol Sci 2021; 22:ijms222212364. [PMID: 34830244 PMCID: PMC8625396 DOI: 10.3390/ijms222212364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/31/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
p130 Crk-associated substrate (p130Cas) is associated with poor prognosis and treatment resistance in breast and lung cancers. To elucidate p130Cas functional and clinical role in colorectal cancer (CRC) progression/therapy resistance, we performed cell culture experiments and bioinformatic/statistical analyses of clinical data sets. p130Cas expression was associated with poor survival in the cancer genome atlas (TCGA) data set. Knockdown/reconstitution experiments showed that p130Cas drives migration but, unexpectedly, inhibits proliferation in CRC cells. TCGA data analyses identified the growth factor epiregulin (EREG) as inversely correlated with p130Cas. p130Cas knockdown and simultaneous EREG treatment further enhanced proliferation. RNA interference and EREG treatment experiments suggested that p130Cas/EREG limit each other’s expression/activity. Inverse p130Cas/EREG Spearman correlations were prominent in right-sided and earlier stage CRC. p130Cas was inducible by 5-fluorouracil (5-FU) and FOLFIRI (folinic acid, 5-FU, irinotecan), and p130Cas and EREG were upregulated in distant metastases (GSE121418). Positive p130Cas/EREG correlations were observed in metastases, preferentially in post-treatment samples (especially pulmonary metastases). p130Cas knockdown sensitized CRC cells to FOLFIRI independent of EREG treatment. RNA sequencing and gene ontology analyses revealed that p130Cas is involved in cytochrome P450 drug metabolism and epithelial-mesenchymal transition. p130Cas expression was associated with poor survival in right-sided, stage I/II, MSS (microsatellite stable), or BRAF-mutated CRC. In summary, p130Cas represents a prognostic factor and potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Jörg Kumbrink
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
- Correspondence:
| | - Pan Li
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
| | - Agnes Pók-Udvari
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
| | - Frederick Klauschen
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andreas Jung
- Faculty of Medicine, Institute of Pathology, Ludwig-Maximilians-University of Munich, 80337 Munich, Germany; (P.L.); (A.P.-U.); (F.K.); (T.K.); (A.J.)
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| |
Collapse
|
3
|
Li P, Jia Y, Zhao N, Zhang Y, Zhou P, Lou Z, Qiao Y, Zhang P, Wen S, Han K. Quantifying the Fast Dynamics of HClO in Living Cells by a Fluorescence Probe Capable of Responding to Oxidation and Reduction Events within the Time Scale of Milliseconds. Anal Chem 2020; 92:12987-12995. [DOI: 10.1021/acs.analchem.0c01703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Jia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Ningjiu Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yanan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Zhangrong Lou
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Qiao
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province 450001, P. R. China
| | - Peiyu Zhang
- Shenzhen Jingtai Technology Co., Ltd., Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District, Shenzhen 518000, China
| | - Shuhao Wen
- Shenzhen Jingtai Technology Co., Ltd., Floor 4, No. 9, Hualian Industrial Zone, Dalang Street, Longhua District, Shenzhen 518000, China
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
4
|
Ge M, Qiao Z, Kong Y, Lu H, Liu H. Exosomes mediate intercellular transfer of non-autonomous tolerance to proteasome inhibitors in mixed-lineage leukemia. Cancer Sci 2020; 111:1279-1290. [PMID: 32058648 PMCID: PMC7156829 DOI: 10.1111/cas.14351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Proteasome inhibitors significantly improve cancer outcomes, but their use is eventually followed by proteasome inhibitor resistance and relapse. Current understanding of proteasome inhibitor resistance is limited to cell‐autonomous mechanisms; whether non–autonomous mechanisms can be implicated in the development of proteasome inhibitor resistance is unclear. Here, we show that proteasome inhibitor tolerance can be transmitted non–autonomously through exosome‐mediated intercellular interactions. We revealed that reversible proteasome inhibitor resistance can be transmitted from cells under therapy stress to naïve sensitive cells through exosome‐mediated cell cycle arrest and enhanced stemness in mixed‐lineage leukemia cells. Integrated multi‐omics analysis using the Tied Diffusion through Interacting Events algorithm identified several candidate exosomal proteins that may serve as predictors for proteasome inhibitor resistance and potential therapeutic targets for treating refractory mixed‐lineage leukemia. Furthermore, inhibiting the secretion of exosomes is a promising strategy for reversing proteasome inhibitor resistance in vivo, which provides a novel proof of principle for the treatment of other refractory or relapsed cancers.
Collapse
Affiliation(s)
- Maolin Ge
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Kong
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Han Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Zhang X, Shang W, Yuan J, Hu Z, Peng H, Zhu J, Hu Q, Yang Y, Liu H, Jiang B, Wang Y, Li S, Hu X, Rao X. Positive Feedback Cycle of TNFα Promotes Staphylococcal Enterotoxin B-Induced THP-1 Cell Apoptosis. Front Cell Infect Microbiol 2016; 6:109. [PMID: 27709104 PMCID: PMC5030291 DOI: 10.3389/fcimb.2016.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/05/2016] [Indexed: 11/13/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) has been demonstrated to be of importance in Staphylococcus aureus related diseases, such as atopic dermatitis (AD). Dysregulated apoptosis in AD is remarkable, and SEB can induce apoptosis of various cell types. However, the mechanisms by which SEB induces apoptosis and influences disease processes remain unclear. In this study, the recombinant SEB-induced THP-1 monocyte apoptosis was demonstrated in the absence of preliminary cell activation in a time- and dose-dependent manner. SEB could up-regulate the expression of tumor necrosis factor alpha (TNFα) in THP-1 cells and induce apoptosis via an extrinsic pathway. TNFα could in turn increase the expression of HLA-DRa, the SEB receptor on the cell surface. As a result, a positive feedback cycle of TNFα was established. TNFα expression and SEB-induced apoptosis were decreased by knocking down the expression of either HLA-DRa or TNFR1. Therefore, the feedback cycle of TNFα is crucial for SEB functions. This work provides insights into the mechanisms of SEB-induced monocyte apoptosis and emphasizes the major role of TNFα in future related studies.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Jizhen Yuan
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Junmin Zhu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Hui Liu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Bei Jiang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Yinan Wang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University Chongqing, China
| |
Collapse
|
6
|
Tian J, Li Z, Han Y, Jiang T, Song X, Jiang G. The progress of early growth response factor 1 and leukemia. Intractable Rare Dis Res 2016; 5:76-82. [PMID: 27195189 PMCID: PMC4869586 DOI: 10.5582/irdr.2015.01049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Early growth response gene-1 (EGR1) widely exists in the cell nucleus of such as, zebrafish, mice, chimpanzees and humans, an it also can be observed in the cytoplasm of some tumors. EGR1 was named just after its brief and rapid expression of different stimuli. Accumulating studies have extensively demonstrated that the widespread dysregulation of EGR1 is involved in hematological malignancies such as human acute myeloid leukemia (AML), chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B cell lymphoma. With the deep research on EGR1, its expression, function and regulatory mechanism has been gradually elucidated, and provides more possibilities for treatment strategies of patients with leukemia. Herein, we summarize the roles of EGR1 in its biological function and relationship with leukemia.
Collapse
Affiliation(s)
- Jing Tian
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Ziwei Li
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Yang Han
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Tao Jiang
- Graduate School of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiaoming Song
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Guosheng Jiang
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
- Address correspondence to: Dr. Guosheng Jiang, Key Laboratory for rare & uncommon diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, NO.18877 of Jingshi Road, Ji'nan, Shandong, China. E-mail:
| |
Collapse
|
7
|
A truncated phosphorylated p130Cas substrate domain is sufficient to drive breast cancer growth and metastasis formation in vivo. Tumour Biol 2016; 37:10665-73. [PMID: 26867768 DOI: 10.1007/s13277-016-4902-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated p130Cas (Crk-associated substrate) levels are found in aggressive breast tumors and are associated with poor prognosis and resistance to standard therapeutics in patients. p130Cas signals majorly through its phosphorylated substrate domain (SD) that contains 15 tyrosine motifs (YxxP) which recruit effector molecules. Tyrosine phosphorylation of p130Cas is important for mediating migration, invasion, tumor promotion, and metastasis. We previously developed a Src*/SD fusion molecule approach, where the SD is constitutively phosphorylated. In a polyoma middle T-antigen (PyMT)/Src*/SD double-transgenic mouse model, Src*/SD accelerates PyMT-induced tumor growth and promotes a more aggressive phenotype. To test whether Src*/SD also drives metastasis and which of the YxxP motifs are involved in this process, full-length and truncated SD molecules fused to Src* were expressed in breast cancer cells. The functionality of the Src*/SD fragments was analyzed in vitro, and the active proteins were tested in vivo in an orthotopic mouse model. Breast cancer cells expressing the full-length SD and the functional smaller SD fragment (spanning SD motifs 6-10) were injected into the mammary fat pads of mice. The tumor progression was monitored by bioluminescence imaging and caliper measurements. Compared with control animals, the complete SD promoted primary tumor growth and an earlier onset of metastases. Importantly, both the complete and truncated SD significantly increased the occurrence of metastases to multiple organs. These studies provide strong evidence that the phosphorylated p130Cas SD motifs 6-10 (Y236, Y249, Y267, Y287, and Y306) are important for driving mammary carcinoma progression.
Collapse
|
8
|
Kumbrink J, Soni S, Laumbacher B, Loesch B, Kirsch KH. Identification of Novel Crk-associated Substrate (p130Cas) Variants with Functionally Distinct Focal Adhesion Kinase Binding Activities. J Biol Chem 2015; 290:12247-55. [PMID: 25805500 DOI: 10.1074/jbc.m115.649947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 01/08/2023] Open
Abstract
Elevated levels of p130(Cas) (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130(Cas) promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130(Cas) protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130(Cas)-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130(Cas) exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130(Cas) on cell biology and therefore will be the target of future studies.
Collapse
Affiliation(s)
- Joerg Kumbrink
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Shefali Soni
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Barbara Laumbacher
- the Immunotherapy Research Center, Pettenkoferstrasse 8, 80336 Munich, Germany, and
| | - Barbara Loesch
- Immunis e.V., Pettenkoferstrasse 8, 80336 Munich, Germany
| | - Kathrin H Kirsch
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
9
|
Nikonova AS, Gaponova AV, Kudinov AE, Golemis EA. CAS proteins in health and disease: an update. IUBMB Life 2014; 66:387-95. [PMID: 24962474 DOI: 10.1002/iub.1282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022]
Abstract
The CAS family of scaffolding proteins has increasingly attracted scrutiny as important for regulation of cancer-associated signaling. BCAR1 (also known as p130Cas), NEDD9 (HEF1, Cas-L), EFS (Sin), and CASS4 (HEPL) are regulated by and mediate cell attachment, growth factor, and chemokine signaling. Altered expression and activity of CAS proteins are now known to promote metastasis and drug resistance in cancer, influence normal development, and contribute to the pathogenesis of heart and pulmonary disease. In this article, we provide an update on recently published studies describing signals regulating and regulated by CAS proteins, and evidence for biological activity of CAS proteins in normal development, cancer, and other pathological conditions.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
10
|
Zhao Y, Kumbrink J, Lin BT, Bouton AH, Yang S, Toselli PA, Kirsch KH. Expression of a phosphorylated substrate domain of p130Cas promotes PyMT-induced c-Src-dependent murine breast cancer progression. Carcinogenesis 2013; 34:2880-90. [PMID: 23825155 DOI: 10.1093/carcin/bgt238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Elevated expression of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. p130Cas is a downstream target of the tyrosine kinase c-Src. Signaling mediated by p130Cas through its phosphorylated substrate domain (SD) and interaction with effector molecules directly promotes tumor progression. We previously developed a constitutively phosphorylated p130Cas SD molecule, Src*/SD (formerly referred to as Src*/CasSD), which acts as decoy molecule and attenuates the transformed phenotype in v-crk-transformed murine fibroblasts and human breast cancer cells. To test the function of this molecule in vivo, we established mouse mammary tumor virus (MMTV)-long terminal repeat-Src*/SD transgenic mice in which mammary gland development and tumor formation were analyzed. Transgenic expression of the Src*/SD molecule under the MMTV-long terminal repeat promoter did not interfere with normal mammary gland development or induce tumors in mice observed for up to 11 months. To evaluate the effects of the Src*/SD molecule on tumor development in vivo, we utilized the MMTV-polyoma middle T-antigen (PyMT) murine breast cancer model that depends on c-Src. PyMT mice crossed with Src*/SD mice displayed accelerated tumor formation. The earlier onset of tumors can be explained by the interaction of the Src* domain with PyMT and targeting the fused phosphorylated SD to the membrane. At membrane compartments, it might integrate membrane-associated active signaling complexes leading to increased proliferation measured by phospho-Histone H3 staining. Although these results were unexpected, they emphasize the importance of preventing the membrane association of Src*/SD when employed as decoy molecule.
Collapse
Affiliation(s)
- Yingshe Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|