1
|
Villalonga E, Mosrin C, Normand T, Girardin C, Serrano A, Žunar B, Doudeau M, Godin F, Bénédetti H, Vallée B. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells 2023; 12:cells12050805. [PMID: 36899941 PMCID: PMC10000741 DOI: 10.3390/cells12050805] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.
Collapse
Affiliation(s)
- Elodie Villalonga
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Michel Doudeau
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
- Correspondence: ; Tel.: +33-(0)2-38-25-76-11
| |
Collapse
|
2
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Helicobacter pylori regulates ILK to influence autophagy through Rac1 and RhoA signaling pathways in gastric epithelial cells. Microb Pathog 2021; 158:105054. [PMID: 34146643 DOI: 10.1016/j.micpath.2021.105054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022]
Abstract
The ability of Helicobacter pylori to manipulate host autophagy is an important pathogenic mechanism. We found an inverse correlation between the expression of ILK and the autophagy marker protein LC3B in H. pylori-positive human samples, H. pylori-infected mice models and H. pylori-infected GES-1 cell lines. When the ILK-knockdown GES-1 cells were infected by H. pylori, CagA were significantly degraded, autophagosomes accumulation and autolysosomes formation were significantly increased, and LC3B protein levels and ratio of LC3BII to LC3BI were also remarkably upregulated. And chloroquine treatment increased LC3B levels in ILK-knockdown GES-1 cells. The expression levels of both Rac1 and RhoA were downregulated in GES-1 cells after H. pylori infection and were decreased in ILK-knockdown GES-1 cells. The mRNA and protein levels of PAK1, MLC, and LIMK were significantly decreased and cofilin mRNA and protein levels were significantly increased in GES-1 cells treated with the Rac1 inhibitor NSC 23766. The mRNA and protein levels of ROCK1, ROCK2, MLC, and LIMK1 were significantly reduced and cofilin mRNA and protein levels were significantly increased in GES-1 cells treated with the RhoA inhibitor CCG-1423. F-actin was significantly reduced in Rac1- or RhoA-inhibited GES-1 cells. F-actin depolymerization induced autophagosomes accumulation, autolysosomes formation, and the increase of LC3B levels in GES-1 cells. Therefore, these findings revealed that ILK could serve as a novel regulator to affect Rac1/PAK1 and RhoA/ROCKs signaling pathways, thereby influencing H. pylori-induced autophagy.
Collapse
|
4
|
Xu J, Huang Y, Zhao J, Wu L, Qi Q, Liu Y, Li G, Li J, Liu H, Wu H. Cofilin: A Promising Protein Implicated in Cancer Metastasis and Apoptosis. Front Cell Dev Biol 2021; 9:599065. [PMID: 33614640 PMCID: PMC7890941 DOI: 10.3389/fcell.2021.599065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cofilin is an actin-binding protein that regulates filament dynamics and depolymerization. The over-expression of cofilin is observed in various cancers, cofilin promotes cancer metastasis by regulating cytoskeletal reorganization, lamellipodium formation and epithelial-to-mesenchymal transition. Clinical treatment of cancer regarding cofilin has been explored in aspects of tumor cells apoptosis and cofilin related miRNAs. This review addresses the structure and phosphorylation of cofilin and describes recent findings regarding the function of cofilin in regulating cancer metastasis and apoptosis in tumor cells.
Collapse
Affiliation(s)
- Jing Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jimeng Zhao
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Qi
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Liu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang Q, Yuan W, Yang X, Wang Y, Li Y, Qiao H. Role of Cofilin in Alzheimer's Disease. Front Cell Dev Biol 2020; 8:584898. [PMID: 33324642 PMCID: PMC7726191 DOI: 10.3389/fcell.2020.584898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease and has an inconspicuous onset and progressive development. Clinically, it is characterized by severe dementia manifestations, including memory impairment, aphasia, apraxia, loss of recognition, impairment of visual-spatial skills, executive dysfunction, and changes in personality and behavior. Its etiology is unknown to date. However, several cellular biological signatures of AD have been identified such as synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies which are related to the actin cytoskeleton. Cofilin is one of the most affluent and common actin-binding proteins and plays a role in cell motility, migration, shape, and metabolism. They also play an important role in severing actin filament, nucleating, depolymerizing, and bundling activities. In this review, we summarize the structure of cofilins and their functional and regulating roles, focusing on the synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies of AD.
Collapse
Affiliation(s)
- Qiang Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Wei Yuan
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Xiaohang Yang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yuan Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Yongfeng Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
- Xianyang Key Laboratory of Neurobiology and Acupuncture, Xi’an, China
| |
Collapse
|
6
|
DAPK1 loss triggers tumor invasion in colorectal tumor cells. Cell Death Dis 2019; 10:895. [PMID: 31772156 PMCID: PMC6879526 DOI: 10.1038/s41419-019-2122-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death worldwide. Despite the improvement of surgical and chemotherapeutic treatments, as of yet, the disease has not been overcome due to metastasis to distant organs. Hence, it is of great relevance to understand the mechanisms responsible for metastasis initiation and progression and to identify novel metastatic markers for a higher chance of preventing the metastatic disease. The Death-associated protein kinase 1 (DAPK1), recently, has been shown to be a potential candidate for regulating metastasis in CRC. Hence, the aim of the study was to investigate the impact of DAPK1 protein on CRC aggressiveness. Using CRISPR/Cas9 technology, we generated DAPK1-deficient HCT116 monoclonal cell lines and characterized their knockout phenotype in vitro and in vivo. We show that loss of DAPK1 implemented changes in growth pattern and enhanced tumor budding in vivo in the chorioallantoic membrane (CAM) model. Further, we observed more tumor cell dissemination into chicken embryo organs and increased invasion capacity using rat brain 3D in vitro model. The novel identified DAPK1-loss gene expression signature showed a stroma typical pattern and was associated with a gained ability for remodeling the extracellular matrix. Finally, we suggest the DAPK1-ERK1 signaling axis being involved in metastatic progression of CRC. Our results highlight DAPK1 as an anti-metastatic player in CRC and suggest DAPK1 as a potential predictive biomarker for this cancer type.
Collapse
|
7
|
Chronic administration of LIMK2 inhibitors alleviates cavernosal veno-occlusive dysfunction through suppression of cavernosal fibrosis in a rat model of erectile dysfunction after cavernosal nerve injury. PLoS One 2019; 14:e0213586. [PMID: 30870492 PMCID: PMC6417654 DOI: 10.1371/journal.pone.0213586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 02/22/2019] [Indexed: 12/05/2022] Open
Abstract
We evaluated whether chronic administration of LIMK2-inhibitors could improve erectile function by alleviating CVOD through suppressing cavernosal fibrosis in a rat model of cavernosal nerve crush-injury (CNCI). Forty-two 12-week-old rats were equally categorized into the three groups: sham-surgery (S), CNCI (I), and CNCI treated with LIMK2-inhibitors (L). The L-group was treated with daily intraperitoneal injection of LIMK2-inhibitors (10.0 mg/kg) for 30-days after surgery. Erectile function was assessed using dynamic-infusion-cavernosometry (DIC). Penile tissue was processed for Masson’s-trichrome staining, Western-blotting, and double immunofluorescence. The I-group showed significantly higher maintenance and drop rates as well as lower papaverine response, compared to the S-group. Chronic inhibition of LIMK2 in the L-group significantly improved the DIC parameters compared to those in the I-group, although the parameters were not completely restored to normal control values. Also, the I-group showed a reduced smooth muscle (SM)-to-collagen ratio, decreased immunohistochemical staining for α-SM-actin, increased number of fibroblasts positive for phosphorylated Cofilin, increased LIMK2/Cofilin phosphorylation and increased protein expression of Collagen-1 or Fibronectin, compared to the S-group. The L-group showed significant improvements in SM/collagen ratio and the deposition of Collagen-1 or Fibronectin compared to the I-group, although not completely normalized. According to the densitometry and confocal microscopy results, the L-group showed restoration of LIMK2/Cofilin phosphorylation and amount of fibroblasts positive for phosphorylated Cofilin to the normal control value. In conclusion, chronic inhibition of LIMK2 can improve CVOD and ED by alleviating cavernosal fibrosis via normalizing the LIMK2/Cofilin pathway.
Collapse
|
8
|
Ivanovska J, Zehnder T, Lennert P, Sarker B, Boccaccini AR, Hartmann A, Schneider-Stock R, Detsch R. Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells. Tissue Eng Part C Methods 2017; 22:708-15. [PMID: 27269631 DOI: 10.1089/ten.tec.2015.0452] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are an important class of biomaterials as they could mimic the extracellular matrix (ECM). Among the naturally occurring biopolymers, alginate and gelatin are extensively used for many biomedical applications. For developing biofabrication constructs as three-dimensional (3D) cell culture models, realistic imaging of cell spreading and proliferation inside the hydrogels represents a major challenge. Therefore, we aimed to establish a system that can mimic the structural architecture, composition, and biological functions of the ECM for cancer research approaches. For this, we compared the cell behavior of human colon cancer HCT116 cells in two biofabricated hydrogels as follows: pure alginate and cross-linked alginate-gelatin (ADA-GEL) matrixes. Our data indicate that cells from the ADA-GEL matrix showed highest proliferation and cellular networks through the material. Analyzing the mRNA expression of several integrins of cells cultured inside of the matrix, we showed that mRNA expression of integrin subunits differed based on the cell focal adhesion characteristics. Furthermore, we showed that recultured ADA-GEL immobilized cells do not differ from parental HCT116 cells regarding migration and proliferation capabilities. Comparing adhesion and other phenotypic characteristics of HCT116 tumor cells, we suggest that ADA-GEL hydrogel is a more suitable 3D system than pure alginate and seems to optimally mimic the physiological behavior of the tumor microenvironment. For the first time, we present a functional 3D hydrogel construct for colon cancer cells, which are supporting their physiological cell attachment, spreading, and viability. We strongly believe that it will be applicable as a suitable in vitro 3D tumor model to study different aspects of tumor cell behavior.
Collapse
Affiliation(s)
- Jelena Ivanovska
- 1 Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Tobias Zehnder
- 2 Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Pablo Lennert
- 1 Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Bapi Sarker
- 2 Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Aldo R Boccaccini
- 2 Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Arndt Hartmann
- 1 Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Regine Schneider-Stock
- 1 Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| | - Rainer Detsch
- 2 Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich-Alexander University of Erlangen-Nuremberg , Germany
| |
Collapse
|
9
|
Novozhylov DO, Karpov PA, Blume YB. Bioinformatic search for Ca2+- and calmodulin-dependent protein kinases potentially associated with the regulation of plant cytoskeleton. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717040053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ivanovska J, Zlobec I, Forster S, Karamitopoulou E, Dawson H, Koelzer VH, Agaimy A, Garreis F, Söder S, Laqua W, Lugli A, Hartmann A, Rau TT, Schneider-Stock R. DAPK loss in colon cancer tumor buds: implications for migration capacity of disseminating tumor cells. Oncotarget 2017; 6:36774-88. [PMID: 26405175 PMCID: PMC4742210 DOI: 10.18632/oncotarget.4908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022] Open
Abstract
Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.
Collapse
Affiliation(s)
- Jelena Ivanovska
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Stefan Forster
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Heather Dawson
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Fabian Garreis
- Department of Anatomy, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephan Söder
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - William Laqua
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman T Rau
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Pathology, University of Bern, Bern, Switzerland
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
11
|
Kwon T, Youn H, Son B, Kim D, Seong KM, Park S, Kim W, Youn B. DANGER is involved in high glucose-induced radioresistance through inhibiting DAPK-mediated anoikis in non-small cell lung cancer. Oncotarget 2016; 7:7193-206. [PMID: 26769850 PMCID: PMC4872778 DOI: 10.18632/oncotarget.6887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
18F-labeled fluorodeoxyglucose (FDG) uptake during FDG positron emission tomography seems to reflect increased radioresistance. However, the exact molecular mechanism underlying high glucose (HG)-induced radioresistance is unclear. In the current study, we showed that ionizing radiation-induced activation of the MEK-ERK-DAPK-p53 signaling axis is required for anoikis (anchorage-dependent apoptosis) of non-small cell lung cancer (NSCLC) cells in normal glucose media. Phosphorylation of DAPK at Ser734 by ERK was essential for p53 transcriptional activity and radiosensitization. In HG media, overexpressed DANGER directly bound to the death domain of DAPK, thus inhibiting the catalytic activity of DAPK. In addition, inhibition of the DAPK-p53 signaling axis by DANGER promoted anoikis-resistance and epithelial-mesenchymal transition (EMT), resulting in radioresistance of HG-treated NSCLC cells. Notably, knockdown of DANGER enhanced anoikis, EMT inhibition, and radiosensitization in a mouse xenograft model of lung cancer. Taken together, our findings offered evidence that overexpression of DANGER and the subsequent inhibitory effect on DAPK kinase activity are critical responses that account for HG-induced radioresistance of NSCLC.
Collapse
Affiliation(s)
- TaeWoo Kwon
- Department of Integrated Biological Science, Pusan National University, Busan, 609-735, Republic of Korea
| | - HyeSook Youn
- Department of Biological Sciences, Pusan National University, Busan, 609-735, Republic of Korea.,Nuclear Science Research Institute, Pusan National University, Busan, 609-735, Republic of Korea
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan, 609-735, Republic of Korea
| | - Daehoon Kim
- Department of Integrated Biological Science, Pusan National University, Busan, 609-735, Republic of Korea
| | - Ki Moon Seong
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, 139-706, Republic of Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, 609-735, Republic of Korea
| | - Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan, 609-735, Republic of Korea.,Nuclear Science Research Institute, Pusan National University, Busan, 609-735, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, 609-735, Republic of Korea.,Department of Biological Sciences, Pusan National University, Busan, 609-735, Republic of Korea.,Nuclear Science Research Institute, Pusan National University, Busan, 609-735, Republic of Korea
| |
Collapse
|
12
|
Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci 2016; 18:ijms18010010. [PMID: 28025492 PMCID: PMC5297645 DOI: 10.3390/ijms18010010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs.
Collapse
|
13
|
Sun ZJ, Zhu L, Lang JH, Wang Z, Liang S. Proteomic Analysis of the Uterosacral Ligament in Postmenopausal Women with and without Pelvic Organ Prolapse. Chin Med J (Engl) 2016; 128:3191-6. [PMID: 26612295 PMCID: PMC4794882 DOI: 10.4103/0366-6999.170262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) is a major health problem in adult women that involves many factors. No proteomic analysis has been conducted exclusively in POP patients. This study aimed to identify the differential expression of proteins that may be involved in POP by proteomic analysis. METHODS Samples of the uterosacral ligament (USL) were collected from five POP patients and five non-POP patients matched according to age, parity, and menopausal status and analyzed using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the mRNA expression of proteins that showed differential expression in the proteomic analyses. RESULTS Proteins differentially expressed between POP and non-POP patients were detected. Eight proteins that were down-regulated in the POP group were identified by MALDI-TOF-MS. These proteins included electron transfer flavoprotein, apolipoprotein A-I, actin, transgelin, cofilin-1, cyclophilin A, myosin, and galectin-1, and their expression was verified by qRT-PCR. CONCLUSION Using comparative proteomics, we identified eight differentially expressed proteins (including four cytoskeleton proteins and three proteins related to apoptosis) in the USL that may be involved in apoptosis associated with the tissue effects in POP pathophysiology.
Collapse
Affiliation(s)
| | - Lan Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | | | |
Collapse
|
14
|
Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation. Mol Cell Biol 2015; 36:132-43. [PMID: 26483415 DOI: 10.1128/mcb.00515-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022] Open
Abstract
Death-associated protein kinase 2 (DAPK2) is a Ca(2+)/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.
Collapse
|
15
|
Death-associated protein kinase: A molecule with functional antagonistic duality and a potential role in inflammatory bowel disease (Review). Int J Oncol 2015; 47:5-15. [PMID: 25963636 PMCID: PMC4485655 DOI: 10.3892/ijo.2015.2998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
The cytoskeleton-associated serine/threonine kinase death-associated protein kinase (DAPK) has been described as a cancer gene chameleon with functional antagonistic duality in a cell type and context specific manner. The broad range of interaction partners and substrates link DAPK to inflammatory processes especially in the gut. Herein we summarize our knowledge on the role of DAPK in different cell types that play a role under inflammatory conditions in the gut. Besides some promising experimental data suggesting DAPK as an interesting drug target in inflammatory bowel disease there are many open questions regarding direct evidence for a role of DAPK in intestinal inflammation.
Collapse
|
16
|
Benderska N, Ivanovska J, Rau TT, Schulze-Luehrmann J, Mohan S, Chakilam S, Gandesiri M, Ziesché E, Fischer T, Söder S, Agaimy A, Distel L, Sticht H, Mahadevan V, Schneider-Stock R. DAPK-HSF1 interaction as a positive-feedback mechanism stimulating TNF-induced apoptosis in colorectal cancer cells. J Cell Sci 2014; 127:5273-87. [PMID: 25380824 DOI: 10.1242/jcs.157024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Death-associated protein kinase (DAPK) is a serine-threonine kinase with tumor suppressor function. Previously, we demonstrated that tumor necrosis factor (TNF) induced DAPK-mediated apoptosis in colorectal cancer. However, the protein-protein interaction network associated with TNF-DAPK signaling still remains unclear. We identified HSF1 as a new DAPK phosphorylation target in response to low concentrations of TNF and verified a physical interaction between DAPK and HSF1 both in vitro and in vivo. We show that HSF1 binds to the DAPK promoter. Transient overexpression of HSF1 protein led to an increase in DAPK mRNA level and consequently to an increase in the amount of apoptosis. By contrast, treatment with a DAPK-specific inhibitor as well as DAPK knockdown abolished the phosphorylation of HSF1 at Ser230 (pHSF1(Ser230)). Furthermore, translational studies demonstrated a positive correlation between DAPK and pHSF1(Ser230) protein expression in human colorectal carcinoma tissues. Taken together, our data define a novel link between DAPK and HSF1 and highlight a positive-feedback loop in DAPK regulation under mild inflammatory stress conditions in colorectal tumors. For the first time, we show that under TNF the pro-survival HSF1 protein can be redirected to a pro-apoptotic program.
Collapse
Affiliation(s)
- Natalya Benderska
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Jelena Ivanovska
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tilman T Rau
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Jan Schulze-Luehrmann
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Suma Mohan
- Faculty of School of Chemical & Biotechnology of the SASTRA University, Thanjavur 613401, India
| | - Saritha Chakilam
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Muktheshwar Gandesiri
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | | | - Thomas Fischer
- Center of Internal Medicine, Clinic of Hematology/Oncology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Stephan Söder
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Abbas Agaimy
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Vijayalakshmi Mahadevan
- Faculty of School of Chemical & Biotechnology of the SASTRA University, Thanjavur 613401, India
| | - Regine Schneider-Stock
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| |
Collapse
|
17
|
Abstract
Death-associated protein kinase (DAPK) undergoes activation in response to various death stimuli, and they have been associated with an increase in DAPK catalytic activity. One of the most prominent features of DAPK-induced cell death is the effect on the cytoskeleton, including loss of matrix attachment, and membrane blebbing. One known cytoskeletal-associated substrate of DAPK is the myosin-II light chain, phosphorylated by DAPK on Ser(19), thus stabilizing actin stress fibres. Moreover, paxillin, a component of focal adhesions, was found to be localized in close proximity to the tips of the DAPK-positive filaments, indicating that stress fibres containing DAPK extend to focal contacts. Forced expression of DAPK in multiple cell types results in morphological changes such as cell rounding, membrane blebbing, shrinking and detachment. During directed migration, DAPK functions as a potent inhibitor of cell polarization, as evidenced by its perturbation of the formation of static protrusion at the leading edge. Furthermore, DAPK inhibits random migration by suppressing directional persistence. One of the studies considered DAPK as an anoikis inducer. Others showed that DAP-kinase inhibits the activities of cell surface integrins by converting them into an inactive conformation. Biochemical experiments have established the DAPK binding to Syntaxin1 and its subsequent phosphorylation at Ser(188) in a Ca(2+) dependent manner. This phosphorylation event has been shown to decrease the binding of Syntaxin to MUNC18-1, a protein critically involved in synaptic vesicle docking. Here, we have investigated the structural interactions that modulate DAPK phosphorylation with Syntaxin and its functional role in binding to the MUNC18-1 to regulate vesicle docking. This review will summarize our current knowledge of the role of DAPK on cytoskeleton reorganization and report the mechanisms that regulate these changes.
Collapse
Affiliation(s)
- Jelena Ivanovska
- Experimental Tumorpathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Universitätsstraße 22, 91054, Erlangen, Germany
| | | | | |
Collapse
|
18
|
Abstract
Death associated protein kinase 1 (DAPK) is an important serine/theoreine kinase involved in various cellular processes such as apoptosis, autophagy and inflammation. DAPK expression and activity are misregulated in multiple diseases including cancer, neuronal death, stoke, et al. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. In this review, we summarize the pathological status and functional roles of DAPK in disease and compare the published reagents that can manipulate the expression or activity of DAPK. The pleiotropic functions of DAPK make it an intriguing target and the barriers and opportunities for targeting DAPK for future clinical application are discussed.
Collapse
|
19
|
Abstract
DAP-kinase (DAPK) is a Ca(2+)/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK's cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK's catalytic activity. For example, by virtue of protein-protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1β production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.
Collapse
Affiliation(s)
- Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|
20
|
Kestler C, Knobloch G, Tessmer I, Jeanclos E, Schindelin H, Gohla A. Chronophin dimerization is required for proper positioning of its substrate specificity loop. J Biol Chem 2013; 289:3094-103. [PMID: 24338687 DOI: 10.1074/jbc.m113.536482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phosphatases of the haloacid dehalogenase (HAD) superfamily have emerged as important regulators of physiology and disease. Many of these enzymes are stable homodimers; however, the role of their dimerization is largely unknown. Here, we explore the function of the obligatory homodimerization of chronophin, a mammalian HAD phosphatase known to dephosphorylate pyridoxal 5'-phosphate (PLP) and serine/threonine-phosphorylated proteins. The exchange of two residues in the murine chronophin homodimerization interface (chronophin(A194K,A195K)) yields a constitutive monomer both in vitro and in cells. The catalytic activity of monomeric chronophin toward PLP is strongly impaired. X-ray crystallographic studies of chronophin(A194K,A195K) revealed that dimer formation is essential for an intermolecular arginine-arginine-tryptophan stacking interaction that positions a critical histidine residue in the substrate specificity loop of chronophin for PLP coordination. Analysis of all available crystal structures of HAD hydrolases that are grouped together with chronophin in the C2a-type structural subfamily uncovered a highly conserved mode of dimerization that results in intermolecular contacts involving the substrate specificity loop. Our results explain how the dimerization of HAD hydrolases contributes to their catalytic efficiency and substrate specificity.
Collapse
Affiliation(s)
- Christian Kestler
- From the Institute for Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany and
| | | | | | | | | | | |
Collapse
|
21
|
Chen HY, Lee YR, Chen RH. The functions and regulations of DAPK in cancer metastasis. Apoptosis 2013; 19:364-70. [DOI: 10.1007/s10495-013-0923-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|