1
|
Mishra S, Tewari H, Chaudhary R, S Misra H, Kota S. Differential cellular localization of DNA gyrase and topoisomerase IB in response to DNA damage in Deinococcus radiodurans. Extremophiles 2023; 28:7. [PMID: 38062175 DOI: 10.1007/s00792-023-01323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Topoisomerases are crucial enzymes in genome maintenance that modulate the topological changes during DNA metabolism. Deinococcus radiodurans, a Gram-positive bacterium is characterized by its resistance to many abiotic stresses including gamma radiation. Its multipartite genome encodes both type I and type II topoisomerases. Time-lapse studies using fluorescently tagged topoisomerase IB (drTopoIB-RFP) and DNA gyrase (GyrA-RFP) were performed to check the dynamics and localization with respect to DNA repair and cell division under normal and post-irradiation growth conditions. Results suggested that TopoIB and DNA gyrase are mostly found on nucleoid, highly dynamic, and show growth phase-dependent subcellular localization. The drTopoIB-RFP was also present at peripheral and septum regions but does not co-localize with the cell division protein, drFtsZ. On the other hand, DNA gyrase co-localizes with PprA a pleiotropic protein involved in radioresistance, on the nucleoid during the post-irradiation recovery (PIR). The topoIB mutant was found to be sensitive to hydroxyurea treatment, and showed more accumulation of single-stranded DNA during the PIR, compared to the wild type suggesting its role in DNA replication stress. Together, these results suggest differential localization of drTopoIB-RFP and GyrA-RFP in D. radiodurans and their interaction with PprA protein, emphasizing the functional significance and role in radioresistance.
Collapse
Affiliation(s)
- Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Himani Tewari
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- National Centre for Microbial Resource, National Centre for Cell Science, Sai Trinity Complex, Sus Road, Pashan, Pune, 411021, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
- Centre of Multidisciplinary Unit of Research On Translational Initiatives and School of Science, GITAM (Deemed to Be University), Gandhinagar, Rushikonda, Visakhapatnam, 530045, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
2
|
Chaudhary R, Kota S, Misra HS. DivIVA Phosphorylation Affects Its Dynamics and Cell Cycle in Radioresistant Deinococcus radiodurans. Microbiol Spectr 2023; 11:e0314122. [PMID: 36744915 PMCID: PMC10100863 DOI: 10.1128/spectrum.03141-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 02/07/2023] Open
Abstract
DivIVA is a member of the Min family of proteins that spatially regulates septum formation at the midcell position and cell pole determination in Bacillus subtilis. Deinococcus radiodurans, a Gram-positive coccus-shaped bacterium, is characterized by its extreme resistance to DNA-damaging agents, including radiation. D. radiodurans cells exposed to gamma radiation undergo cell division arrest by as-yet-uncharacterized mechanisms. divIVA is shown to be an essential cell division gene in this bacterium, and DivIVA of D. radiodurans (drDivIVA) interacts with genome segregation proteins through its N-terminal region. Earlier, RqkA, a gamma radiation-responsive Ser/Thr quinoprotein kinase, was characterized for its role in radioresistance in D. radiodurans. Here, we showed that RqkA phosphorylates drDivIVA at the threonine 19 (T19) residue. The phospho-mimetic mutant with a mutation of T19 to E19 in DivIVA (DivIVAT19E) is found to be functionally different from the phospho-ablative mutant (DivIVAT19A) or the wild-type drDivIVA. A DivIVAT19E-red fluorescent protein (RFP) fusion expressed in the wild-type background showed the arrest in the typical dynamics of drDivIVA and the loss of its interaction with the genome segregation protein ParA2. The allelic replacement of divIVA with divIVAT19E-rfp was not tolerated unless drDivIVA was expressed episomally, while there was no phenotypic change when the wild-type allele was replaced with either divIVAT19A-rfp or divIVA-rfp. These results suggested that the phosphorylation of T19 in drDivIVA by RqkA affected its in vivo functions, which may contribute to the cell cycle arrest in this bacterium. IMPORTANCE Deinococcus radiodurans, a radioresistant bacterium, lacks LexA/RecA-mediated DNA damage response and cell cycle regulation as known in other bacteria. However, it adjusts its transcriptome and proteome upon DNA damage. In eukaryotes, the DNA damage response and cell cycle are regulated by Ser/Thr protein kinases. In D. radiodurans, we characterized a gamma radiation-responsive Ser/Thr quinoprotein kinase (RqkA) that phosphorylated DNA repair and cell division proteins in this bacterium. In previous work, the effect of S/T phosphorylation by RqkA on activity improvement of the DNA repair proteins has been demonstrated. This study reports that Ser phosphorylation by RqkA attenuates the function of a cell polarity and plane of cell division-determining protein, DivIVA, and its cellular dynamics in response to DNA damage, which might help to understand the mechanism of cell cycle regulation in this bacterium.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- School of Science, GITAM, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
3
|
Chaudhary R, Mishra S, Maurya GK, Rajpurohit YS, Misra HS. FtsZ phosphorylation brings about growth arrest upon DNA damage in Deinococcus radiodurans. FASEB Bioadv 2023; 5:27-42. [PMID: 36643897 PMCID: PMC9832530 DOI: 10.1096/fba.2022-00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
The polymerization/depolymerization dynamics of FtsZ play a pivotal role in cell division in the majority of the bacteria. Deinococcus radiodurans, a radiation-resistant bacterium, shows an arrest of growth in response to DNA damage with no change in the level of FtsZ. This bacterium does not deploy LexA/RecA type of DNA damage response and cell cycle regulation, and its genome does not encode SulA homologues of Escherichia coli, which attenuate FtsZ functions in response to DNA damage in other bacteria. A radiation-responsive Ser/Thr quinoprotein kinase (RqkA), characterized for its role in radiation resistance in this bacterium, could phosphorylate several cognate proteins, including FtsZ (drFtsZ) at Serine 235 (S235) and Serine 335 (S335) residues. Here, we reported the detailed characterization of S235 and S335 phosphorylation effects in the regulation of drFtsZ functions and demonstrated that the phospho-mimetic replacements of these residues in drFtsZ had grossly affected its functions that could result in cell cycle arrest in response to DNA damage in D. radiodurans. Interestingly, the phospho-ablative replacements were found to be nearly similar to drFtsZ, whereas the phospho-mimetic mutant lost the wild-type protein's signature characteristics, including its dynamics under normal conditions. The kinetics of post-bleaching recovery for drFtsZ and phospho-mimetic mutant were nearly similar at 2 h post-irradiation recovery but were found to be different under normal conditions. These results highlighted the role of S/T phosphorylation in the regulation of drFtsZ functions and cell cycle arrest in response to DNA damage, which is demonstrated for the first time, in any bacteria.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | - Shruti Mishra
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | | | - Yogendra S. Rajpurohit
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | - Hari S. Misra
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
4
|
DivIVA Regulates Its Expression and the Orientation of New Septum Growth in Deinococcus radiodurans. J Bacteriol 2021; 203:e0016321. [PMID: 34031039 DOI: 10.1128/jb.00163-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In rod-shaped Gram-negative bacteria, FtsZ localization at midcell position is regulated by the gradient of MinCDE complex across the poles. In round-shaped bacteria, which lack predefined poles, the next plane of cell division is perpendicular to the previous plane, and determination of the FtsZ assembly site is still intriguing. Deinococcus radiodurans, a coccus bacterium, is characterized by its extraordinary resistance to DNA damage. DivIVA, a putative component of the Min system in this bacterium, interacts with cognate cell division and genome segregation proteins. Here, we report that deletion of a chromosomal copy of DivIVA was possible only when the wild-type copy of DivIVA was expressed in trans on a plasmid. However, deletion of the C-terminal domain (CTD) of DivIVA (CTD mutant) was possible but produced distinguishable phenotypes, like smaller cells, slower growth, and tilted septum orientation, in D. radiodurans. In trans expression of DivIVA in the CTD mutant could restore these features of the wild type. Interestingly, the overexpression of DivIVA led to delayed separation of tetrads from an octet state in both trans-complemented divIVA-mutant and wild-type cells. The CTD mutant showed upregulation of the yggS-divIVAN operon. Both the wild type and CTD mutant formed FtsZ foci; however, unlike wild type, the position of foci in the mutant cells was found to be away from conjectural midcell position in cocci. Notably, DivIVA-red fluorescent protein (DivIVA-RFP) localizes to the septum during cell division at the new division site. These results suggested that DivIVA is an essential protein in D. radiodurans, and its C-terminal domain plays an important role in the regulation of its expression and orientation of new septal growth in this bacterium. IMPORTANCE In rod-shaped Gram-negative bacteria, the midcell position for binary fission is relatively easy to model. In cocci that do not have predefined poles, the plane of next cell division is shown to be perpendicular to the previous plane. However, the molecular basis of perpendicularity is not known in cocci. The DivIVA protein of Deinococcus radiodurans, a coccus bacterium, physically interacts with the septum and establishes macromolecular interactions with genome segregation proteins through its N-terminal domain and with MinC through the C-terminal domain. Here, we have brought forth some evidence to suggest that DivIVA is essential for growth and plays an important role in cell polarity determination, and its C-terminal domain plays a crucial role in the growth of new septa in the correct orientation as well as in the regulation of DivIVA expression.
Collapse
|
5
|
Rajpurohit YS, Sharma DK, Misra HS. PprA Protein Inhibits DNA Strand Exchange and ATP Hydrolysis of Deinococcus RecA and Regulates the Recombination in Gamma-Irradiated Cells. Front Cell Dev Biol 2021; 9:636178. [PMID: 33959605 PMCID: PMC8093518 DOI: 10.3389/fcell.2021.636178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
6
|
Chaudhary R, Mishra S, Kota S, Misra H. Molecular interactions and their predictive roles in cell pole determination in bacteria. Crit Rev Microbiol 2021; 47:141-161. [PMID: 33423591 DOI: 10.1080/1040841x.2020.1857686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
7
|
Kota S, Chaudhary R, Mishra S, Misra HS. Topoisomerase IB interacts with genome segregation proteins and is involved in multipartite genome maintenance in Deinococcus radiodurans. Microbiol Res 2020; 242:126609. [PMID: 33059113 DOI: 10.1016/j.micres.2020.126609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Deinococcus radiodurans, an extremophile, resistant to many abiotic stresses including ionizing radiation, has 2 type I topoisomerases (drTopo IA and drTopo IB) and one type II topoisomerase (DNA gyrase). The role of drTopo IB in guanine quadruplex DNA (G4 DNA) metabolism was demonstrated earlier in vitro. Here, we report that D. radiodurans cells lacking drTopo IB (ΔtopoIB) show sensitivity to G4 DNA binding drug (NMM) under normal growth conditions. The activity of G4 motif containing promoters like mutL and recQ was reduced in the presence of NMM in mutant cells. In mutant, the percentage of anucleate cells was more while the copy number of genome elements were less as compared to wild type. Protein-protein interaction studies showed that drTopo IB interacts with genome segregation and DNA replication initiation (DnaA) proteins. The typical patterns of cellular localization of GFP-PprA were affected in the mutant cells. Microscopic examination of D. radiodurans cells expressing drTopo IB-RFP showed its localization on nucleoid forming a streak parallel to the old division septum and perpendicular to newly formed septum. These results together suggest the role of drTopo IB in genome maintenance in this bacterium.
Collapse
Affiliation(s)
- Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
8
|
Phosphorylation of FtsZ and FtsA by a DNA Damage-Responsive Ser/Thr Protein Kinase Affects Their Functional Interactions in Deinococcus radiodurans. mSphere 2018; 3:3/4/e00325-18. [PMID: 30021877 PMCID: PMC6052341 DOI: 10.1128/msphere.00325-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LexA/RecA-type SOS response is the only characterized mechanism of DNA damage response in bacteria. It regulates cell cycle by attenuating the functions of cell division protein FtsZ and inducing the expression of DNA repair proteins. There are bacteria, including Deinococcus radiodurans, that do not show this classical SOS response. D. radiodurans is known for its extraordinary resistance to gamma radiation, and a DNA damage-responsive Ser/Thr protein kinase (RqkA) has been characterized for its role in radioresistance. RqkA phosphorylates a large number of proteins in solution. The phosphorylation of RecA and PprA by RqkA enhanced their activities. FtsZ phosphorylation is inducible by gamma radiation in wild-type D. radiodurans but not in an rqkA mutant. Phosphorylation affected the interaction of FtsZ and FtsA in this bacterium. This study, therefore, brought forth some findings that might lead to the discovery of a new mechanism regulating the bacterial cell cycle in response to DNA damage. Deinococcus radiodurans, a highly radioresistant bacterium, does not show LexA-dependent regulation of recA expression in response to DNA damage. On the other hand, phosphorylation of DNA repair proteins such as PprA and RecA by a DNA damage-responsive Ser/Thr protein kinase (STPK) (RqkA) could improve their DNA metabolic activities as well as their roles in the radioresistance of D. radiodurans. Here we report RqkA-mediated phosphorylation of cell division proteins FtsZ and FtsA in vitro and in surrogate Escherichia coli bacteria expressing RqkA. Mass spectrometric analysis mapped serine 235 and serine 335 in FtsZ and threonine 272, serine 370, and serine 386 in FtsA as potential phosphorylation sites. Although the levels of FtsZ did not change during postirradiation recovery (PIR), phosphorylation of both FtsZ and FtsA showed a kinetic change during PIR. However, in an rqkA mutant of D. radiodurans, though FtsZ underwent phosphorylation, no kinetic change in phosphorylation was observed. Further, RqkA adversely affected FtsA interaction with FtsZ, and phosphorylated FtsZ showed higher GTPase activity than unphosphorylated FtsZ. These results suggest that both FtsZ and FtsA are phosphoproteins in D. radiodurans. The increased phosphorylation of FtsZ in response to radiation damage in the wild-type strain but not in an rqkA mutant seems to be regulating the functional interaction of FtsZ with FtsA. For the first time, we demonstrate the role of a DNA damage-responsive STPK (RqkA) in the regulation of functional interaction of cell division proteins in this bacterium. IMPORTANCE The LexA/RecA-type SOS response is the only characterized mechanism of DNA damage response in bacteria. It regulates cell cycle by attenuating the functions of cell division protein FtsZ and inducing the expression of DNA repair proteins. There are bacteria, including Deinococcus radiodurans, that do not show this classical SOS response. D. radiodurans is known for its extraordinary resistance to gamma radiation, and a DNA damage-responsive Ser/Thr protein kinase (RqkA) has been characterized for its role in radioresistance. RqkA phosphorylates a large number of proteins in solution. The phosphorylation of RecA and PprA by RqkA enhanced their activities. FtsZ phosphorylation is inducible by gamma radiation in wild-type D. radiodurans but not in an rqkA mutant. Phosphorylation affected the interaction of FtsZ and FtsA in this bacterium. This study, therefore, brought forth some findings that might lead to the discovery of a new mechanism regulating the bacterial cell cycle in response to DNA damage.
Collapse
|
9
|
Misra HS, Maurya GK, Chaudhary R, Misra CS. Interdependence of bacterial cell division and genome segregation and its potential in drug development. Microbiol Res 2018; 208:12-24. [DOI: 10.1016/j.micres.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/05/2017] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
|
10
|
Dai L, Huang Y, Chen Y, Long ZE. Cloning and characterization of filamentous temperature-sensitive protein Z from Xanthomonas oryzae pv. Oryzae. SPRINGERPLUS 2016; 5:145. [PMID: 27026842 PMCID: PMC4764595 DOI: 10.1186/s40064-016-1876-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/16/2016] [Indexed: 12/03/2022]
Abstract
The ftsZ gene from Xanthomonas oryzae pv. Oryzae was amplified by PCR with the specific primers, and the recombinant plasmid pET-22b-ftsZ was constructed successfully. The FtsZ with a 6× His tag was overexpressed in a soluble form in Escherichia coli BL21 and purified through a Ni-NTA agarose column. The purified recombinant FtsZ showed a single band on SDS-PAGE with an apparent molecular mass of about 44 kDa, and confirmed by western blotting analysis. The optimum temperature for GTPase activity of the recombined FtsZ was 50 °C, and the optimum pH was 7.0. The recombinant FtsZ showed good stability and retained >95 % activity at 50 °C for 240 min. The GTPase activity followed Michaelis–Menten kinetics with the KM of 1.750 mM and the Vmax of 0.155 nmol Pi/min/nmol FtsZ respectively.
Collapse
|
11
|
Maurya GK, Modi K, Misra HS. Divisome and segrosome components of Deinococcus radiodurans interact through cell division regulatory proteins. Microbiology (Reading) 2016; 162:1321-1334. [DOI: 10.1099/mic.0.000330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ganesh K. Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Mumbai- 400094, India
| | - Kruti Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Mumbai- 400094, India
| |
Collapse
|
12
|
Modi K, Misra HS. Dr-FtsA, an actin homologue in Deinococcus radiodurans differentially affects Dr-FtsZ and Ec-FtsZ functions in vitro. PLoS One 2014; 9:e115918. [PMID: 25551229 PMCID: PMC4281207 DOI: 10.1371/journal.pone.0115918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/29/2014] [Indexed: 11/24/2022] Open
Abstract
The Deinococcus radiodurans genome encodes homologues of divisome proteins including FtsZ and FtsA. FtsZ of this bacterium (Dr-FtsZ) has been recently characterized. In this paper, we study FtsA of D. radiodurans (Dr-FtsA) and its involvement in regulation of FtsZ function. Recombinant Dr-FtsA showed neither ATPase nor GTPase activity and its polymerization was ATP dependent. Interestingly, we observed that Dr-FtsA, when compared with E. coli FtsA (Ec-FtsA), has lower affinity for both Dr-FtsZ and Ec-FtsZ. Also, Dr-FtsA showed differential effects on GTPase activity and sedimentation characteristics of Dr-FtsZ and Ec-FtsZ. For instance, Dr-FtsA stimulated GTPase activity of Dr-FtsZ while GTPase activity of Ec-FtsZ was reduced in the presence of Dr-FtsA. Stimulation of GTPase activity of Dr-FtsZ by Dr-FtsA resulted in depolymerization of Dr-FtsZ. Dr-FtsA effects on GTPase activity and polymerization/depolymerisation characteristics of Dr-FtsZ did not change significantly in the presence of ATP. Recombinant E. coli expressing Dr-FtsA showed cell division inhibition in spite of in trans expression of Dr-FtsZ in these cells. These results suggested that Dr-FtsA, although it lacks ATPase activity, is still functional and differentially affects Dr-FtsZ and Ec-FtsZ function in vitro.
Collapse
Affiliation(s)
- Kruti Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
- * E-mail:
| |
Collapse
|