1
|
Johnson K, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott J, Brekken R, Peng L, Karagkounis G, Corey D. Nuclear localization of Argonaute 2 is affected by cell density and may relieve repression by microRNAs. Nucleic Acids Res 2024; 52:1930-1952. [PMID: 38109320 PMCID: PMC10899759 DOI: 10.1093/nar/gkad1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Audrius Kilikevicius
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| | - Yi Han
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Tao Wang
- UT Southwestern Medical Center, Peter O’Donnell Jr. School of Public Health, Dallas, TX 75235, USA
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235, USA
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235, USA
- Memorial Sloan Kettering Cancer Center, New York, NY 10022, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235, USA
| |
Collapse
|
2
|
Shirokikh NE, Jensen KB, Thakor N. Editorial: RNA machines. Front Genet 2023; 14:1290420. [PMID: 37829284 PMCID: PMC10565666 DOI: 10.3389/fgene.2023.1290420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kirk Blomquist Jensen
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
3
|
Johnson KC, Kilikevicius A, Hofman C, Hu J, Liu Y, Aguilar S, Graswich J, Han Y, Wang T, Westcott JM, Brekken RA, Peng L, Karagkounis G, Corey DR. Nuclear Localization of Argonaute is affected by Cell Density and May Relieve Repression by microRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548119. [PMID: 37461596 PMCID: PMC10350042 DOI: 10.1101/2023.07.07.548119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Argonaute protein is associated with post-transcriptional control of cytoplasmic gene expression through miRNA-induced silencing complexes (miRISC). Specific cellular and environmental conditions can trigger AGO protein to accumulate in the nucleus. Localization of AGO is central to understanding miRNA action, yet the consequences of AGO being in the nucleus are undefined. We show nuclear enrichment of AGO2 in HCT116 cells grown in two-dimensional culture to high density, HCT116 cells grown in three-dimensional tumor spheroid culture, and human colon tumors. The shift in localization of AGO2 from cytoplasm to nucleus de-represses cytoplasmic AGO2-eCLIP targets that were candidates for canonical regulation by miRISC. Constitutive nuclear localization of AGO2 using an engineered nuclear localization signal increases cell migration. Critical RNAi factors also affect the localization of AGO2. Knocking out an enzyme essential for miRNA biogenesis, DROSHA, depletes mature miRNAs and restricts AGO2 localization to the cytoplasm, while knocking out the miRISC scaffolding protein, TNRC6, results in nuclear localization of AGO2. These data suggest that AGO2 localization and miRNA activity can be regulated depending on environmental conditions, expression of mature miRNAs, and expression of miRISC cofactors. Localization and expression of core miRISC protein machinery should be considered when investigating the roles of miRNAs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Audrius Kilikevicius
- current address, Eli Lilly, Lilly Cambridge Innovation Center, Cambridge, MA 02142
| | - Cristina Hofman
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yang Liu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Selina Aguilar
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Jon Graswich
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| | - Yi Han
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Tao Wang
- UT Southwestern Medical Center, Quantitative Biomedical Research Center, Department of Population and Data Sciences, Dallas, TX 75235
| | - Jill M Westcott
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Rolf A Brekken
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - Lan Peng
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Pathology, Dallas, TX 75235
| | - Georgios Karagkounis
- UT Southwestern Medical Center, Harold C. Simmons Comprehensive Cancer Center, Department of Surgery, Dallas, TX 75235
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, TX 75235
| |
Collapse
|
4
|
Johnson KC, Corey DR. RNAi in cell nuclei: potential for a new layer of biological regulation and a new strategy for therapeutic discovery. RNA (NEW YORK, N.Y.) 2023; 29:415-422. [PMID: 36657971 PMCID: PMC10019369 DOI: 10.1261/rna.079500.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
RNA interference is almost always associated with post-transcriptional silencing in the cytoplasm. MicroRNAs (miRNAs) and critical RNAi protein factors like argonaute (AGO) and trinucleotide repeat binding containing 6 protein (TNRC6), however, are also found in cell nuclei, suggesting that nuclear miRNAs may be targets for gene regulation. Designed small duplex RNAs (dsRNAs) can modulate nuclear processes such as transcription and splicing, suggesting that they can also provide leads for therapeutic discovery. The goal of this Perspective is to provide the background on nuclear RNAi necessary to guide discussions on whether nuclear RNAi can play a role in therapeutic development programs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| |
Collapse
|
5
|
Kalkusova K, Taborska P, Stakheev D, Smrz D. The Role of miR-155 in Antitumor Immunity. Cancers (Basel) 2022; 14:5414. [PMID: 36358832 PMCID: PMC9659277 DOI: 10.3390/cancers14215414] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
MicroRNAs belong to a group of short non-coding RNA molecules that are involved in the regulation of gene expression at multiple levels. Their function was described two decades ago, and, since then, microRNAs have become a rapidly developing field of research. Their participation in the regulation of cellular processes, such as proliferation, apoptosis, cell growth, and migration, made microRNAs attractive for cancer research. Moreover, as a single microRNA can simultaneously target multiple molecules, microRNAs offer a unique advantage in regulating multiple cellular processes in different cell types. Many of these cell types are tumor cells and the cells of the immune system. One of the most studied microRNAs in the context of cancer and the immune system is miR-155. MiR-155 plays a role in modulating innate and adaptive immune mechanisms in distinct immune cell types. As such, miR-155 can be part of the communication between the tumor and immune cells and thus impact the process of tumor immunoediting. Several studies have already revealed its effect on antitumor immune responses, and the targeting of this molecule is increasingly implemented in cancer immunotherapy. In this review, we discuss the current knowledge of miR-155 in the regulation of antitumor immunity and the shaping of the tumor microenvironment, and the plausible implementation of miR-155 targeting in cancer therapy.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
6
|
RNA modifications in aging-associated cardiovascular diseases. Aging (Albany NY) 2022; 14:8110-8136. [PMID: 36178367 PMCID: PMC9596201 DOI: 10.18632/aging.204311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide that bears an enormous healthcare burden and aging is a major contributing factor to CVDs. Functional gene expression network during aging is regulated by mRNAs transcriptionally and by non-coding RNAs epi-transcriptionally. RNA modifications alter the stability and function of both mRNAs and non-coding RNAs and are involved in differentiation, development, and diseases. Here we review major chemical RNA modifications on mRNAs and non-coding RNAs, including N6-adenosine methylation, N1-adenosine methylation, 5-methylcytidine, pseudouridylation, 2′ -O-ribose-methylation, and N7-methylguanosine, in the aging process with an emphasis on cardiovascular aging. We also summarize the currently available methods to detect RNA modifications and the bioinformatic tools to study RNA modifications. More importantly, we discussed the specific implication of the RNA modifications on mRNAs and non-coding RNAs in the pathogenesis of aging-associated CVDs, including atherosclerosis, hypertension, coronary heart diseases, congestive heart failure, atrial fibrillation, peripheral artery disease, venous insufficiency, and stroke.
Collapse
|
7
|
Mechanism and Function of Circular RNA in Regulating Solid Tumor Radiosensitivity. Int J Mol Sci 2022; 23:ijms231810444. [PMID: 36142355 PMCID: PMC9499630 DOI: 10.3390/ijms231810444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Radiotherapy is an important tool in the treatment of malignant tumors, and exploring how to make radiotherapy more effective is a new way to break through the current bottleneck in the development of radiation oncology. Circular RNAs (circRNAs) are a special class of endogenous non-coding RNAs. Numerous studies have shown that circRNAs have shown great potential in regulating the biological functions of tumors, including proliferation, migration, invasion, and treatment resistance, and that differences in their expression levels are closely related to the clinical prognosis of tumor patients. This review systematically compares the mechanisms of circRNAs in the process of tumor development and radiosensitivity and provides insight into the clinical translation of circRNAs in radiotherapy.
Collapse
|
8
|
Clément AA, Lamarche D, Masse MH, Légaré C, Tai LH, Fleury Deland L, Battista MC, Bouchard L, D’Aragon F. Time-course full profiling of circulating miRNAs in neurologically deceased organ donors: a proof of concept study to understand the onset of the cytokine storm. Epigenetics 2022; 17:1546-1561. [DOI: 10.1080/15592294.2022.2076048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphnée Lamarche
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Hélène Masse
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lee-Hwa Tai
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurence Fleury Deland
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean-Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Frédérick D’Aragon
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Zhou Y, Li C, Wang Z, Tan S, Liu Y, Zhang H, Li X. CircRNAs as Novel Biomarkers and Therapeutic Targets in Renal Cell Carcinoma. Front Mol Biosci 2022; 9:833079. [PMID: 35223991 PMCID: PMC8874010 DOI: 10.3389/fmolb.2022.833079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of long non-coding RNA with covalently closed loops that are naturally resistant to exoribonuclease. With the rapid development of high-throughput sequencing technologies and bioinformatics, increasing data suggest that circRNAs are abnormally expressed in renal cell carcinoma (RCC) and act as important regulators of RCC carcinogenesis and progression. CircRNAs play important biological roles in modulating cell proliferation, migration, invasion, apoptosis, and gemcitabine chemoresistance in RCC. Most of the circRNAs studied in RCC have been reported to be significantly associated with many clinicopathologic characteristics and survival parameters of RCC. The stability and specificity of circRNAs enable them potential molecular markers for RCC diagnosis and prognosis. Moreover, circRNAs have emerged as targets for developing new therapies, because they can regulate various signaling pathways associated with RCC initiation and progression. In this review, we briefly summarize the biogenesis, degradation, and biological functions of circRNAs as well as the potential clinical applications of these molecules for RCC diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Yuxia Zhou
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Cheng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenping Wang
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangfeng Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yiqi Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuefeng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuefeng Li,
| |
Collapse
|
10
|
miRNA:miRNA Interactions: A Novel Mode of miRNA Regulation and Its Effect On Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:241-257. [DOI: 10.1007/978-3-031-08356-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Contiliani DF, Ribeiro YDA, de Moraes VN, Pereira TC. MicroRNAs in Prion Diseases-From Molecular Mechanisms to Insights in Translational Medicine. Cells 2021; 10:1620. [PMID: 34209482 PMCID: PMC8307047 DOI: 10.3390/cells10071620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules able to post-transcriptionally regulate gene expression via base-pairing with partially complementary sequences of target transcripts. Prion diseases comprise a singular group of neurodegenerative conditions caused by endogenous, misfolded pathogenic (prion) proteins, associated with molecular aggregates. In humans, classical prion diseases include Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker syndrome, and kuru. The aim of this review is to present the connections between miRNAs and prions, exploring how the interaction of both molecular actors may help understand the susceptibility, onset, progression, and pathological findings typical of such disorders, as well as the interface with some prion-like disorders, such as Alzheimer's. Additionally, due to the inter-regulation of prions and miRNAs in health and disease, potential biomarkers for non-invasive miRNA-based diagnostics, as well as possible miRNA-based therapies to restore the levels of deregulated miRNAs on prion diseases, are also discussed. Since a cure or effective treatment for prion disorders still pose challenges, miRNA-based therapies emerge as an interesting alternative strategy to tackle such defying medical conditions.
Collapse
Affiliation(s)
- Danyel Fernandes Contiliani
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Yasmin de Araújo Ribeiro
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Vitor Nolasco de Moraes
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| | - Tiago Campos Pereira
- Graduate Program of Genetics, Department of Genetics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil; (D.F.C.); (Y.d.A.R.); (V.N.d.M.)
- Department of Biology, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo, Av. Bandeirantes, Ribeirao Preto 3900, Brazil
| |
Collapse
|
12
|
The Long Non-coding RNA NEAT1/miR-224-5p/IL-33 Axis Modulates Macrophage M2a Polarization and A1 Astrocyte Activation. Mol Neurobiol 2021; 58:4506-4519. [PMID: 34076838 DOI: 10.1007/s12035-021-02405-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
To identify potential regulators and investigate the molecular mechanism of macrophage polarization affecting astrocyte activation from the perspective of non-coding RNA regulation, we isolated mouse bone marrow mononuclear cells (BMMNCs)-induced macrophages toward M1 or M2a polarization. Long non-coding RNA NEAT1 and IL-33 expression levels were significantly upregulated in M2a macrophages; NEAT1 knockdown in M2a macrophages markedly reduced the protein levels of IL-33 and M2a markers, IL-4 and IL-13 concentrations, and the bacterial killing capacity of M2a macrophages. NEAT1 acted as a competing endogenous RNA (ceRNA) to regulate IL-33 expression by sponging miR-224-5p in M2a macrophages; NEAT1 knockdown upregulated miR-224-5p expression, while miR-224-5p inhibition increased the protein content and concentration of IL-33. miR-224-5p inhibition exerted the opposite effects on the protein levels of IL-33 and M2a markers, IL-4 and IL-13 concentrations, and the bacterial killing capacity of M2a macrophages compared to NEAT1 knockdown; the effects of NEAT1 knockdown were significantly reversed by miR-224-5p inhibition. M2a macrophage conditioned medium (CM) significantly suppressed the activation of A1 astrocytes. NEAT1 knockdown M2a macrophage CM led to enhanced A1 astrocyte activation while miR-224-5p-silenced M2a macrophage CM led to a blockade of A1 astrocyte activation; the effects of NEAT1 knockdown M2a macrophage CM on A1 astrocyte activation were significantly reversed by miR-224-5p inhibition in M2a macrophages. The NEAT1/miR-224-5p/IL-33 axis modulates macrophage M2a polarization, therefore affecting A1 astrocyte activation.
Collapse
|
13
|
Circular RNAs in depression: Biogenesis, function, expression, and therapeutic potential. Biomed Pharmacother 2021; 137:111244. [DOI: 10.1016/j.biopha.2021.111244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
|
14
|
Abstract
Canonically, microRNAs (miRNAs) control mRNA expression. However, studies have shown that miRNAs are also capable of targeting non-coding RNAs, including long non-coding RNAs and miRNAs. The latter, termed a miRNA:miRNA interaction, is a form of self-regulation. In this Review, we discuss the three main modes of miRNA:miRNA regulation: direct, indirect and global interactions, and their implications in cancer biology. We also discuss the cell-type-specific nature of miRNA:miRNA interactions, current experimental approaches and bioinformatic techniques, and how these strategies are not sufficient for the identification of novel miRNA:miRNA interactions. The self-regulation of miRNAs and their impact on gene regulation has yet to be fully understood. Investigating this hidden world of miRNA self-regulation will assist in discovering novel regulatory mechanisms associated with disease pathways.
Collapse
Affiliation(s)
- Meredith Hill
- School of Biomedical Engineering, Centre for Health Technologies, Faculty of Engineering and IT, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nham Tran
- School of Biomedical Engineering, Centre for Health Technologies, Faculty of Engineering and IT, The University of Technology Sydney, Sydney, NSW 2007, Australia.,The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
15
|
Feng B, Zhou H, Wang T, Lin X, Lai Y, Chu X, Wang R. Insights Into circRNAs: Functional Roles in Lung Cancer Management and the Potential Mechanisms. Front Cell Dev Biol 2021; 9:636913. [PMID: 33634138 PMCID: PMC7900409 DOI: 10.3389/fcell.2021.636913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lung cancer is the most prevalent cancer globally. It is also the leading cause of cancer-related death because of the late diagnosis and the frequent resistance to therapeutics. Therefore, it is impending to identify novel biomarkers and effective therapeutic targets to improve the clinical outcomes. Identified as a new class of RNAs, circular RNAs (circRNAs) derive from pre-mRNA back splicing with considerable stability and conservation. Accumulating research reveal that circRNAs can function as microRNA (miRNA) sponges, regulators of gene transcription and alternative splicing, as well as interact with RNA-binding proteins (RBPs), or even be translated into proteins directly. Currently, a large body of circRNAs have been demonstrated differentially expressed in physiological and pathological processes including cancer. In lung cancer, circRNAs play multiple roles in carcinogenesis, development, and response to different therapies, indicating their potential as diagnostic and prognostic biomarkers as well as novel therapeutics. In this review, we summarize the multi-faceted functions of circRNAs in lung cancer and the underlying mechanisms, together with the possible future of these discoveries in clinical application.
Collapse
Affiliation(s)
- Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| |
Collapse
|
16
|
Abstract
Important advances have been made regarding the diagnosis and management of polycystic kidney diseases. Care of patients with polycystic kidney diseases has moved beyond supportive care for complications and chronic kidney disease to new potentially disease-modifying therapies. Recently, the role of noncoding RNAs, in particular microRNAs, has been described in polycystic kidney diseases. microRNAs are involved in the regulation of gene expression, in which PKD1, PKD2, and other genes that contribute to the pathogenesis of polycystic kidney diseases are considerable participants. Seminal studies have highlighted the potential importance of microRNAs as new therapeutic targets and innovative diagnostic and/or prognostic biomarkers. Furthermore, an anti-miR-17 drug has advanced through preclinical autosomal dominant polycystic disease studies, and an anti-miR-21 drug has already cleared a phase 1 clinical trial. Most probably, new drugs in the microRNA research field will be yielded as a result of ongoing and planned therapeutic trials. To provide a foundation for understanding microRNA functions as a disease-modifying therapeutic drug in novel targeted therapies, in this narrative review we present an overview of the current knowledge of microRNAs in the pathogenesis of polycystic kidney diseases.
Collapse
Affiliation(s)
| | - Liangzhong Sun
- Address for Correspondence: Liangzhong Sun, PhD, Department of Pediatrics, Nanfang Hospital, Southern Medical University, No. 1838, North Road, Guangzhou Avenue, Baiyun District, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
17
|
Haig D, Mainieri A. The Evolution of Imprinted microRNAs and Their RNA Targets. Genes (Basel) 2020; 11:genes11091038. [PMID: 32899179 PMCID: PMC7564603 DOI: 10.3390/genes11091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes contain many imprinted microRNAs. When an imprinted miRNA targets an unimprinted mRNA their interaction may have different fitness consequences for the loci encoding the miRNA and mRNA. In one possible outcome, the mRNA sequence evolves to evade regulation by the miRNA by a simple change of target sequence. Such a response is unavailable if the targeted sequence is strongly constrained by other functions. In these cases, the mRNA evolves to accommodate regulation by the imprinted miRNA. These evolutionary dynamics are illustrated using the examples of the imprinted C19MC cluster of miRNAs in primates and C2MC cluster in mice that are paternally expressed in placentas. The 3′ UTR of PTEN, a gene with growth-related and metabolic functions, appears to be an important target of miRNAs from both clusters.
Collapse
|
18
|
Shin PK, Kim MS, Park SJ, Kwon DY, Kim MJ, Yang HJ, Kim SH, Kim K, Chun S, Lee HJ, Choi SW. A Traditional Korean Diet Alters the Expression of Circulating MicroRNAs Linked to Diabetes Mellitus in a Pilot Trial. Nutrients 2020; 12:nu12092558. [PMID: 32846929 PMCID: PMC7551128 DOI: 10.3390/nu12092558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
The traditional Korean diet (K-diet) is considered to be healthy and circulating microRNAs (miRs) have been proposed as useful markers or targets in diet therapy. We, therefore, investigated the metabolic influence of the K-diet by evaluating the expression of plasma and salivary miRs. Ten women aged 50 to 60 years were divided into either a K-diet or control diet (a Westernized Korean diet) group. Subjects were housed in a metabolic unit-like condition during the two-week dietary intervention. Blood and saliva samples were collected before and after the intervention, and changes in circulating miRs were screened by an miR array and validated by individual RT-qPCRs. In the K-diet group, eight plasma miRs were down-regulated by array (p < 0.05), out of which two miRs linked to diabetes mellitus, hsa-miR26a-5p and hsa-miR126-3p, were validated (p < 0.05). Among five down-regulated salivary miRs, hsa-miR-92-3p and hsa-miR-122a-5p were validated, which are associated with diabetes mellitus, acute coronary syndrome and non-alcoholic fatty liver disease. In the control diet group, validated were down-regulated plasma hsa-miR-25-3p and salivary hsa-miR-31-5p, which are associated with diabetes mellitus, adipogenesis and obesity. The K-diet may influence the metabolic conditions associated with diabetes mellitus, as evidenced by changes in circulating miRs, putative biomarkers for K-diet.
Collapse
Affiliation(s)
- Phil-Kyung Shin
- CHA Bio Complex, CHA University, Seongnam 13488, Korea; (P.-K.S.); (S.C.)
| | - Myung Sunny Kim
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seon-Joo Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Dae Young Kwon
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
| | - Min Jung Kim
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
| | - Hye Jeong Yang
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
| | - Soon-Hee Kim
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Korea; (M.S.K.); (D.Y.K.); (M.J.K.); (H.J.Y.); (S.-H.K.)
| | - KyongChol Kim
- Department of Healthy Aging, GangNam Major Hospital, Seoul 06279, Korea;
| | - Sukyung Chun
- CHA Bio Complex, CHA University, Seongnam 13488, Korea; (P.-K.S.); (S.C.)
- Chaum Life Center, CHA University, Seoul 06062, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
- Correspondence: (H.-J.L.); (S.-W.C.)
| | - Sang-Woon Choi
- CHA Bio Complex, CHA University, Seongnam 13488, Korea; (P.-K.S.); (S.C.)
- Chaum Life Center, CHA University, Seoul 06062, Korea
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
- Correspondence: (H.-J.L.); (S.-W.C.)
| |
Collapse
|
19
|
Chiabotto G, Camussi G, Bruno S. Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s41544-020-00050-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractExtracellular vesicles (EVs) are small membrane vesicles carrying bioactive lipids, proteins and nucleic acids of the cell of origin. In particular, EVs carry non-coding RNAs (ncRNAs) and the vesicle membrane may protect them from degradation. Once released within the extracellular space, EVs can transfer their cargo, including ncRNAs, to neighboring or distant cells, thus inducing phenotypical and functional changes that may be relevant in several physio-pathological conditions. This review provides an overview of the role of EV-carried ncRNAs in the modulation of liver fibrosis. In particular, we focused on EV-associated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) involved into the development of liver fibrosis and on the potential use of EV-associated ncRNAs as diagnostic and prognostic biomarkers of liver fibrosis.
Collapse
|
20
|
Zhou J, Li Z, Wu T, Zhao Q, Zhao Q, Cao Y. LncGBP9/miR-34a axis drives macrophages toward a phenotype conducive for spinal cord injury repair via STAT1/STAT6 and SOCS3. J Neuroinflammation 2020; 17:134. [PMID: 32345320 PMCID: PMC7187522 DOI: 10.1186/s12974-020-01805-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Acute spinal cord injury (SCI) could cause mainly two types of pathological sequelae, the primary mechanical injury, and the secondary injury. The macrophage in SCI are skewed toward the M1 phenotype that might cause the failure to post-SCI repair. Methods SCI model was established in Balb/c mice, and the changes in macrophage phenotypes after SCI were monitored. Bioinformatic analyses were performed to select factors that might regulate macrophage polarization after SCI. Mouse bone marrow-derived macrophages (BMDMs) were isolated, identified, and induced for M1 or M2 polarization; the effects of lncRNA guanylate binding protein-9 (lncGBP9) and suppressor of cytokine signaling 3 (SOCS3) on macrophages polarization were examined in vitro and in vivo. The predicted miR-34a binding to lncGBP9 and SOCS3 was validated; the dynamic effects of lncGBP9 and miR-34a on SOCS3, signal transducer and activator of transcription 1 (STAT1)/STAT6 signaling, and macrophage polarization were examined. Finally, we investigated whether STAT6 could bind the miR-34a promoter to activate its transcription. Results In SCI Balb/c mice, macrophage skewing toward M1 phenotypes was observed after SCI. In M1 macrophages, lncGBP9 silencing significantly decreased p-STAT1 and SOCS3 expression and protein levels, as well as the production of Interleukin (IL)-6 and IL-12; in M2 macrophages, lncGBP9 overexpression increased SOCS3 mRNA expression and protein levels while suppressed p-STAT6 levels and the production of IL-10 and transforming growth factor-beta 1 (TGF-β1), indicating that lncGBP9 overexpression promotes the M1 polarization of macrophages. In lncGBP9-silenced SCI mice, the M2 polarization was promoted on day 28 after the operation, further indicating that lncGBP9 silencing revised the predominance of M1 phenotype at the late stage of secondary injury after SCI, therefore improving the repair after SCI. IncGBP9 competed with SOCS3 for miR-34a binding to counteract miR-34a-mediated suppression on SOCS3 and then modulated STAT1/STAT6 signaling and the polarization of macrophages. STAT6 bound the promoter of miR-34a to activate its transcription. Conclusions In macrophages, lncGBP9 sponges miR-34a to rescue SOCS3 expression, therefore modulating macrophage polarization through STAT1/STAT6 signaling. STAT6 bound the promoter of miR-34a to activate its transcription, thus forming two different regulatory loops to modulate the phenotype of macrophages after SCI.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyue Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, 410008, PR of China
| | - Qun Zhao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qiancheng Zhao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, 410008, PR of China.
| |
Collapse
|
21
|
Yin Y, Long J, He Q, Li Y, Liao Y, He P, Zhu W. Emerging roles of circRNA in formation and progression of cancer. J Cancer 2019; 10:5015-5021. [PMID: 31602252 PMCID: PMC6775606 DOI: 10.7150/jca.30828] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are recently discovered as a special novel type of endogenous noncoding RNAs (ncRNAs), which form a covalently closed continuous loop and are highly represented in the eukaryotic transcriptome. Recent research revealed that circRNAs can function as microRNA (miRNA) sponges, regulators of splicing and transcription, as well as interact with RNA-binding proteins (RBPs). In this review, not only the function and mechanism, but also the experimental methods of circRNA are summarized. The summary of the current state of circRNA will help us in the discovery of novel biomarkers, the therapeutic targets and their potential significance in diagnosis and treatment of diseases. CircRNAs might play important roles in cancers especially in hepatocellular carcinoma, gastric carcinoma and colorectal cancer as well as serving as diagnostic or predictive biomarkers of some diseases and providing new treatments of diseases.
Collapse
Affiliation(s)
- Yuting Yin
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Jiali Long
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Yuling Li
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Yanqiu Liao
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Peishan He
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| |
Collapse
|
22
|
Computational Resources for Prediction and Analysis of Functional miRNA and Their Targetome. Methods Mol Biol 2019; 1912:215-250. [PMID: 30635896 DOI: 10.1007/978-1-4939-8982-9_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
microRNAs are evolutionarily conserved, endogenously produced, noncoding RNAs (ncRNAs) of approximately 19-24 nucleotides (nts) in length known to exhibit gene silencing of complementary target sequence. Their deregulated expression is reported in various disease conditions and thus has therapeutic implications. In the last decade, various computational resources are published in this field. In this chapter, we have reviewed bioinformatics resources, i.e., miRNA-centered databases, algorithms, and tools to predict miRNA targets. First section has enlisted more than 75 databases, which mainly covers information regarding miRNA registries, targets, disease associations, differential expression, interactions with other noncoding RNAs, and all-in-one resources. In the algorithms section, we have compiled about 140 algorithms from eight subcategories, viz. for the prediction of precursor (pre-) and mature miRNAs. These algorithms are developed on various sequence, structure, and thermodynamic based features incorporated into different machine learning techniques (MLTs). In addition, computational identification of miRNAs from high-throughput next generation sequencing (NGS) data and their variants, viz. isomiRs, differential expression, miR-SNPs, and functional annotation, are discussed. Prediction and analysis of miRNAs and their associated targets are also evaluated under miR-targets section providing knowledge regarding novel miRNA targets and complex host-pathogen interactions. In conclusion, we have provided comprehensive review of in silico resources published in miRNA research to help scientific community be updated and choose the appropriate tool according to their needs.
Collapse
|
23
|
Fries JWU. MicroRNAs as markers to monitor endothelin-1 signalling and potential treatment in renal disease: Carcinoma - proteinuric damage - toxicity. Biol Cell 2019; 111:169-186. [PMID: 30866090 DOI: 10.1111/boc.201800059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/01/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
This review highlights new developments in miRNA as diagnostic and surveillance tools in diseases damaging the renal proximal tubule mediated by endothelin in the field of renal carcinoma, proteinuric kidney disease and tubulotoxicity. A new mechanism in the miRNA regulation of proteins leads to the binding of the miRNA directly to the DNA with premature transcriptional termination and hence the formation of truncated protein isoforms (Mxi2, Vim3). These isoforms are mediated through miRNA15a or miRNA 498, respectively. ET-1 can activate a cytoplasmic complex consisting of NF-κB p65, MAPK p38α, and PKCα. Consequently, PKCα does not transmigrate into the nucleus, which leads to the loss of suppression of a primiRNA15a, maturation of this miRNA in the cytoplasm, tubular secretion and detectability in the urine. This mechanism has been shown in renal cell carcinoma and in proteinuric disease as a biomarker for the activation of the signalling pathway. Similarly, ET-1 induced miRNA 498 transmigrates into the nucleus to form the truncated protein Vim3, which is a biomarker for the benign renal cell tumour, oncocytoma. In tubulotoxicity, ET-1 induced miRNa133a down-regulating multiple-drug-resistant related protein-2, relevant for proteinuric and cisplatin/cyclosporine A toxicity. Current advantages and limitations of miRNAs as urinary biomarkers are discussed.
Collapse
Affiliation(s)
- Jochen W U Fries
- Department of Pathology, University Hospital of Koeln, 50931, Koeln, Germany
| |
Collapse
|
24
|
Abstract
Small RNAs govern almost every biological process in eukaryotes associating with the Argonaute (AGO) proteins to form the RNA-induced silencing complex (mRISC). AGO proteins constitute the core of RISCs with different members having variety of protein-binding partners and biochemical properties. This review focuses on the AGO subfamily of the AGOs that are ubiquitously expressed and are associated with small RNAs. The structure, function and role of the AGO proteins in the cell is discussed in detail.
Collapse
Affiliation(s)
- Saife Niaz
- Department of Biotechnology, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
25
|
von Brandenstein M, Bernhart SH, Pansky A, Richter C, Kohl T, Deckert M, Heidenreich A, Stadler PF, Montesinos-Rongen M, Fries JWU. Beyond the 3'UTR binding-microRNA-induced protein truncation via DNA binding. Oncotarget 2018; 9:32855-32867. [PMID: 30214689 PMCID: PMC6132356 DOI: 10.18632/oncotarget.26023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/04/2018] [Indexed: 12/31/2022] Open
Abstract
Here, we present a miR mechanism which is active in the nucleus and is essential for the production of intron included, C-terminal truncated and biologically active proteins, like e.g. Vim3. We exemplified this mechanism by miRs, miR-15a and miR-498, which are overexpressed in clear cell renal carcinoma or oncocytoma. Both miRs directly interact with DNA in an intronic region, leading to transcriptional stop, and therefore repress the full length version of the pre-mRNA, resulting in intron included truncated proteins (Mxi-2 and Vim3). A computational survey shows that this miR:DNA interactions mechanism may be generally involved in regulating the human transcriptome, with putative interaction sites in intronic regions for over 1000 genes. In this work, an entirely new mechanism is revealed how miRs can repress full length protein translation, resulting in C-terminal truncated proteins.
Collapse
Affiliation(s)
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center of Bioinformatics, Leipzig University, Leipzig, Germany
| | - Andreas Pansky
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
| | - Claudia Richter
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Tobias Kohl
- Department of Urology, University Hospital of Cologne, Cologne, Germany
| | - Martina Deckert
- Institute of Neuropathology, University Hospital of Cologne, Cologne, Germany
| | - Axel Heidenreich
- Department of Urology, University Hospital of Cologne, Cologne, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center of Bioinformatics, Leipzig University, Leipzig, Germany
| | | | - Jochen W U Fries
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Wen R, Umeano AC, Essegian DJ, Sabitaliyevich UY, Wang K, Farooqi AA. Role of microRNA-410 in molecular oncology: A double edged sword. J Cell Biochem 2018; 119:8737-8742. [PMID: 30086210 DOI: 10.1002/jcb.27251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding single-stranded RNAs, which play significant roles in the regulation of a myriad of biological processes. Overwhelmingly increasing high-impact research has also deepened our understanding about the central role of miRNAs in cancer development, metastatic spread, and development of resistance against various drugs. Recent studies have identified miRNAs that regulate RNA expression/processing and posttranscriptional expression of important oncogenes and tumor suppressors. Rapidly emerging experimentally verified data have started to shed light on the significance of miRNAs as biomarkers for diagnostic, prognostic, and monitoring purposes. Next-generation sequencing and DNA microarray technologies have helped us tremendously in the identification of miRNA and mRNA signatures in different cancers and their subtypes on a genome-wide scale. It is being increasing realized that miRNAs have diametrically opposite roles in different cancers. miR-410 is context-dependently involved in positive and negative regulation of cancers. miR-410 negatively regulates BAK1, CETN3, and BRD7 to promote cancer. However, miR-410 effectively targetes c-MET, AGTR1, and SNAIL to suppress cancer. In this review, we will comprehensively summarize most recent evidence available related to the "split personality" of miR-410 in different cancers.
Collapse
Affiliation(s)
- Ru Wen
- Department of Chemistry, University of Georgia, Athens, Georgia
| | - Afoma C Umeano
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Derek J Essegian
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Kai Wang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| |
Collapse
|
27
|
Silver J, Wadley G, Lamon S. Mitochondrial regulation in skeletal muscle: A role for non‐coding RNAs? Exp Physiol 2018; 103:1132-1144. [PMID: 29885080 DOI: 10.1113/ep086846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Silver
- Institute for Physical Activity and Nutrition (IPAN) Deakin University Geelong Victoria Australia
| | - Glenn Wadley
- Institute for Physical Activity and Nutrition (IPAN) Deakin University Geelong Victoria Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN) Deakin University Geelong Victoria Australia
| |
Collapse
|
28
|
Chung HC, Nguyen VG, Oh WT, Huynh TML, Moon HJ, Lee JH, Kim HK, Park SJ, Park BK. Inhibition of Porcine Endogenous Retrovirus by Multi-Targeting Micro RNA Against Long Terminal Region. Transplant Proc 2018; 49:2225-2232. [PMID: 29149987 DOI: 10.1016/j.transproceed.2017.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/21/2017] [Accepted: 09/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND There might be much benefit in xenotransplantation, however, the risk of infections across species barriers remains, especially porcine endogenous retrovirus (PERV). To date, many attempts have been made to knock down active PERVs by inhibitory RNA (RNAi) and micro RNA (miRNA), which target different genes of PERV. There are a few studies that have explored whether targeting promoter regions of PERV could exert an inhibition effect. METHODS miRNAs were automatically selected based on an online program BLOCK-iT RNAi Designer. The inhibition efficiency between miRNAs was compared based on their inhibition of different PERV genes: long terminal repeats (LTR), gag, and pol. Both relative quantitative real-time polymerase chain reaction (PCR) and C-type reverse transcriptase activity were performed. RESULTS The results demonstrated that miRNA targeting the LTR region degraded the target sequence, and simultaneously inhibited the mRNA expression of both gag and pol genes of PERV. The LTR1, LTR2, and dual LTR1 + LTR2 miRNA inhibited 76.2%, 22%, and 76.8% of gag gene expression, respectively. Similarly, the miRNA was found to knock down the pol gene expression of 69.8%, 25.5%, and 77.7% for single targeting miRNA (LTR1 and LTR2) and multi-targeting miRNA (LTR1 + LTR2), respectively. A stable PK15 clone constitutively expressed dual LTR1 + LTR2 miRNA and exhibited higher inhibitory up to 82.8% and 92.7% of the expressions of the gag and pol genes, respectively. Also, the result of co-cultivation of dual LTR1 + LTR2 miRNA transfected PK15 cell with a human cell line inhibited expression of LTR, gag, and pol genes of PERV. CONCLUSIONS In conclusion, this study suggested that the LTR might be an alternative target for gene silencing of PERV, and that multi-targeting miRNA had better inhibitory effect than single- targeting miRNA. In an in vitro model, the presence of miRNA was able to reduce PERV infectivity in a human cell line.
Collapse
Affiliation(s)
- H-C Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - V-G Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - W-T Oh
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - T-M-L Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - H-J Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea
| | - J-H Lee
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - H-K Kim
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - S-J Park
- Forensic Medicine Division, Daegu Institute, National Forensic Service, Chilgok, Korea
| | - B-K Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.
| |
Collapse
|
29
|
Wu Y, He H, Ding Y, Liu S, Zhang D, Wang J, Jiang H, Zhang D, Sun L, Ye RD, Qian F. MK2 mediates macrophage activation and acute lung injury by regulating let-7e miRNA. Am J Physiol Lung Cell Mol Physiol 2018; 315:L371-L381. [PMID: 29770701 DOI: 10.1152/ajplung.00019.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MAPK-activated protein kinase 2 (MK2) plays a critical role in the development of inflammation. However, the modulatory mechanisms in macrophage activation and acute lung injury (ALI) have not been completely defined. Here, we reported that MK2-deficient mice (MK2-/-) protected against sepsis-induced ALI. In response to lipopolysaccharide (LPS) challenge, MK2-/- mice and myeloid cell-specific MK2 conditional knockout mice (MK2Lyz2-KO) exhibited attenuated inflammatory response, especially producing fewer amounts of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and macrophage inflammatory protein 2 (MIP-2). LPS treatment in vitro resulted in reduced cytokine expression in MK2-/- bone marrow-derived macrophages (BMDMs). Furthermore, we found that LPS-induced microRNA lethal-7e ( let-7e) expression was significantly increased in MK2-/- macrophages. Transfection of let-7e antagomirs into MK2-/- BMDM rescued LPS-induced expression of TNF-α, IL-6, and MIP-2. In contrast, transfection of let-7e mimics into MK2+/+BMDM decreased cytokine expression. Meanwhile, LPS-induced phosphorylation of cAMP response element-binding (CREB) protein, a substrate of MK2, was downregulated in MK2-/- BMDMs. Lin28, an inhibitory molecule of let-7, was significantly reduced in MK2-/- macrophages. Our results suggested that MK2 boosts LPS-induced macrophage activation and ALI via increasing activation of CREB and consequently, the expression of Lin28 and downregulation of let-7e.
Collapse
Affiliation(s)
- Yaxian Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Huiqiong He
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Yunhe Ding
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Sirui Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Depeng Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Jun Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hongchao Jiang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Dan Zhang
- Research Center for Cancer Precision Medicine, Department of Medical Oncology, Bengbu Medical College, Bengbu, Anhui , People's Republic of China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Richard D Ye
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Research Center for Cancer Precision Medicine, Department of Medical Oncology, Bengbu Medical College, Bengbu, Anhui , People's Republic of China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University , Xuzhou , People's Republic of China
| |
Collapse
|
30
|
Yang J, Li C, Zhang L, Wang X. Extracellular Vesicles as Carriers of Non-coding RNAs in Liver Diseases. Front Pharmacol 2018; 9:415. [PMID: 29740327 PMCID: PMC5928552 DOI: 10.3389/fphar.2018.00415] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are small membranous vesicles secreted from normal, diseased, and transformed cells in vitro and in vivo. EVs have been found to play a critical role in cell-to-cell communication by transferring non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long ncRNAs (lncRNAs) and so on. Emerging evidence shows that transferring biological information through EVs to neighboring cells in intercellular communication not only keep physiological functions, but also participate in the pathogenesis of liver diseases. Liver diseases often promote release of EVs and/or in different cargo sorting into these EVs. Either of these modifications can promote disease pathogenesis. Given this fact, EV-associated ncRNAs, such as miR-192, miR-122 and lncRNA-ROR and so on, can serve as new diagnostic biomarkers and new therapeutic targets for liver disease, because altered EV-associated ncRNAs may reflect the underlying liver disease condition. In this review, we focus on understanding the emerging role of EV-associated ncRNAs in viral hepatitis, liver fibrosis, alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) and discuss their utility in biomarker discovery and therapeutics. A better understanding of this multifaceted pattern of communication between different type cells in liver may contribute to developing novel approaches for personalized diagnostics and therapeutics.
Collapse
Affiliation(s)
- Junfa Yang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Changyao Li
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Li S, Zhu Y, Liang Z, Wang X, Meng S, Xu X, Xu X, Wu J, Ji A, Hu Z, Lin Y, Chen H, Mao Y, Wang W, Zheng X, Liu B, Xie L. Up-regulation of p16 by miR-877-3p inhibits proliferation of bladder cancer. Oncotarget 2018; 7:51773-51783. [PMID: 27429046 PMCID: PMC5239514 DOI: 10.18632/oncotarget.10575] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023] Open
Abstract
Despite the recent studies which have shown that microRNA (miRNA) negatively regulates gene expression by silencing the expression of target genes, here we reported the new evidence of microRNA-mediated gene activation by targeting specific promoter sites. We identified a miR-877-3p binding site on the promoter site of tumor suppressor gene p16 which alters frequently in bladder cancer. Enforced expression of miR-877-3p could increase the expression of p16, which inhibit the proliferation and tumorigenicity of bladder cancer through cell cycle G1-phase arrest. Further evidences confirmed that the correlation between p16 activation and miR-877-3p was due to the direct binding. These findings demonstrate the anti-tumor function of miR-877-3p in bladder cancer cells and reveal a new pattern of miRNA involved gene regulation.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Yi Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Zhen Liang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Shuai Meng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Xin Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Xianglai Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Jian Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Alin Ji
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Yiwei Lin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Hong Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Yeqing Mao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, PR China
| |
Collapse
|
32
|
Li Y, Zhu Y, Li G, Xiao J. Noncoding RNAs in Cardiovascular Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:37-53. [PMID: 30232751 DOI: 10.1007/978-981-13-1117-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
With a progressively growing elderly population, aging-associated cardiovascular diseases and other pathologies have brought great burden to the economy, society, and individuals. Therefore, identifying therapeutic targets and developing effective strategies to prevent from cardiovascular aging are highly needed. Accumulating evidences suggest that noncoding RNAs (ncRNAs) such as microRNAs and long noncoding RNAs (lncRNAs) play important roles in regulating gene expression, which contributes to many pathophysiological processes of cellular senescence, aging, and aging-related diseases in cardiovascular systems. Here we provided a general overview of ncRNAs as well as the underlying mechanisms involved in cardiovascular aging. Although the importance of ncRNAs in cardiovascular aging has been reported and commonly acknowledged, further studies are still necessary to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yongqin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
33
|
Abstract
Social epigenomics is an area of science that evaluates why and how different social factors and processes affect different components of the epigenome. As it happens with most of the new areas in science, social epigenetics being a relatively new area, only limited progress has been made. However, the potential of implicating social epigenomics in improving health and health related policies is tremendous. Epidemiologic studies evaluating social, behavior, family, and environmental factors have helped understand social inequality and develop the area of social epigenomics. Most of the information in social epidemiology has been gathered from genetic studies. Now the time has come that we may apply similar approaches in social epigenomics because technologies of determining methylation, histone, and noncoding RNA profiling are well developed. The focus of this chapter is to understand the role of epigenetic regulation in social experiences at various stages in life due to altered function of genes and affecting health in populations with different races/ethnicity. Here we discuss the current challenges and opportunities in the field.
Collapse
Affiliation(s)
- Krishna Banaudha
- Department of Biochemistry and Molecular Biology, School of Medicine and Public Health, George Washington University, Washington, DC, USA.
| | - Vineet Kumar
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Mukesh Verma
- Epidemiology and Genomics Research Program, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
34
|
Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, Gantier MP, Callen DF, Goodall GJ, Bracken CP. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res 2017; 45:11371-11385. [PMID: 28981911 PMCID: PMC5737821 DOI: 10.1093/nar/gkx788] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Deep-sequencing reveals extensive variation in the sequence of endogenously expressed microRNAs (termed ‘isomiRs’) in human cell lines and tissues, especially in relation to the 3′ end. From the immunoprecipitation of the microRNA-binding protein Argonaute and the sequencing of associated small RNAs, we observe extensive 3′-isomiR variation, including for miR-222 where the majority of endogenously expressed miR-222 is extended by 1–5 nt compared to the canonical sequence. We demonstrate this 3′ heterogeneity has dramatic implications for the phenotype of miR-222 transfected cells, with longer isoforms promoting apoptosis in a size (but not 3′ sequence)-dependent manner. The transfection of longer miR-222 isomiRs did not induce an interferon response, but did downregulate the expression of many components of the pro-survival PI3K-AKT pathway including PIK3R3, a regulatory subunit whose knockdown phenocopied the expression of longer 222 isoforms in terms of apoptosis and the inhibition of other PI3K-AKT genes. As this work demonstrates the capacity for 3′ isomiRs to mediate differential functions, we contend more attention needs to be given to 3′ variance given the prevalence of this class of isomiR.
Collapse
Affiliation(s)
- Feng Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Corine T Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland 4000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - David F Callen
- School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| |
Collapse
|
35
|
Goldie BJ, Fitzsimmons C, Weidenhofer J, Atkins JR, Wang DO, Cairns MJ. miRNA Enriched in Human Neuroblast Nuclei Bind the MAZ Transcription Factor and Their Precursors Contain the MAZ Consensus Motif. Front Mol Neurosci 2017; 10:259. [PMID: 28878619 PMCID: PMC5573442 DOI: 10.3389/fnmol.2017.00259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
While the cytoplasmic function of microRNA (miRNA) as post-transcriptional regulators of mRNA has been the subject of significant research effort, their activity in the nucleus is less well characterized. Here we use a human neuronal cell model to show that some mature miRNA are preferentially enriched in the nucleus. These molecules were predominantly primate-specific and contained a sequence motif with homology to the consensus MAZ transcription factor binding element. Precursor miRNA containing this motif were shown to have affinity for MAZ protein in nuclear extract. We then used Ago1/2 RIP-Seq to explore nuclear miRNA-associated mRNA targets. Interestingly, the genes for Ago2-associated transcripts were also significantly enriched with MAZ binding sites and neural function, whereas Ago1-transcripts were associated with general metabolic processes and localized with SC35 spliceosomes. These findings suggest the MAZ transcription factor is associated with miRNA in the nucleus and may influence the regulation of neuronal development through Ago2-associated miRNA induced silencing complexes. The MAZ transcription factor may therefore be important for organizing higher order integration of transcriptional and post-transcriptional processes in primate neurons.
Collapse
Affiliation(s)
- Belinda J Goldie
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, The University of Newcastle, CallaghanNSW, Australia.,World Premier International Research Center - Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyoto, Japan
| | - Chantel Fitzsimmons
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, The University of Newcastle, CallaghanNSW, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, The University of Newcastle, CallaghanNSW, Australia
| | - Dan O Wang
- World Premier International Research Center - Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyoto, Japan.,The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in ResearchKyoto, Japan
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, CallaghanNSW, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, The University of Newcastle, CallaghanNSW, Australia
| |
Collapse
|
36
|
Yonemori K, Seki N, Idichi T, Kurahara H, Osako Y, Koshizuka K, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, Kijima Y, Maemura K, Natsugoe S. The microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster. Oncotarget 2017; 8:70097-70115. [PMID: 29050264 PMCID: PMC5642539 DOI: 10.18632/oncotarget.19591] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
We analysed the RNA sequence-based microRNA (miRNA) signature of pancreatic ductal adenocarcinoma (PDAC). Aberrantly expressed miRNAs were successfully identified in this signature. Using the PDAC signature, we focused on 4 clustered miRNAs, miR-216a-5p, miR-216a-3p, miR-216b-5p and miR-216b-3p on human chromosome 2p16.1. All members of the miR-216 cluster were significantly reduced in PDAC specimens. Ectopic expression of these miRNAs suppressed cancer cell aggressiveness, suggesting miR-216 cluster as anti-tumour miRNAs in PDAC cells. The impact of miR-216b-3p (passenger strand of pre-miR-216b) on cancer cells is still ambiguous. Forkhead box Q1 (FOXQ1) was directly regulated by miR-216b-3p and overexpression of FOXQ1 was confirmed in clinical specimens. High expression of FOXQ1 predicted a shorter survival of patients with PDAC by Kaplan–Meier analysis. Loss-of-function assays showed that cancer cell migration and invasion activities were significantly reduced by siFOXQ1 transfectants. We investigated pathways downstream from FOXQ1 by using genome-wide gene expression analysis. Identification of the miR-216-3p/FOXQ1-mediated network in PDAC should enhance understanding of PDAC aggressiveness at the molecular level.
Collapse
Affiliation(s)
- Keiichi Yonemori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yusaku Osako
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
37
|
Induction of alpha-methylacyl-CoA racemase by miR-138 via up-regulation of β-catenin in prostate cancer cells. J Cancer Res Clin Oncol 2017; 143:2201-2210. [PMID: 28741117 DOI: 10.1007/s00432-017-2484-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Alpha-methylacyl-CoA racemase (AMACR) is highly overexpressed in prostate cancer (PCa) and its transcriptional regulators include various transcription factors and CTNNB1/β-catenin. Our previous findings suggested a post-transcriptional regulation by the tumor-suppressive microRNA miR-138 in PCa. Thus, the aim of this study was to demonstrate the direct interaction of miR-138 with the 3'-UTR of AMACR. Furthermore, the influence of miR-138 on the expression of AMACR and selected AMACR regulators was investigated in PCa cells. METHODS Using DU-145, PC-3, and LNCaP PCa cells, the effect of exogenous miR-138 on AMACR and selected AMACR regulators was determined by quantitative PCR and Western blot. Luciferase reporter assays were used to verify target and promoter interaction. RESULTS Using a luciferase reporter assay a direct interaction of miR-138 with the AMACR-3'-UTR was confirmed. Surprisingly, AMACR expression was up-regulated by up to 125% by exogenous miR-138 in PCa cells. The lack of any miR-138 binding sites within the AMACR promoter suggested an indirect mechanism of up-regulation. Therefore, the effect of miR-138 on selected AMACR regulators including CTNNB1/β-catenin, RELA, SMAD4, SP1, and TCF4 was evaluated. MiR-138 solely evoked an up-regulation of CTNNB1 mRNA expression and β-catenin protein levels by up to 75%. Further in silico analysis revealed a binding site for miR-138 within the CTNNB1 promoter. MiR-138 could enhance the activity of the CTNNB1 promoter, which in turn could contribute to the observed AMACR up-regulation. CONCLUSIONS The present findings suggest that miR-138 can indirectly up-regulate AMACR via transcriptional induction of CTNNB1, at least in vitro in PCa cells.
Collapse
|
38
|
Idichi T, Seki N, Kurahara H, Yonemori K, Osako Y, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, Kijima Y, Maemura K, Natsugoe S. Regulation of actin-binding protein ANLN by antitumor miR-217 inhibits cancer cell aggressiveness in pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:53180-53193. [PMID: 28881803 PMCID: PMC5581102 DOI: 10.18632/oncotarget.18261] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023] Open
Abstract
Analysis of our microRNA (miRNA) expression signature of pancreatic ductal adenocarcinoma (PDAC) revealed that microRNA-217 (miR-217) was significantly reduced in cancer tissues. The aim of this study was to investigate the antitumor roles of miR-217 in PDAC cells and to identify miR-217-mediated molecular pathways involved in PDAC aggressiveness. The expression levels of miR-217 were significantly reduced in PDAC clinical specimens. Ectopic expression of miR-217 significantly suppressed cancer cell migration and invasion. Transcription of actin-binding protein Anillin (coded by ANLN) was detected by our in silico and gene expression analyses. Moreover, luciferase reporter assays showed that ANLN was a direct target of miR-217 in PDAC cells. Overexpression of ANLN was detected in PDAC clinical specimens by real-time PCR methods and immunohistochemistry. Interestingly, Kaplan-Meier survival curves showed that high expression of ANLN predicted shorter survival in patients with PDAC by TCGA database analysis. Silencing ANLN expression markedly inhibited cancer cell migration and invasion capabilities of PDAC cell lines. We further investigated ANLN-mediated downstream pathways in PDAC cells. "Focal adhesion" and "Regulation of actin binding protein" were identified as ANLN-modulated downstream pathways in PDAC cells. Identification of antitumor miR-217/ANLN-mediated PDAC pathways will provide new insights into the potential mechanisms underlying the aggressive course of PDAC.
Collapse
Affiliation(s)
- Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Keiichi Yonemori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yusaku Osako
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
39
|
Li WM, Chan CM, Miller AL, Lee CH. Dual Functional Roles of Molecular Beacon as a MicroRNA Detector and Inhibitor. J Biol Chem 2017; 292:3568-3580. [PMID: 28100783 PMCID: PMC5339743 DOI: 10.1074/jbc.m116.765776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs are essential in many cellular processes. The ability to detect microRNAs is important for understanding its function and biogenesis. This study is aimed at using a molecular beacon to detect miR-430 in developing zebrafish embryos as a proof of principle. miR-430 is crucial for the clearance of maternal mRNA during maternal zygotic transition in embryonic development. Despite its known function, the temporal and spatial expression of miR-430 remains unclear. We used various imaging techniques, including laser scanning confocal microscopy, spinning disk, and lightsheet microscopy, to study the localization of miR-430 and any developmental defects possibly caused by the molecular beacon. Our results show that miR-430 is expressed early in development and is localized in distinct cytoplasmic granules where its target mRNA can be detected. We also show that the designed molecular beacon can inhibit the function of miR-430 and cause developmental defect in the brain, notochord, heart, and kidney, depending on the delivery site within the embryo, suggesting that miR-430 plays a diverse role in embryonic morphogenesis. When compared with morpholino, molecular beacon is 2 orders of magnitude more potent in inhibiting miR-430. Thus, our results reveal that in addition to being used as a valuable tool for the detection of microRNAs in vivo, molecular beacons can also be employed to inhibit microRNAs in a specific manner.
Collapse
Affiliation(s)
- Wai Ming Li
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada and
| | - Ching-Man Chan
- the Division of Life Science and Key State Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Andrew L Miller
- the Division of Life Science and Key State Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chow H Lee
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada and
| |
Collapse
|
40
|
Tickle C, Urrutia AO. Perspectives on the history of evo-devo and the contemporary research landscape in the genomics era. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150473. [PMID: 27994116 PMCID: PMC5182407 DOI: 10.1098/rstb.2015.0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in biology is how the extraordinary range of living organisms arose. In this theme issue, we celebrate how evolutionary studies on the origins of morphological diversity have changed over the past 350 years since the first publication of the Philosophical Transactions of The Royal Society Current understanding of this topic is enriched by many disciplines, including anatomy, palaeontology, developmental biology, genetics and genomics. Development is central because it is the means by which genetic information of an organism is translated into morphology. The discovery of the genetic basis of development has revealed how changes in form can be inherited, leading to the emergence of the field known as evolutionary developmental biology (evo-devo). Recent approaches include imaging, quantitative morphometrics and, in particular, genomics, which brings a new dimension. Articles in this issue illustrate the contemporary evo-devo field by considering general principles emerging from genomics and how this and other approaches are applied to specific questions about the evolution of major transitions and innovations in morphology, diversification and modification of structures, intraspecific morphological variation and developmental plasticity. Current approaches enable a much broader range of organisms to be studied, thus building a better appreciation of the origins of morphological diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
41
|
MiR-138 indirectly regulates the MDR1 promoter by NF-κB/p65 silencing. Biochem Biophys Res Commun 2017; 484:648-655. [PMID: 28153721 DOI: 10.1016/j.bbrc.2017.01.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/28/2017] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are known to mediate post-transcriptional gene silencing in the cytoplasm and recent evidence indicates that may also possess nuclear roles in regulating gene expression. A previous study showed that miR-138 is involved in the multidrug resistance of leukemia cells through down-regulation of the drug efflux pump P-glycoprotein (P-gp), the protein encoded by the human multidrug-resistant ABCB1/MDR1 gene. However, the transcriptional regulatory mechanisms responsible remain to be elucidated. To deepen the description of the mechanism of transcriptional gene silencing on the MDR1 promoter, we initially performed a bioinformatics search for potential miR-138 binding sites in the MDR1 gene promoter sequence. Interestingly, we did not find miR-138 binding sites in this region, suggesting an indirect regulation. From six representative transcriptional factors involved in MDR1 gene regulation, an in silico analysis revealed that NF-κB/p65 has a specific binding site for miR-138. The results of luciferase reporter assay, western blot and flow cytometry shown here suggest that miR-138 might modulate the human MDR1 expression by inhibiting NF-κB/p65 as an indirect mechanism of MDR1 regulation. Furthermore, employing the human macrophage-like cell line U937 we observed comparable results with NF-κB/p65 down-regulation and we also observed a significant reduction in the IL-6 and TNF-α mRNA, as well as in their secreted pro-inflammatory cytokines following miR-138 expression, suggesting that canonical NF-κB target genes might also be potential targets for miR-138 in leukemia cells.
Collapse
|
42
|
Yonemori K, Seki N, Kurahara H, Osako Y, Idichi T, Arai T, Koshizuka K, Kita Y, Maemura K, Natsugoe S. ZFP36L2 promotes cancer cell aggressiveness and is regulated by antitumor microRNA-375 in pancreatic ductal adenocarcinoma. Cancer Sci 2017; 108:124-135. [PMID: 27862697 PMCID: PMC5276842 DOI: 10.1111/cas.13119] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Due to its aggressive nature, pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal and hard-to-treat malignancies. Recently developed targeted molecular strategies have contributed to remarkable improvements in the treatment of several cancers. However, such therapies have not been applied to PDAC. Therefore, new treatment options are needed for PDAC based on current genomic approaches. Expression of microRNA-375 (miR-375) was significantly reduced in miRNA expression signatures of several types of cancers, including PDAC. The aim of the present study was to investigate the functional roles of miR-375 in PDAC cells and to identify miR-375-regulated molecular networks involved in PDAC aggressiveness. The expression levels of miR-375 were markedly downregulated in PDAC clinical specimens and cell lines (PANC-1 and SW1990). Ectopic expression of miR-375 significantly suppressed cancer cell proliferation, migration and invasion. Our in silico and gene expression analyses and luciferase reporter assay showed that zinc finger protein 36 ring finger protein-like 2 (ZFP36L2) was a direct target of miR-375 in PDAC cells. Silencing ZFP36L2 inhibited cancer cell aggressiveness in PDAC cell lines, and overexpression of ZFP36L2 was confirmed in PDAC clinical specimens. Interestingly, Kaplan-Meier survival curves showed that high expression of ZFP36L2 predicted shorter survival in patients with PDAC. Moreover, we investigated the downstream molecular networks of the miR-375/ZFP36L2 axis in PDAC cells. Elucidation of tumor-suppressive miR-375-mediated PDAC molecular networks may provide new insights into the potential mechanisms of PDAC pathogenesis.
Collapse
Affiliation(s)
- Keiichi Yonemori
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical SciencesKagoshima UniversityKagoshimaJapan
| | - Naohiko Seki
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical SciencesKagoshima UniversityKagoshimaJapan
| | - Yusaku Osako
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical SciencesKagoshima UniversityKagoshimaJapan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical SciencesKagoshima UniversityKagoshimaJapan
| | - Takayuki Arai
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
| | - Keiichi Koshizuka
- Department of Functional GenomicsChiba University Graduate School of MedicineChibaJapan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical SciencesKagoshima UniversityKagoshimaJapan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical SciencesKagoshima UniversityKagoshimaJapan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
43
|
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17:719-732. [DOI: 10.1038/nrg.2016.134] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
45
|
Intracellular and extracellular microRNA: An update on localization and biological role. ACTA ACUST UNITED AC 2016; 51:33-49. [PMID: 27396686 DOI: 10.1016/j.proghi.2016.06.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.
Collapse
|
46
|
Saeidimehr S, Ebrahimi A, Saki N, Goodarzi P, Rahim F. MicroRNA-Based Linkage between Aging and Cancer: from Epigenetics View Point. CELL JOURNAL 2016; 18:117-26. [PMID: 27540517 PMCID: PMC4988411 DOI: 10.22074/cellj.2016.4303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/01/2015] [Indexed: 02/01/2023]
Abstract
Ageing is a complex process and a broad spectrum of physical, psychological, and
social changes over time. Accompanying diseases and disabilities, which can interfere
with cancer treatment and recovery, occur in old ages. MicroRNAs (miRNAs) are a
set of small non-coding RNAs, which have considerable roles in post-transcriptional
regulation at gene expression level. In this review, we attempted to summarize the current knowledge of miRNAs functions in ageing, with mainly focuses on malignancies
and all underlying genetic, molecular and epigenetics mechanisms. The evidences indicated the complex and dynamic nature of miRNA-based linkage of ageing and cancer
at genomics and epigenomics levels which might be generally crucial for understanding
the mechanisms of age-related cancer and ageing. Recently in the field of cancer and
ageing, scientists claimed that uric acid can be used to regulate reactive oxygen species (ROS), leading to cancer and ageing prevention; these findings highlight the role of
miRNA-based inhibition of the SLC2A9 antioxidant pathway in cancer, as a novel way to
kill malignant cells, while a patient is fighting with cancer.
Collapse
Affiliation(s)
| | - Ammar Ebrahimi
- Department of Medical Biotechnology, School of Advanced Medical Technology, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Goodarzi
- School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
47
|
Huang YP, Qiu LZ, Zhou GP. MicroRNA-939 down-regulates CD2-associated protein by targeting promoter in HEK-293T cells. Ren Fail 2016; 38:508-13. [DOI: 10.3109/0886022x.2016.1144443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Perge P, Nagy Z, Igaz I, Igaz P. Suggested roles for microRNA in tumors. Biomol Concepts 2016; 6:149-55. [PMID: 25870972 DOI: 10.1515/bmc-2015-0002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/27/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are short non-coding RNA molecules encoded by distinct genes involved in the posttranscriptional regulation of gene expression. Forming part of the epigenetic machinery, microRNAs are involved in several aspects of tumorigenesis. Deregulation of microRNA expression is a common feature of tumors. Overexpressed oncogenic and underexpressed tumor suppressor microRNAs have been described in many different tumors. MicroRNAs are released from tumors that might affect other cells within and outside the tumor. Circulating microRNAs might also be involved in a tumor surveillance mechanism. In this short overview, some important aspects of microRNA in tumors are discussed.
Collapse
|
49
|
Kalantari R, Chiang CM, Corey DR. Regulation of mammalian transcription and splicing by Nuclear RNAi. Nucleic Acids Res 2016; 44:524-37. [PMID: 26612865 PMCID: PMC4737150 DOI: 10.1093/nar/gkv1305] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
RNA interference (RNAi) is well known as a mechanism for controlling mammalian mRNA translation in the cytoplasm, but what would be the consequences if it also functions in cell nuclei? Although RNAi has also been found in nuclei of plants, yeast, and other organisms, there has been relatively little progress towards understanding the potential involvement of mammalian RNAi factors in nuclear processes including transcription and splicing. This review summarizes evidence for mammalian RNAi factors in cell nuclei and mechanisms that might contribute to the control of gene expression. When RNAi factors bind small RNAs, they form ribonucleoprotein complexes that can be selective for target sequences within different classes of nuclear RNA substrates. The versatility of nuclear RNAi may supply a previously underappreciated layer of regulation to transcription, splicing, and other nuclear processes.
Collapse
Affiliation(s)
- Roya Kalantari
- Departments of Pharmacology & Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Cheng-Ming Chiang
- Departments of Pharmacology & Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-8807, USA
| | - David R Corey
- Departments of Pharmacology & Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| |
Collapse
|
50
|
Identification of Differentially Expressed Long Non-coding RNAs in Polarized Macrophages. Sci Rep 2016; 6:19705. [PMID: 26796525 PMCID: PMC4726337 DOI: 10.1038/srep19705] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages display remarkable plasticity, with the ability to undergo dynamic transition between classically and alternatively activated phenotypes. Long non-coding RNAs (lncRNAs) are more than 200 nucleotides in length and play roles in various biological pathways. However, the role of lncRNAs in regulating macrophage polarization has yet to be explored. In this study, lncRNAs expression profiles were determined in human monocyte-derived macrophages (MDMs) incubated in conditions causing activation toward M(IFN-γ + LPS) or M(IL-4) phenotypes. Compared with primary MDMs, 9343 lncRNAs and 5903 mRNAs were deregulated in M(IFN-γ + LPS) group (fold change ≥2.0, P < 0.05), 4592 lncRNAs and 3122 mRNAs were deregulated in M(IL-4) group. RT-qPCR results were generally consistent with the microarray data. Furthermore, we found that TCONS_00019715 is expressed at a higher level in M(IFN-γ + LPS) macrophages than in M(IL-4) macrophages. TCONS_00019715 expression was decreased when M(IFN-γ + LPS) converted to M(IL-4) whereas increased when M(IL-4) converted to M(IFN-γ + LPS). Knockdown of TCONS_00019715 following the activation of THP-1 cellls using IFN-γ and LPS diminished the expression of M(IFN-γ + LPS) markers, and elevated the expression of M(IL-4) markers. These data show a significantly altered lncRNA and mRNA expression profile in macrophages exposure to different activating conditions. Dysregulation of some of these lncRNAs may play important roles in regulating macrophage polarization.
Collapse
|