1
|
Ospital IA, Táquez Delgado MA, Nicoud MB, Corrêa MF, Borges Fernandes GA, Andrade IW, Lauretta P, Martínez Vivot R, Comba MB, Zanardi MM, Speisky D, Uriburu JL, Fernandes JPS, Medina VA. Therapeutic potential of LINS01 histamine H 3 receptor antagonists as antineoplastic agents for triple negative breast cancer. Biomed Pharmacother 2024; 174:116527. [PMID: 38579399 DOI: 10.1016/j.biopha.2024.116527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 μM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.
Collapse
Affiliation(s)
- Ignacio A Ospital
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Mónica A Táquez Delgado
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Melisa B Nicoud
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Michelle F Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Isabela W Andrade
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Paolo Lauretta
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Rocío Martínez Vivot
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María Betina Comba
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario 2000, Argentina
| | - María Marta Zanardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario 2000, Argentina
| | | | | | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Vanina A Medina
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina.
| |
Collapse
|
2
|
Nicoud MB, Ospital IA, Táquez Delgado MA, Riedel J, Fuentes P, Bernabeu E, Rubinstein MR, Lauretta P, Martínez Vivot R, Aguilar MDLÁ, Salgueiro MJ, Speisky D, Moretton MA, Chiappetta DA, Medina VA. Nanomicellar Formulations Loaded with Histamine and Paclitaxel as a New Strategy to Improve Chemotherapy for Breast Cancer. Int J Mol Sci 2023; 24:ijms24043546. [PMID: 36834958 PMCID: PMC9959774 DOI: 10.3390/ijms24043546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, paclitaxel (PTX) represents the first-line therapy for TNBC; however it presents a hydrophobic behavior and produces severe adverse effects. The aim of this work is to improve the therapeutic index of PTX through the design and characterization of novel nanomicellar polymeric formulations composed of a biocompatible copolymer Soluplus® (S), surface-decorated with glucose (GS), and co-loaded either with histamine (HA, 5 mg/mL) and/or PTX (4 mg/mL). Their micellar size, evaluated by dynamic light scattering, showed a hydrodynamic diameter between 70 and 90 nm for loaded nanoformulations with a unimodal size distribution. Cytotoxicity and apoptosis assays were performed to assess their efficacy in vitro in human MDA-MB-231 and murine 4T1 TNBC cells rendering optimal antitumor efficacy in both cell lines for the nanoformulations with both drugs. In a model of TNBC developed in BALB/c mice with 4T1 cells, we found that all loaded micellar systems reduced tumor volume and that both HA and HA-PTX-loaded SG micelles reduced tumor weight and neovascularization compared with the empty micelles. We conclude that HA-PTX co-loaded micelles in addition to HA-loaded formulations present promising potential as nano-drug delivery systems for cancer chemotherapy.
Collapse
Affiliation(s)
- Melisa B. Nicoud
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Ignacio A. Ospital
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Mónica A. Táquez Delgado
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Jennifer Riedel
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pedro Fuentes
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Ezequiel Bernabeu
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mara R. Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunología, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Paolo Lauretta
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Rocío Martínez Vivot
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María de los Ángeles Aguilar
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María J. Salgueiro
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Daniela Speisky
- Servicio de Patología, Hospital Británico de Buenos Aires, Buenos Aires 1280, Argentina
| | - Marcela A. Moretton
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Diego A. Chiappetta
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Vanina A. Medina
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Correspondence: ; Tel.: +54-0810-220-0822 (ext. 6091)
| |
Collapse
|
3
|
Vedoya GM, Galarza TE, Mohamad NA, Cricco GP, Martín GA. Non-tumorigenic epithelial breast cells and ionizing radiation cooperate in the enhancement of mesenchymal traits in tumorigenic breast cancer cells. Life Sci 2022; 307:120853. [PMID: 35926589 DOI: 10.1016/j.lfs.2022.120853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
Abstract
AIMS Radioresistance and recurrences are crucial hindrances in cancer radiotherapy. Fractionated irradiation can elicit a mesenchymal phenotype in irradiated surviving cells and a deep connection exists between epithelial mesenchymal transition, radioresistance, and metastasis. The aim of this study was to analyze the effect of the secretoma of irradiated non-tumorigenic mammary epithelial cells on surviving irradiated breast tumor cells regarding the gain of mesenchymal traits and migratory ability. MAIN METHODS MDA-MB-231 and MCF-7 breast cancer cells, irradiated or not, were incubated with conditioned media from MCF-10A non-tumorigenic epithelial breast cells, irradiated or not. After five days, we evaluated the expression and localization of epithelial and mesenchymal markers (by western blot and indirect immunofluorescence), cell migration (using transwells) and metalloproteinases activity (by zymography). We also assessed TGF-β1 content in conditioned media by immunoblot, and the effect of A83-01 (a selective inhibitor of TGF-β receptor I) and PP2 (a Src-family tyrosine kinase inhibitor) on nuclear Slug and cell migration. KEY FINDINGS Conditioned media from MCF-10A cells caused phenotypic changes in breast tumor cells with attainment or enhancement of mesenchymal traits mediated at least in part by the activation of the TGF-β type I receptor and a signaling pathway involving Src activation/phosphorylation. The effects were more pronounced mostly in irradiated tumor cells treated with conditioned media from irradiated MCF-10A. SIGNIFICANCE Our results suggest that non-tumorigenic epithelial mammary cells included in the irradiation field could affect the response to irradiation of post-surgery residual cancer cells enhancing EMT progression and thus modifying radiotherapy efficacy.
Collapse
Affiliation(s)
- Guadalupe M Vedoya
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Laboratorio de Radioisótopos, Junín 956, C1113AAB Buenos Aires, Argentina
| | - Tamara E Galarza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Laboratorio de Radioisótopos, Junín 956, C1113AAB Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Nora A Mohamad
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Laboratorio de Radioisótopos, Junín 956, C1113AAB Buenos Aires, Argentina
| | - Graciela P Cricco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Laboratorio de Radioisótopos, Junín 956, C1113AAB Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Laboratorio de Radioisótopos, Junín 956, C1113AAB Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
4
|
Galarza TE, Táquez Delgado MA, Mohamad NA, Martín GA, Cricco GP. Histamine H4 receptor agonists induce epithelial-mesenchymal transition events and enhance mammosphere formation via Src and TGF-β signaling in breast cancer cells. Biochem Pharmacol 2020; 180:114177. [PMID: 32721509 DOI: 10.1016/j.bcp.2020.114177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) contributes to cell invasion and metastasis during the progression of epithelial cancers. Though preclinical evidence suggests a role for histamine H4 receptor (H4R) in breast cancer growth, its function in the EMT is less known. In this study we proposed to investigate the effects of H4R ligands on EMT and mammosphere formation as a surrogate assay for cancer stem cells in breast cancer cells with different invasive phenotype. We also investigated the participation of Src and TGF-β signaling in these events. Breast cancer cells were treated with the H4R agonists Clobenpropit, VUF8430 and JNJ28610244 and the H4R antagonist JNJ7777120. Immunodetection studies showed cytoplasmic E-cadherin, cytoplasmic and nuclear beta-catenin, nuclear Slug and an increase in vimentin and α-smooth muscle actin expression. There was also an enhancement in cell migration and invasion assessed by transwell units. All these effects were prevented by JNJ7777120. Moreover, H4R agonists induced an increase in phospho-Src levels detected by Western blot. Results revealed the involvement of phospho-Src in EMT events. Upon treatment with H4R agonists there was an increase in phospho-ERK1/2 and TGF-β1 levels by Western blot, in Smad2/3 positive nuclei by indirect immunofluorescence, and in tumor spheres formation by the mammosphere assay. Notably, the selective TGF-β1 kinase/activin receptor-like kinase inhibitor A83-01 blocked these effects. Moreover, cells derived from mammospheres exhibited higher Slug expression and enhanced migratory behavior. Collectively, findings support the interaction between H4R and TGF-β receptor signaling in the enhancement of EMT features and mammosphere formation and point out intracellular TGF-β1 as a potential mediator of these events.
Collapse
Affiliation(s)
- Tamara E Galarza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Nora A Mohamad
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Graciela P Cricco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Massari NA, Nicoud MB, Medina VA. Histamine receptors and cancer pharmacology: an update. Br J Pharmacol 2020; 177:516-538. [PMID: 30414378 PMCID: PMC7012953 DOI: 10.1111/bph.14535] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
In the present review, we will discuss the recent advances in the understanding of the role of histamine and histamine receptors in cancer biology. The controversial role of the histaminergic system in different neoplasias including gastric, colorectal, oesophageal, oral, pancreatic, liver, lung, skin, blood and breast cancers will be reviewed. The expression of histamine receptor subtypes, with special emphasis on the histamine H4 receptor, in different cell lines and human tumours, the signal transduction pathways and the associated biological responses as well as the in vivo treatment of experimental tumours with pharmacological ligands will be described. The presented evidence demonstrates that histamine regulates cancer-associated biological processes during cancer development in multiple cell types, including neoplastic cells and cells in the tumour micro-environment. The outcome will depend on tumour cell type, the level of expression of histamine receptors, signal transduction associated with these receptors, tumour micro-environment and histamine metabolism, reinforcing the complexity of cancer disease. Findings show the pivotal role of H4 receptors in the development and progression of many types of cancers, and considering its immunomodulatory properties, the H4 receptor appears to be the most promising molecular therapeutic target for cancer treatment within the histamine receptor family. Furthermore, the H4 receptor is differentially expressed in tumours compared with normal tissues, and in most cancer types in which data are available, H4 receptor expression is associated with clinicopathological characteristics, suggesting that H4 receptors might represent a novel cancer biomarker. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Noelia A Massari
- Department of Immunology, School of Natural and Health SciencesNational University of Patagonia San Juan BoscoComodoro RivadaviaArgentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Laboratory of Radioisotopes, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
| |
Collapse
|
6
|
Paudel S, Mehtani D, Puri N. Mast Cells May Differentially Regulate Growth of Lymphoid Neoplasms by Opposite Modulation of Histamine Receptors. Front Oncol 2019; 9:1280. [PMID: 31824856 PMCID: PMC6881378 DOI: 10.3389/fonc.2019.01280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer microenvironment is complex and consists of various immune cells. There is evidence for mast cell (MC) infiltration of tumors, but their role thereof is poorly understood. In this study, we explored the effects of mast cell and their mediators on the growth of hematological cancer cells. The affect is demonstrated using RBL-2H3 MCs, and YAC-1, EL4 and L1210 as hematological cancer cell lines. Direct contact with MCs or stimulation by their mediators caused growth inhibition of YAC-1 cells, growth enhancement of EL4 cells and no change in growth of L1210 cells. This effect was confirmed by cancer cell recovery, cell viability, mitochondrial health, and cell cycle analysis. MCs showed mediator release in direct contact with tumor cells. MC mediators' treatment to YAC-1 and EL4 yielded exactly opposite modulations of survival markers, Survivin and COX-2 and apoptosis markers, Caspase-3, Bcl-2, in the two cell lines. Histamine being an important MC mediator, effect of histamine on cell recovery, survival markers and expression of various histamine receptors and their modulation in cancer cells was studied. Again, YAC-1 and EL4 cells showed contrary histamine receptor expression modulation in response to MC mediators. Histamine receptor antagonist co-treatment with MC mediators to the cancer cells suggested a major involvement of H2 and H4 receptor in growth inhibition in YAC-1 cells, and contribution of H1, H2, and H4 receptors in cell growth enhancement in EL4 cells. L1210 showed changes in the histamine receptors' expression but no effect on treatment with receptor antagonists. It can be concluded that anti-cancerous action of MCs or their mediators may include direct growth inhibition, but their role may differ depending on the tumor.
Collapse
Affiliation(s)
- Sandeep Paudel
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deeksha Mehtani
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Niti Puri
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Xu SS, Xu LG, Yuan C, Li SN, Chen T, Wang W, Li C, Cao L, Rao H. FKBP8 inhibits virus-induced RLR-VISA signaling. J Med Virol 2019; 91:482-492. [PMID: 30267576 DOI: 10.1002/jmv.25327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial antiviral signal protein mitochondrial antiviral signaling protein, also known as virus-induced signaling adaptor (VISA), plays a key role in regulating host innate immune signaling pathways. This study identifies FK506 binding protein 8 (FKBP8) as a candidate interacting protein of VISA through the yeast two-hybrid technique. The interaction of FKBP8 with VISA, retinoic acid inducible protein 1 (RIG-I), and IFN regulatory factor 3 (IRF3) was confirmed during viral infection in mammalian cells by coimmunoprecipitation. Overexpression of FKBP8 using a eukaryotic expression plasmid significantly attenuated Sendai virus-induced activation of the promoter interferons β (IFN-β), and transcription factors nuclear factor κ-light chain enhancer of activated B cells (NF-κB) and IFN-stimulated response element (ISRE). Overexpression of FKBP8 also decreased dimer-IRF3 activity, but enhanced virus replication. Conversely, knockdown of FKBP8 expression by RNA interference showed opposite effects. Further studies indicated that FKBP8 acts as a negative interacting partner to regulate RLR-VISA signaling by acting on VISA and TANK binding kinase 1 (TBK1). Additionally, FKBP8 played a negative role on virus-induced signaling by inhibiting the formation of TBK1-IRF3 and VISA-TRAF3 complexes. Notably, FKBP8 also promoted the degradation of TBK1, RIG-I, and TRAF3 resulting from FKBP8 reinforced Sendai virus-induced endogenous polyubiquitination of RIG-I, TBK1, and TNF receptor-associated factor 3 (TRAF3). Therefore, a novel function of FKBP8 in innate immunity antiviral signaling regulation was revealed in this study.
Collapse
Affiliation(s)
- Shan-Shan Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang, China
| | - Sheng-Na Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Tian Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Weiying Wang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Changsheng Li
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lingzhen Cao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Hua Rao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
8
|
Gelaleti GB, Borin TF, Maschio-Signorini LB, Moschetta MG, Jardim-Perassi BV, Calvinho GB, Facchini MC, Viloria-Petit AM, de Campos Zuccari DAP. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life Sci 2017. [PMID: 28624391 DOI: 10.1016/j.lfs.2017.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammary tumorigenesis can be modulated by melatonin, which has oncostatic action mediated by multiple mechanisms, including the inhibition of the activity of transcription factors such as NF-κB and modulation of interleukins (ILs) expression. IL-25 is an active cytokine that induces apoptosis in tumor cells due to differential expression of its receptor (IL-17RB). IL-17B competes with IL-25 for binding to IL-17RB in tumor cells, promoting tumorigenesis. This study purpose is to address the possibility of engaging IL-25/IL-17RB signaling to enhance the effect of melatonin on breast cancer cells. Breast cancer cell lines were cultured monolayers and 3D structures and treated with melatonin, IL-25, siIL-17B, each alone or in combination. Cell viability, gene and protein expression of caspase-3, cleaved caspase-3 and VEGF-A were performed by qPCR and immunofluorescence. In addition, an apoptosis membrane array was performed in metastatic cells. Treatments with melatonin and IL-25 significantly reduced tumor cells viability at 1mM and 1ng/mL, respectively, but did not alter cell viability of a non-tumorigenic epithelial cell line (MCF-10A). All treatments, alone and combined, significantly increased cleaved caspase-3 in tumor cells grown as monolayers and 3D structures (p<0.05). Semi-quantitative analysis of apoptosis pathway proteins showed an increase of CYTO-C, DR6, IGFBP-3, IGFBP-5, IGFPB-6, IGF-1, IGF-1R, Livin, P21, P53, TNFRII, XIAP and hTRA proteins and reduction of caspase-3 (p<0.05) after melatonin treatment. All treatments reduced VEGF-A protein expression in tumor cells (p<0.05). Our results suggest therapeutic potential, with oncostatic effectiveness, pro-apoptotic and anti-angiogenic properties for melatonin and IL-25-driven signaling in breast cancer cells.
Collapse
Affiliation(s)
- Gabriela Bottaro Gelaleti
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Programa de Pós-Graduação em Genética, São José do Rio Preto, SP, Brazil; Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Thaiz Ferraz Borin
- Tumor Imaging Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, United States.
| | - Larissa Bazela Maschio-Signorini
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Marina Gobbe Moschetta
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Bruna Victorasso Jardim-Perassi
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil
| | - Guilherme Berto Calvinho
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Mariana Castilho Facchini
- Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | - Debora Aparecida Pires de Campos Zuccari
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP/IBILCE), Programa de Pós-Graduação em Genética, São José do Rio Preto, SP, Brazil; Faculdade de Medicina de São José do Rio Preto (FAMERP). Laboratório de Investigação Molecular do Câncer (LIMC), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
9
|
Allergies: diseases closely related to cancer. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:432-445. [PMID: 29421288 DOI: 10.1016/j.bmhimx.2016.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022] Open
Abstract
Allergies are hypersensitivity reactions that occur through specific type Th2 immunological mechanisms characterized by different soluble mediators, as well as specific cells of the immune system. In recent decades, evidence has emerged relating this disease with cancer development. However, most of the results of epidemiology studies have been controversial and contradictory. There are mainly two trends. While the first indicates that allergies can reduce the risk of cancer, the other indicates that they may increase this risk. The first trend can be explained by the immunosurveillance hypothesis, which states that the increased immune surveillance after the immune hyper-responsiveness can inhibit or exert a protective effect against the development of cancer. Similarly, the prophylaxis hypothesis suggests that the physical effects of allergy symptoms can prevent cancer by removing potential carcinogens. In contrast, the opposing hypothesis propose that there is a deviation of the immune response toward Th2, which favors the development of cancer, or that the process of chronic inflammation favors the generation of mutations, and therefore the development of cancer. With the purpose of understanding more about these two hypotheses, the main soluble and cellular factors of allergic diseases that could be playing a key role in the development or inhibition of cancer were considered in this review.
Collapse
|
10
|
Pan Y, Li J, Zhang Y, Wang N, Liang H, Liu Y, Zhang CY, Zen K, Gu H. Slug-upregulated miR-221 promotes breast cancer progression through suppressing E-cadherin expression. Sci Rep 2016; 6:25798. [PMID: 27174021 PMCID: PMC4865839 DOI: 10.1038/srep25798] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
It is generally regarded that E-cadherin is downregulated during tumorigenesis via Snail/Slug-mediated E-cadherin transcriptional reduction. However, this transcriptional suppressive mechanism cannot explain the failure of producing E-cadherin protein in metastatic breast cancer cells after overexpressing E-cadherin mRNA. Here we reveal a novel mechanism that E-cadherin is post-transcriptionally regulated by Slug-promoted miR-221, which serves as an additional blocker for E-cadherin expression in metastatic tumor cells. Profiling the predicted E-cadherin-targeting miRNAs in breast cancer tissues and cells showed that miR-221 was abundantly expressed in breast tumor and metastatic MDA-MB-231 cells and its level was significantly higher in breast tumor or MDA-MB-231 cells than in distal non-tumor tissue and low-metastatic MCF-7 cells, respectively. MiR-221, which level inversely correlated with E-cadherin level in breast cancer cells, targeted E-cadherin mRNA open reading frame (ORF) and suppressed E-cadherin protein expression. Depleting or increasing miR-221 level in breast cancer cells induced or decreased E-cadherin protein level, leading to suppressing or promoting tumor cell progression, respectively. Moreover, miR-221 was specifically upregulated by Slug but not Snail. TGF-β treatment enhanced Slug activity and thus increased miR-221 level in MCF-7 cells. In summary, our results provide the first evidence that Slug-upregulated miR-221 promotes breast cancer progression via reducing E-cadherin expression.
Collapse
Affiliation(s)
- Yi Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, Jiangsu 210093, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, Jiangsu 210093, China
| | - Yaqin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, Jiangsu 210093, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Nan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, Jiangsu 210093, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, Jiangsu 210093, China
| | - Yuan Liu
- Center for Inflammation, Immunity and Infection & Department of Biology, Georgia State University, Atlanta, GA30302, USA
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, Jiangsu 210093, China
- Center for Inflammation, Immunity and Infection & Department of Biology, Georgia State University, Atlanta, GA30302, USA
| | - Hongwei Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing, Jiangsu 210093, China
| |
Collapse
|
11
|
Vila-Leahey A, Oldford SA, Marignani PA, Wang J, Haidl ID, Marshall JS. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncoimmunology 2016; 5:e1151591. [PMID: 27622015 PMCID: PMC5006904 DOI: 10.1080/2162402x.2016.1151591] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/21/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023] Open
Abstract
Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1−/−/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression.
Collapse
Affiliation(s)
- Ava Vila-Leahey
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Dalhousie University , Halifax, Nova Scotia, Canada
| | - Jun Wang
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Ian D Haidl
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Zhu F, Duan YF, Bao WY, Liu WS, Yang Y, Cai HH. HtrA1 regulates epithelial-mesenchymal transition in hepatocellular carcinoma. Biochem Biophys Res Commun 2015; 467:589-94. [PMID: 26403966 DOI: 10.1016/j.bbrc.2015.09.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/19/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Epithelial-mesenchymal transition (EMT) is involved in the development and progression of cancer. HtrA1 had been showed to play a modulatory role in metastasis of hepatocellular carcinoma (HCC). The relationship between HtrA1 and EMT in HCC was investigated in the present study. METHODS The HtrA1 expression in human HCC tumor tissues and cells was determined by real-time PCR. SiRNA-HtrA1 and pcDNA-HtrA1 were respectively transfected into HepG2 and MHCC97H cells to observe their effects on cell migration and expression of EMT-associated markers Vimentin and E-cadherin. The relationship between HtrA1 and EMT in 60 HCC patients was also investigated. RESULTS HtrA1 expression of tumor tissues was down-regulated with the increasing of number in lymph nodes metastasis in HCC patients. HtrA1 down-regulation led to the significant increase of cell migration, Vimentin expression and decrease of E-cadherin expression, while HtrA1 overexpression resulted in an opposite function. The HtrA1 expression was positively related to the E-cadherin level (R(2) = 0.5903, P < 0.001) and negatively correlated with Vimentin level (R(2) = 0.6067, P < 0.001) in tumor tissues of HCC, respectively. CONCLUSION HtrA1 expression was closely related to EMT, which might be a potential mechanism underlying metastasis of HCC.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China.
| | - Yun-Fei Duan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| | - Wan-Yuan Bao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| | - Wen-Song Liu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| | - Yue Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| | - Hui-Hua Cai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, ChangZhou 213003, Jiangsu Province, China
| |
Collapse
|
13
|
Lack of Association between rs2067474 Polymorphism in Histamine Receptor H2 Gene and Breast Cancer in Chinese Han Population. ScientificWorldJournal 2015; 2015:545292. [PMID: 25922853 PMCID: PMC4398955 DOI: 10.1155/2015/545292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/13/2015] [Indexed: 02/05/2023] Open
Abstract
Histamine H2 receptor (HRH2) was previously suggested to affect the proliferation of breast cancer cells and disease-free survival of breast cancer patients. Furthermore, a common polymorphism, rs2067474, was identified in an enhancer element of the HRH2 gene promoter and was reported to be associated with various diseases including cancer. However, the relationship between this polymorphism and breast cancer risk and malignant degree remains unclear. The aim of this study was to clarify the clinical association of rs2067474 polymorphism with breast cancer. A total of 201 unrelated Chinese Han breast cancer patients and 238 ethnicity-matched health controls were recruited and rs2067474 polymorphism was genotyped. Logistic regression analyses were performed to calculate the odds ratios (ORs) as a measure of association of genotype with breast cancer according to 3 genetic models (dominant, recessive, and additive). Although the percentage of hormone receptor negative cases tended to be higher in AA genotypes, we did not find any significant associations of rs2067474 polymorphism with breast cancer risk or with related clinicopathological parameters in the present study, which indicates that rs2067474 polymorphism of HRH2 gene might not be a risk factor in the development of breast cancer in Chinese Han population.
Collapse
|
14
|
Tirado-Rodriguez B, Ortega E, Segura-Medina P, Huerta-Yepez S. TGF- β: an important mediator of allergic disease and a molecule with dual activity in cancer development. J Immunol Res 2014; 2014:318481. [PMID: 25110717 PMCID: PMC4071855 DOI: 10.1155/2014/318481] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/23/2014] [Accepted: 05/04/2014] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor- β (TGF- β ) superfamily is a family of structurally related proteins that includes TGF- β , activins/inhibins, and bone morphogenic proteins (BMPs). Members of the TGF- β superfamily regulate cellular functions such as proliferation, apoptosis, differentiation, and migration and thus play key roles in organismal development. TGF- β is involved in several human diseases, including autoimmune disorders and vascular diseases. Activation of the TGF- β receptor induces phosphorylation of serine/threonine residues and triggers phosphorylation of intracellular effectors (Smads). Once activated, Smad proteins translocate to the nucleus and induce transcription of their target genes, regulating various processes and cellular functions. Recently, there has been an attempt to correlate the effect of TGF- β with various pathological entities such as allergic diseases and cancer, yielding a new area of research known as "allergooncology," which investigates the mechanisms by which allergic diseases may influence the progression of certain cancers. This knowledge could generate new therapeutic strategies aimed at correcting the pathologies in which TGF- β is involved. Here, we review recent studies that suggest an important role for TGF- β in both allergic disease and cancer progression.
Collapse
Affiliation(s)
- Belen Tirado-Rodriguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, SS, Dr. Márquez No. 162, Colonia Doctores, Delegación Cuauhtémoc, 06720 México, DF, Mexico
| | - Enrique Ortega
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Avenida Universidad No. 3000, Delegación Coyoacán, 04510 México, DF, Mexico
| | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Sección XVI, 14080 México, DF, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, SS, Dr. Márquez No. 162, Colonia Doctores, Delegación Cuauhtémoc, 06720 México, DF, Mexico
| |
Collapse
|