1
|
Liu HY, Sun XJ, Xiu SY, Zhang XY, Wang ZQ, Gu YL, Yi CX, Liu JY, Dai YS, Yuan X, Liao HP, Liu ZM, Pang XC, Li TC. Frizzled receptors (FZDs) in Wnt signaling: potential therapeutic targets for human cancers. Acta Pharmacol Sin 2024; 45:1556-1570. [PMID: 38632318 PMCID: PMC11272778 DOI: 10.1038/s41401-024-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Jiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Si-Yu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiang-Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhi-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Lun Gu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chu-Xiao Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun-Yan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yu-Song Dai
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua-Peng Liao
- Yizhang County People's Hospital, Chenzhou, 424200, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiao-Cong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China.
| | - Tian-Cheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing, 100034, China.
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100034, China.
| |
Collapse
|
2
|
Lan YW, Yang JC, Yen CC, Huang TT, Chen YC, Chen HL, Chong KY, Chen CM. Predifferentiated amniotic fluid mesenchymal stem cells enhance lung alveolar epithelium regeneration and reverse elastase-induced pulmonary emphysema. Stem Cell Res Ther 2019; 10:163. [PMID: 31196196 PMCID: PMC6567664 DOI: 10.1186/s13287-019-1282-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 05/27/2019] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION Pulmonary emphysema is a major component of chronic obstructive pulmonary disease (COPD). Emphysema progression attributed not only to alveolar structure loss and pulmonary regeneration impairment, but also to excessive inflammatory response, proteolytic and anti-proteolytic activity imbalance, lung epithelial cells apoptosis, and abnormal lung remodeling. To ameliorate lung damage with higher efficiency in lung tissue engineering and cell therapy, pre-differentiating graft cells into more restricted cell types before transplantation could enhance their ability to anatomically and functionally integrate into damaged lung. In this study, we aimed to evaluate the regenerative and repair ability of lung alveolar epithelium in emphysema model by using lung epithelial progenitors which pre-differentiated from amniotic fluid mesenchymal stem cells (AFMSCs). METHODS Pre-differentiation of eGFP-expressing AFMSCs to lung epithelial progenitor-like cells (LEPLCs) was established under a modified small airway growth media (mSAGM) for 7-day induction. Pre-differentiated AFMSCs were intratracheally injected into porcine pancreatic elastase (PPE)-induced emphysema mice at day 14, and then inflammatory-, fibrotic-, and emphysema-related indices and pathological changes were assessed at 6 weeks after PPE administration. RESULTS An optimal LEPLCs pre-differentiation condition has been achieved, which resulted in a yield of approximately 20% lung epithelial progenitors-like cells from AFMSCs in a 7-day period. In PPE-induced emphysema mice, transplantation of LEPLCs significantly improved regeneration of lung tissues through integrating into the lung alveolar structure, relieved airway inflammation, increased expression of growth factors such as vascular endothelial growth factor (VEGF), and reduced matrix metalloproteinases and lung remodeling factors when compared with mice injected with AFMSCs. Histopathologic examination observed a significant amelioration in DNA damage in alveolar cells, detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), the mean linear intercept, and the collagen deposition in the LEPLC-transplanted groups. CONCLUSION Transplantation of predifferentiated AFMSCs through intratracheal injection showed better alveolar regeneration and reverse elastase-induced pulmonary emphysema in PPE-induced pulmonary emphysema mice.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
| | - Jing-Chan Yang
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
| | - Chih-Ching Yen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, 404 Taiwan
- College of Health Care, China Medical University, Taichung, 404 Taiwan
| | - Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
| | - Ying-Cheng Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
| | - Hsiao-Ling Chen
- Department of Bioresource, Da-Yeh University, Changhwa, 515 Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, 333 Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333 Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor Malaysia
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung, 402 Taiwan
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402 Taiwan
| |
Collapse
|
3
|
Peng Q, Wang L, Zhao D, Lv Y, Wang H, Chen G, Wang J, Xu W. Overexpression of FZD1 is Associated with a Good Prognosis and Resistance of Sunitinib in Clear Cell Renal Cell Carcinoma. J Cancer 2019; 10:1237-1251. [PMID: 30854133 PMCID: PMC6400675 DOI: 10.7150/jca.28662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frizzled class receptor 1 (FZD1), a receptor for Wnt signaling pathway. Overexpression of FZD1 has been detected in many cancer tissues and cells resulting in tumor development and drug resistance. However, its expression status and prognostic merit in renal cancer still remains unclear. We screened the FZD1 mRNA in clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) from TCGA database and Oncomine database. We then detected FZD1 mRNA expression in sunitinib-resistant cells and the corresponding parental cells by qRT-PCR. FZD1 level was significantly upregulated in renal cancer tissues, renal cancer cell lines and their corresponding sunitinib-resistant cells. FZD1 level was also associated with the clinicopathological characteristics of ccRCC patients that could discriminate metastasis, pathological stage, recurrence and prognosis in ccRCC patients. The Kaplan-Meier survival curve and the log-rank test revealed FZD1 was higher in lower clinical stage and grade that correlated with better overall survival (OS) and disease-free survival (DFS) in total and subgroups of ccRCC patients. Both univariate and multivariate cox regression analysis indicated that high FZD1 level was an independent predictor of good prognosis for OS (HR 0.569, P=0.001) and DFS (HR 0.559, P=0.036) in ccRCC patients. Using cBioportal program, less than 1% mutation in the patients with renal cancer was observed, the alterations in FZD1 were correlated with better OS (P=0.0404) in ccRCC patients. Finally, the result of KEGG pathway analysis predicted seven potential pathways that FZD1 and its related genes got involved in ccRCC, including Hippo signaling pathway. This indicated potential therapeutic targets of ccRCC. In conclusion, our results suggested that expression status of FZD1 had a diagnostic value and prognostic value in ccRCC patients, it also may serve as a potential drug target to relieve sunitinib resistance in renal cancer patients.
Collapse
Affiliation(s)
- Qiang Peng
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Danfeng Zhao
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Yulin Lv
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Hongzhi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Guang Chen
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Jiaqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| |
Collapse
|
4
|
Zhao HD, Xie HJ, Li J, Ren CP, Chen YX. Research Progress on Reversing Multidrug Resistance in Tumors by Using Chinese Medicine. Chin J Integr Med 2018; 24:474-480. [PMID: 29860581 DOI: 10.1007/s11655-018-2910-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 10/14/2022]
Abstract
Multidrug resistance (MDR) is a major cause of cancer chemotherapy failure, and it is important to develop suitable reversal agents to overcome MDR. A majority of chemical reversal agents have acceptable reversal effects. However, the toxicity and adverse reactions associated with these agents restricts their clinical use. Chinese medicines (CMs) have lower toxicities and adverse reactions and are associated with multiple components, multiple targets and reduced toxicity. CMs have several advantages and could reverse MDR, decrease drug dosage, enhance patient compliance and increase efficacy. This review summarizes the current progress of CM reversal agents..
Collapse
Affiliation(s)
- Huan-Dong Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China.,School of Pharmacy, Central South University, Changsha, 410013, China
| | - Hong-Juan Xie
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200336, China
| | - Jian Li
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Cai-Ping Ren
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Yu-Xiang Chen
- School of Pharmacy, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Tsuyoshi H, Yoshida Y. Molecular biomarkers for uterine leiomyosarcoma and endometrial stromal sarcoma. Cancer Sci 2018; 109:1743-1752. [PMID: 29660202 PMCID: PMC5989874 DOI: 10.1111/cas.13613] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Uterine leiomyosarcoma (u‐LMS) and endometrial stromal sarcoma (ESS) are among the most frequent soft tissue sarcomas, which, in adults, lead to fatal lung metastases and patients have an extremely poor prognosis. Due to their rarity and heterogeneity, there are no suitable biomarkers for diagnosis and prognosis, although some biomarker candidates have appeared. In 2017, The Cancer Genome Atlas (TCGA) Research Network's work on u‐LMS has confirmed mutations and deletions in RB1,TP53 and PTEN. In addition, whole‐exome sequencing of u‐LMS has confirmed and demonstrated frequent alterations in TP53,RB1, α‐thalassemia/mental retardation syndrome X‐linked (ATRX) and mediator complex subunit 12 (MED12). MED12 is a useful biomarker to diagnose uterine‐derived LMS and tumors arising from (LM) with a relatively favorable prognosis. TP53 and ATRX mutations can be important mechanisms in the pathogenesis of u‐LMS and are correlated with a poor prognosis. In an update based on the 2014 WHO classification, low‐grade ESS is often associated with gene rearrangement bringing about the JAZF 1‐SUZ12 (formerly JAZF1‐JJAZ1) fusion gene, whereas high‐grade ESS is associated with the YWHAE‐NUTM fusion gene. Low‐grade ESS with JAZF1 rearrangement may correlate with metastasis. However, high‐grade ESS with metastasis with YWHAE rearrangement shows a relatively favorable prognosis. The genetic/molecular genetic aberrations in u‐LMS and ESS are reviewed, focusing on molecular biomarkers for these primary and metastatic tumors.
Collapse
Affiliation(s)
- Hideaki Tsuyoshi
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Yoshio Yoshida
- Faculty of Medical Sciences, Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| |
Collapse
|
6
|
Han Y, Cho U, Kim S, Park IS, Cho JH, Dhanasekaran DN, Song YS. Tumour microenvironment on mitochondrial dynamics and chemoresistance in cancer. Free Radic Res 2018; 52:1271-1287. [PMID: 29607684 DOI: 10.1080/10715762.2018.1459594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria, evolutionally acquired symbionts of eukaryotic cells, are essential cytoplasmic organelles. They are structurally dynamic organelles that continually go through fission and fusion processes in response to various stimuli. Tumour tissue is composed of not just cancer cells but also various cell types like fibroblasts, mesenchymal stem and immune cells. Mitochondrial dynamics of cancer cells has been shown to be significantly affected by features of tumour microenvironment such as hypoxia, inflammation and energy deprivation. The interactions of cancer cells with tumour microenvironment like hypoxia give rise to the inter- and intratumoural heterogeneity, causing chemoresistance. In this review, we will focus on the chemoresistance by tumoural heterogeneity in relation to mitochondrial dynamics of cancer cells. Recent findings in molecular mechanisms involved in the control of mitochondrial dynamics as well as the impact of mitochondrial dynamics on drug sensitivity in cancer are highlighted in the current review.
Collapse
Affiliation(s)
- Youngjin Han
- a Biomodulation, Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Untack Cho
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Interdisciplinary Program in Cancer Biology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Soochi Kim
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,d Seoul National University Hospital Biomedical Research Institute , Seoul , Republic of Korea
| | - In Sil Park
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,e Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Jae Hyun Cho
- f Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Danny N Dhanasekaran
- g Stephenson Cancer Center , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Yong Sang Song
- a Biomodulation, Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Interdisciplinary Program in Cancer Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,f Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
7
|
Su W, Mo Y, Wu F, Guo K, Li J, Luo Y, Ye H, Guo H, Li D, Yang Z. miR-135b reverses chemoresistance of non-small cell lung cancer cells by downregulation of FZD1. Biomed Pharmacother 2016; 84:123-129. [DOI: 10.1016/j.biopha.2016.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 01/24/2023] Open
|
8
|
Lan Y, Theng S, Huang T, Choo K, Chen C, Kuo H, Chong K. Oncostatin M-Preconditioned Mesenchymal Stem Cells Alleviate Bleomycin-Induced Pulmonary Fibrosis Through Paracrine Effects of the Hepatocyte Growth Factor. Stem Cells Transl Med 2016; 6:1006-1017. [PMID: 28297588 PMCID: PMC5442768 DOI: 10.5966/sctm.2016-0054] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely considered for treatment of pulmonary fibrosis based on the anti‐inflammatory, antifibrotic, antiapoptotic, and regenerative properties of the cells. Recently, elevated levels of oncostatin M (OSM) have been reported in the bronchoalveolar lavage fluid of a pulmonary fibrosis animal model and in patients. In this work, we aimed to prolong engrafted MSC survival and to enhance the effectiveness of pulmonary fibrosis transplantation therapy by using OSM‐preconditioned MSCs. OSM‐preconditioned MSCs were shown to overexpress type 2 OSM receptor (gp130/OSMRβ) and exhibited high susceptibility to OSM, resulting in upregulation of the paracrine factor, hepatocyte growth factor (HGF). Moreover, OSM‐preconditioned MSCs enhanced cell proliferation and migration, attenuated transforming growth factor‐β1‐ or OSM‐induced extracellular matrix production in MRC‐5 fibroblasts through paracrine effects. In bleomycin‐induced lung fibrotic mice, transplantation of OSM‐preconditioned MSCs significantly improved pulmonary respiratory functions and downregulated expression of inflammatory factors and fibrotic factors in the lung tissues. Histopathologic examination indicated remarkable amelioration of the lung fibrosis. LacZ‐tagged MSCs were detected in the lung tissues of the OSM‐preconditioned MSC‐treated mice 18 days after post‐transplantation. Taken together, our data further demonstrated that HGF upregulation played an important role in mediating the therapeutic effects of transplanted OSM‐preconditioned MSCs in alleviating lung fibrosis in the mice. Stem Cells Translational Medicine2017;6:1006–1017
Collapse
Affiliation(s)
- Ying‐Wei Lan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Si‐Min Theng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Tsung‐Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Kong‐Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Chuan‐Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Rong‐Hsing Translational Medicine Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Han‐Pin Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
- Department of Medicine, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
| | - Kowit‐Yu Chong
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| |
Collapse
|
9
|
Identification of novel candidate drivers connecting different dysfunctional levels for lung adenocarcinoma using protein-protein interactions and a shortest path approach. Sci Rep 2016; 6:29849. [PMID: 27412431 PMCID: PMC4944139 DOI: 10.1038/srep29849] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/24/2016] [Indexed: 12/21/2022] Open
Abstract
Tumors are formed by the abnormal proliferation of somatic cells with disordered growth regulation under the influence of tumorigenic factors. Recently, the theory of “cancer drivers” connects tumor initiation with several specific mutations in the so-called cancer driver genes. According to the differentiation of four basic levels between tumor and adjacent normal tissues, the cancer drivers can be divided into the following: (1) Methylation level, (2) microRNA level, (3) mutation level, and (4) mRNA level. In this study, a computational method is proposed to identify novel lung adenocarcinoma drivers based on dysfunctional genes on the methylation, microRNA, mutation and mRNA levels. First, a large network was constructed using protein-protein interactions. Next, we searched all of the shortest paths connecting dysfunctional genes on different levels and extracted new candidate genes lying on these paths. Finally, the obtained candidate genes were filtered by a permutation test and an additional strict selection procedure involving a betweenness ratio and an interaction score. Several candidate genes remained, which are deemed to be related to two different levels of cancer. The analyses confirmed our assertions that some have the potential to contribute to the tumorigenesis process on multiple levels.
Collapse
|
10
|
Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016; 142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Most of the nanomedicines for treatment of multidrug-resistant cancer do not reach Phase III trials and many are terminated or withdrawn or are in an indeterminate state since long without any study results being presented. Extensive perusal of nanomedicine development research revealed that one of the critical aspects influencing clinical outcomes and which requires diligent scrutiny is selection process of nanodelivery system. METHODS Research papers and articles published on development of nanodelivery systems for treatment of multidrug-resistant cancer were analyzed. Observations and conclusions noted by these researchers which might shed some light on poor clinical performance of nanocarriers were collated and summarized under observation section. Further research articles were studied to find possible solutions which may be applied to these particular problems for resolving them. The inferences of these findings were composed in Result section. RESULT Plausible solutions for the observed obstacles were noted as examples of novel formulations that can yield the following: better in vivo imaging, precise targeting and dosing of a specific site and specific cell type in a particular cancer, modulation of tumor surroundings, intonation of systemic effects and high reproducibility. CONCLUSION The angle of approach to the development of best nanosystem for a specific type of tumor needs to be spun around. Some of these changes can be brought about by individual scientists, some need to be established by collated efforts of scientists globally and some await advent of better technologies. Regardless of the stratagem, it can be said decisively that the schematics of development phase need rethinking.
Collapse
|
11
|
Ye P, Xing H, Lou F, Wang K, Pan Q, Zhou X, Gong L, Li D. Histone deacetylase 2 regulates doxorubicin (Dox) sensitivity of colorectal cancer cells by targeting ABCB1 transcription. Cancer Chemother Pharmacol 2016; 77:613-21. [DOI: 10.1007/s00280-016-2979-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
|
12
|
Chong KY, Hsu CJ, Hung TH, Hu HS, Huang TT, Wang TH, Wang C, Chen CM, Choo KB, Tseng CP. Wnt pathway activation and ABCB1 expression account for attenuation of proteasome inhibitor-mediated apoptosis in multidrug-resistant cancer cells. Cancer Biol Ther 2015; 16:149-59. [PMID: 25590413 DOI: 10.4161/15384047.2014.987093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple drug resistance (MDR) is a major obstacle to attenuating the effectiveness of chemotherapy to many human malignancies. Proteasome inhibition induces apoptosis in a variety of cancer cells and is recognized as a novel anticancer therapy approach. Despite its success, some multiple myeloma patients are resistant or become refractory to ongoing treatment by bortezomib suggesting that chemoresistant cancer cells may have developed a novel mechanism directed against the proteasome inhibitor. The present study aimed to investigate potential mechanism(s) of attenuation in a MDR cell line, MES-SA/Dx5. We found that compared to the parental human uterus sarcoma cell line MES-SA cells, MES-SA/Dx5 cells highly expressed the ABCB1 was more resistant to MG132 and bortezomib, escaping the proteasome inhibitor-induced apoptosis pathway. The resistance was reversed by co-treatment of MG132 and the ABCB1 inhibitor verapamil. The data indicated that ABCB1 might play a role in the efflux of MG132 from the MES-SA/Dx5 cells to reduce MG132-induced apoptosis. Furthermore, the canonical Wnt pathway was found activated only in the MES-SA/Dx5 cells through active β-catenin and related transactivation activities. Western blot analysis demonstrated that Wnt-targeting genes, including c-Myc and cyclin D1, were upregulated and were relevant in inhibiting the expression of p21 in MES-SA/Dx5 cells. On the other hand, MES-SA cells expressed high levels of p21 and downregulated cyclin D1 and caused cell cycle arrest. Together, our study demonstrated the existence and participation of ABCB1 and the Wnt pathway in an MDR cell line that attenuated proteasome inhibitor-induced apoptosis.
Collapse
Affiliation(s)
- Kowit Yu Chong
- a Department of Medical Biotechnology and Laboratory Science; College of Medicine ; Chang Gung University ; Tao-Yuan , Taiwan , Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen YB, Lan YW, Chen LG, Huang TT, Choo KB, Cheng WTK, Lee HS, Chong KY. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol alleviates elastase-induced emphysema in a mouse model. Cell Stress Chaperones 2015; 20:979-89. [PMID: 26243699 PMCID: PMC4595438 DOI: 10.1007/s12192-015-0627-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/01/2015] [Accepted: 07/19/2015] [Indexed: 01/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a sustained blockage of the airways due to lung inflammation occurring with chronic bronchitis and/or emphysema. Progression of emphysema may be slowed by vascular endothelial growth factor A (VEGFA), which reduces apoptotic tissue depletion. Previously, authors of the present report demonstrated that cis-resveratrol (c-RSV)-induced heat-shock protein 70 (HSP70) promoter-regulated VEGFA expression promoted neovascularization of genetically modified mesenchymal stem cells (HSP-VEGFA-MSC) in a mouse model of ischemic disease. Here, this same stem cell line was evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of this study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of anti-oxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous nuclear factor erythroid 2-related factor (Nrf 2), and manganese superoxide dismutase (MnSOD) was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that c-RSV-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression.
Collapse
Affiliation(s)
- Young-Bin Chen
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Ying-Wei Lan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Lih-Geeng Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, 600, Taiwan, Republic of China
| | - Tsung-Teng Huang
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Kong-Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Winston T K Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan, Republic of China
| | - Hsuan-Shu Lee
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China.
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicne, Taipei, Taiwan, Republic of China.
| | - Kowit-Yu Chong
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Family Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan, Republic of China.
| |
Collapse
|
14
|
Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/β-catenin pathway. Oncotarget 2015; 5:12273-90. [PMID: 25401518 PMCID: PMC4322984 DOI: 10.18632/oncotarget.2631] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance in cancer cells arises from altered drug permeability of the cell. We previously reported activation of the Wnt pathway in ABCB1-overexpressed human uterus sarcoma drug-resistant MES-SA/Dx5 cells through active β-catenin and associated transactivation activities, and upregulation of Wnt-targeting genes. In this study, Wnt5A was found to be significantly upregulated in MES-SA/Dx5 and MCF7/ADR2 cells, suggesting an important role for the Wnt5A signaling pathway in cancer drug resistance. Higher cAMP response elements and Tcf/Lef transcription activities were shown in the drug-resistant cancer cells. However, expression of Wnt target genes and CRE activities was downregulated in Wnt5A shRNA stably-transfected MES-SA/Dx5 cells. Cell viability of the drug-resistant cancer cells was also reduced by doxorubicin treatment and Wnt5A shRNA transfection, or by Wnt5A depletion. The in vitro data were supported by immunohistochemical analysis of 24 paired breast cancer biopsies obtained pre- and post-chemotherapeutic treatment. Wnt5A, VEGF and/or ABCB1 were significantly overexpressed after treatment, consistent with clinical chemoresistance. Taken together, the Wnt5A signaling pathway was shown to contribute to regulating the drug-resistance protein ABCB1 and β-catenin-related genes in antagonizing the toxic effects of doxorubicin in the MDR cell lines and in clinical breast cancer samples.
Collapse
|
15
|
Chen YB, Lan YW, Hung TH, Chen LG, Choo KB, Cheng WTK, Lee HS, Chong KY. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol promotes angiogenesis in a mouse model. Cell Stress Chaperones 2015; 20:643-52. [PMID: 25860916 PMCID: PMC4463926 DOI: 10.1007/s12192-015-0588-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022] Open
Abstract
Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression.
Collapse
Affiliation(s)
- Young-Bin Chen
- />Institute of Biotechnology, National Taiwan University, Taipei, Taiwan Republic of China
| | - Ying-Wei Lan
- />Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Republic of China
| | - Tsai-Hsien Hung
- />Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Republic of China
| | - Lih-Geeng Chen
- />Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan Republic of China
| | - Kong-Bung Choo
- />Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Winston TK Cheng
- />Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan Republic of China
| | - Hsuan-Shu Lee
- />Institute of Biotechnology, National Taiwan University, Taipei, Taiwan Republic of China
- />Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan Republic of China
| | - Kowit-Yu Chong
- />Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Republic of China
- />Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Republic of China
- />Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Republic of China
- />Department of Family Medicine, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan Republic of China
| |
Collapse
|
16
|
Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, Kuo HP, Chong KY. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther 2015; 6:97. [PMID: 25986930 PMCID: PMC4487587 DOI: 10.1186/s13287-015-0081-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/19/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs. METHODS Hypoxic preconditioning was achieved in MSCs under an optimal hypoxic environment. The expression levels of cytoprotective factors and their biological effects on damaged alveolar epithelial cells or transforming growth factor-beta 1-treated fibroblast cells were studied in co-culture experiments in vitro. Furthermore, hypoxia-preconditioned MSCs (HP-MSCs) were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice at day 3, and lung functions, cellular, molecular and pathological changes were assessed at 7 and 21 days after bleomycin administration. RESULTS The expression of genes for pro-survival, anti-apoptotic, anti-oxidant and growth factors was upregulated in MSCs under hypoxic conditions. In transforming growth factor-beta 1-treated MRC-5 fibroblast cells, hypoxia-preconditioned MSCs attenuated extracellular matrix production through paracrine effects. The pulmonary respiratory functions significantly improved for up to 18 days of hypoxia-preconditioned MSC treatment. Expression of inflammatory factors and fibrotic factor were all downregulated in the lung tissues of the hypoxia-preconditioned MSC-treated mice. Histopathologic examination observed a significant amelioration of the lung fibrosis. Several LacZ-labeled MSCs were observed within the lungs in the hypoxia-preconditioned MSC treatment groups at day 21, but no signals were detected in the normoxic MSC group. Our data further demonstrated that upregulation of hepatocyte growth factor possibly played an important role in mediating the therapeutic effects of transplanted hypoxia-preconditioned MSCs. CONCLUSION Transplantation of hypoxia-preconditioned MSCs exerted better therapeutic effects in bleomycin-induced pulmonary fibrotic mice and enhanced the survival rate of engrafted MSCs, partially due to the upregulation of hepatocyte growth factor.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Kong-Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China.
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China.
- Rong-Hsing Translational Medicine Center, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | - Tsai-Hsien Hung
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Young-Bin Chen
- Institute of Biotechnology, National Taiwan University, Taichung, Taiwan, Republic of China.
| | - Chung-Hsing Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Thoracic Medicine, St Paul's Hospital, Taoyuan, Taiwan, Republic of China.
- Department of Thoracic Medicine, Ton-Yen General Hospital, Hsinchu, Taiwan, Republic of China.
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Pulmonary Disease Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan, Republic of China.
- Department of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| | - Kowit-Yu Chong
- Division of Biotechnology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China.
| |
Collapse
|
17
|
Hung TH, Li YH, Tseng CP, Lan YW, Hsu SC, Chen YH, Huang TT, Lai HC, Chen CM, Choo KB, Chong KY. Knockdown of c-MET induced apoptosis in ABCB1-overexpressed multidrug-resistance cancer cell lines. Cancer Gene Ther 2015; 22:262-70. [PMID: 25908454 DOI: 10.1038/cgt.2015.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
Inappropriate c-MET signaling in cancer can enhance tumor cell proliferation, survival, motility, and invasion. Inhibition of c-MET signaling induces apoptosis in a variety of cancers. It has also been recognized as a novel anticancer therapy approach. Furthermore, reports have also indicated that constitutive expression of P-glycoprotein (ABCB1) is involved in the HGF/c-MET-related pathway of multidrug resistance ABCB1-positive human hepatocellular carcinoma cell lines. We previously reported that elevated expression levels of PKCδ and AP-1 downstream genes, and HGF receptor (c-MET) and ABCB1, in the drug-resistant MES-SA/Dx5 cells. Moreover, leukemia cell lines overexpressing ABCB1 have also been shown to be more resistant to the tyrosine kinase inhibitor imatinib mesylate. These findings suggest that chemoresistant cancer cells may also develop a similar mechanism against chemotherapy agents. To circumvent clinical complications arising from drug resistance during cancer therapy, the present study was designed to investigate apoptosis induction in ABCB1-overexpressed cancer cells using c-MET-targeted RNA interference technology in vitro and in vivo. The results showed that cell viability decreased and apoptosis rate increased in c-MET shRNA-transfected HGF/c-MET pathway-positive MES-SA/Dx5 and MCF-7/ADR2 cell lines in a dose-dependent manner. In vivo reduction of tumor volume in mice harboring c-MET shRNA-knockdown MES-SA/Dx5 cells was clearly demonstrated. Our study demonstrated that downregulation of c-MET by shRNA-induced apoptosis in a multidrug resistance cell line.
Collapse
Affiliation(s)
- T-H Hung
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China
| | - Y-H Li
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China
| | - C-P Tseng
- 1] Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China [2] Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China [3] Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China
| | - Y-W Lan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China
| | - S-C Hsu
- 1] Cancer Molecular Diagnostic Laboratory, Chang-Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Republic of China [2] Department of Pathology, Chang-Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Republic of China
| | - Y-H Chen
- Graduate Institute of Pharmaceutical Sciences and Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Republic of China
| | - T-T Huang
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - H-C Lai
- 1] Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China [2] Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China
| | - C-M Chen
- 1] Department of Life Sciences, National Chung Hsing University, Taichung, Republic of China [2] Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Republic of China [3] Rong-Hsing Translational Medicine Center, National Chung Hsing University, Taichung, Republic of China
| | - K-B Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - K-Y Chong
- 1] Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China [2] Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China [3] Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Republic of China
| |
Collapse
|