1
|
Kim YK, Jo D, Choi S, Song J. High-fat diet triggers transcriptomic changes in the olfactory bulb. Heliyon 2025; 11:e42196. [PMID: 39927144 PMCID: PMC11804815 DOI: 10.1016/j.heliyon.2025.e42196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Metabolic imbalance contributes to cognitive impairment, anxiety, depressive behavior, and impaired olfactory perception. Recent studies have focused on olfactory dysfunction in patients with obesity and diabetes accompanied by cognitive dysfunction, considering that the synaptic signal from the olfactory bulb is directly transmitted to memory consolidation-related brain regions. This study investigated transcriptomic changes in the olfactory bulb in high-fat diet (HFD)-fed mice compared to that in normal-diet-fed mice. We sampled olfactory bulbs from HFD-fed mice, performed RNA sequencing, and measured mRNA levels in olfactory bulb tissue. Additionally, we assessed plasma cytokine levels in HFD-fed mice. We found differences in the expression of protein-coding and non-coding RNAs involved in insulin, lipid metabolism, neurogenesis, serotonin, dopamine, and gamma-aminobutyric acid-related signaling in the olfactory bulb of HFD-fed mice compared to control mice. Thus, our findings suggest potential therapeutic targets for treating olfactory dysfunction and related neural disorders in individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Young-Kook Kim
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Seoyoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| |
Collapse
|
2
|
Zhang WH, Jiang L, Li M, Liu J. MicroRNA‑124: an emerging therapeutic target in central nervous system disorders. Exp Brain Res 2023; 241:1215-1226. [PMID: 36961552 PMCID: PMC10129929 DOI: 10.1007/s00221-022-06524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 03/25/2023]
Abstract
The central nervous system (CNS) consists of neuron and non-neuron cells including neural stem/precursor cells (NSPCs), neuroblasts, glia cells (mainly astrocyte, oligodendroglia and microglia), which thereby form a precise and complicated network and exert diverse functions through interactions of numerous bioactive ingredients. MicroRNAs (miRNAs), with small size approximately ~ 21nt and as well-documented post-transcriptional key regulators of gene expression, are a cluster of evolutionarily conserved endogenous non-coding RNAs. More than 2000 different miRNAs has been discovered till now. MicroRNA-124(miR-124), the most brain-rich microRNA, has been validated to possess important functions in the central nervous system, including neural stem cell proliferation and differentiation, cell fate determination, neuron migration, synapse plasticity and cognition, cell apoptosis etc. According to recent studies, herein, we provide a review of this conversant miR-124 to further understand the potential functions and therapeutic and clinical value in brain diseases.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Lian Jiang
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Mei Li
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Jing Liu
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China.
- Department of Neonatology, Maternal and Child Health Hospital of Chaoyang District, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
3
|
Hasani Fard AH, Valizadeh M, Mazaheri Z, Hosseini SJ. MiR-106b-5p Regulates the Reprogramming of Spermatogonial Stem Cells into iPSC (Induced Pluripotent Stem Cell)-Like Cells. IRANIAN BIOMEDICAL JOURNAL 2022; 26:291-300. [PMID: 35791490 PMCID: PMC9432470 DOI: 10.52547/ibj.3594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Background Recent years have brought notable progress in raising the efficiency of the reprogramming technique so that approaches have evolved from known transgenic factors to only a few miRNAs. Nevertheless, there is a poor understanding of both the key factors and biological networks underlying this reprogramming. The present study aimed to investigate the potential of miR-106b-5p in regulating spermatogonial stem cells (SSCs) to induced pluripotent stem cell (iPSC)-like cells. Methods We used SSCs because pluripotency is inducible in SSCs under defined culture conditions, and they have a few issues compared to other adult stem cells. As both signaling and post-transcriptional gene controls are critical for pluripotency regulation, we traced the expression of Oct-4, Sox-2, Klf-4, c-Myc, and Nanog (OSKMN). Besides, we considered miR-106b-5p targets using bioinformatic methods. Results Our results showed that transfected SSCs with miR-106b-5p increased the expression of the OSKMN factors, which was significantly more than negative control groups. Moreover, using the functional miRNA enrichment analysis, online tools, and databases, we predicted that miR-106b-5p targeted a signaling pathway gene named MAPK1/ERK2, related to regulating stem cell pluripotency. Conclusion Together, our data suggest that miR-106b-5p regulates the reprogramming of SSCs into iPSC-like cells. Furthermore, noteworthy progress in the in vitro development of SSCs indicates promise reservoirs and opportunities for future clinical trials.
Collapse
Affiliation(s)
- Amir Hossein Hasani Fard
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Valizadeh
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Afshari A, Yaghobi R, Rezaei G. Inter-regulatory role of microRNAs in interaction between viruses and stem cells. World J Stem Cells 2021; 13:985-1004. [PMID: 34567421 PMCID: PMC8422934 DOI: 10.4252/wjsc.v13.i8.985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are well known for post-transcriptional regulatory ability over specific mRNA targets. miRNAs exhibit temporal or tissue-specific expression patterns and regulate the cell and tissue developmental pathways. They also have determinative roles in production and differentiation of multiple lineages of stem cells and might have therapeutic advantages. miRNAs are a part of some viruses’ regulatory machinery, not a byproduct. The trace of miRNAs was detected in the genomes of viruses and regulation of cell reprograming and viral pathogenesis. Combination of inter-regulatory systems has been detected for miRNAs during viral infections in stem cells. Contraction between viruses and stem cells may be helpful in therapeutic tactics, pathogenesis, controlling viral infections and defining stem cell developmental strategies that is programmed by miRNAs as a tool. Therefore, in this review we intended to study the inter-regulatory role of miRNAs in the interaction between viruses and stem cells and tried to explain the advantages of miRNA regulatory potentials, which make a new landscape for future studies.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ghazal Rezaei
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| |
Collapse
|
5
|
Wang Z, Li K, Wang X, Huang W. MiR-155-5p modulates HSV-1 replication via the epigenetic regulation of SRSF2 gene expression. Epigenetics 2019; 14:494-503. [PMID: 30950329 PMCID: PMC6557561 DOI: 10.1080/15592294.2019.1600388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A previous study reported that miR-155-5p knockout mice were more resistant to herpes simplex virus type I (HSV-1) infection. However, the exact underlying molecular mechanism remains to be elucidated. Here, we demonstrated that HSV-1 infection upregulates miR-155-5p expression. By binding to the promoter of serine/arginine-rich splicing factor 2 (SRSF2), which is an important transcriptional activator of HSV-1 genes that was previously reported by our group, and altering the histone modification located near the transcription start site (TSS) of the SRSF2 gene, miR-155-5p promotes the transcription of the SRSF2 gene, ultimately increasing viral replication and viral gene expression. Our results provide insight for an understanding of the roles and molecular mechanism of miR-155-5p in HSV-1 replication and the epigenetic control of SRSF2 gene expression.
Collapse
Affiliation(s)
- Ziqiang Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , P.R. China.,b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| | - Kun Li
- c Department of Nuclear Medicine , Qianfoshan Hospital Affiliated to Shandong University , Jinan , P.R. China
| | - Xiaoxia Wang
- b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| | - Weiren Huang
- b Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital , First Affiliated Hospital of Shenzhen University , Shenzhen , P.R. China
| |
Collapse
|
6
|
Ghasemzadeh N, Pourrajab F, Dehghani Firoozabadi A, Hekmatimoghaddam S, Haghiralsadat F. Ectopic microRNAs used to preserve human mesenchymal stem cell potency and epigenetics. EXCLI JOURNAL 2018; 17:576-589. [PMID: 30108462 PMCID: PMC6088217 DOI: 10.17179/excli2018-1274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/08/2018] [Indexed: 01/10/2023]
Abstract
Human mesenchymal stem cells (hMSCs) have remarkable potential for use in regenerative medicine. However, one of the great challenges is preserving their potency for long time. This study investigated the effect of miRNA ectopic expression on their proliferation and also on the expression level of Parp1 as an epigenetic switch preserving pluripotency in hMSCs. A cationic liposome was prepared as an efficient carrier for miRNA delivery. The miRNA loading efficiency and physical stability of vesicles were measured, and their scanning electron microscopic shapes determined. hMSCs were transfected with miR-302a and miR-34a followed by assessment of their proliferation potency with MTT assay and measurement of the expression of Parp1 by quantitative polymerase chain reaction (QPCR). Cell transfection with miR-302a and miR-34a efficiently and differentially affects the proliferation potency of hMSCs and the expression level of Parp1 as the key epigenetic factor involved in pluripotency. While miR-302a increases Parp1 expression, miR-34a suppresses it significantly, showing differential effects. Our results demonstrated that miRNA-based treatments represent efficient therapeutic systems and hold a great promise for future use in regenerative medicine through modification of hMSC pluripotency and epigenome.
Collapse
Affiliation(s)
- Navid Ghasemzadeh
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Pourrajab
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyedhossein Hekmatimoghaddam
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Leng J, Song Q, Zhao Y, Wang Z. miR‑15a represses cancer cell migration and invasion under conditions of hypoxia by targeting and downregulating Bcl‑2 expression in human osteosarcoma cells. Int J Oncol 2018; 52:1095-1104. [PMID: 29484432 PMCID: PMC5843390 DOI: 10.3892/ijo.2018.4285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma is a common, high-risk primary bone malignancy that mostly affects the younger population. There has been no marked improvement in the clinical outcomes of osteosarcoma patients to date, and cancer recurrence and metastasis are common in high-grade osteosarcoma. Therefore, identifying new biomarkers and novel therapeutic targets is crucial for improving the prognosis of osteosarcoma patients. In the present study, the MG63 human osteosarcoma cell line was employed to examine the role of microRNA (miR)-15a in regulating cellular activities under hypoxic conditions. It was demonstrated that hypoxia stimulates migration and invasion in MG63 cells, which was correlated with the downregulation of miR-15a and upregulation of B-cell lymphoma 2 (Bcl-2) expression. Introduction of miR-15a or knockdown of endogenous Bcl-2 may reduce hypoxia-induced cell invasion and migration through the regulation of matrix metalloproteinases. Analysis of the expression of miR-15a indicated that hypoxia repressed the transcription of deleted in lymphocytic leukemia 2 (DLEU2), which is the host gene of miR-15a. These findings indicated that miR-15a may be a valuable target for the treatment of osteosarcoma, particularly for patients with high-grade cancer or heavy tumor burden.
Collapse
Affiliation(s)
- Jiali Leng
- Nursing Platform of Bone, Joint and Sports Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qingxu Song
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhenyu Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
Sakamoto N, Honma R, Sekino Y, Goto K, Sentani K, Ishikawa A, Oue N, Yasui W. Non-coding RNAs are promising targets for stem cell-based cancer therapy. Noncoding RNA Res 2017; 2:83-87. [PMID: 30159424 PMCID: PMC6096406 DOI: 10.1016/j.ncrna.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
The term “non-coding RNA” (ncRNA) is generally used to indicate RNA that does not encode a protein and includes several classes of RNAs, such as microRNA and long non-coding RNA. Several lines of evidence suggest that ncRNAs appear to be involved in a hidden layer of biological procedures that control various levels of gene expression in physiology and development including stem cell biology. Stem cells have recently constituted a revolution in regenerative medicine by providing the possibility of generating suitable cell types for therapeutic use. Here, we review the recent progress that has been made in elaborating the interaction between ncRNAs and tissue/cancer stem cells, discuss related technical and biological challenges, and highlight plausible solutions to surmount these difficulties. This review particularly emphasises the involvement of ncRNAs in stem cell biology and in vivo modulation to treat and cure specific pathological disorders especially in cancer. We believe that a better understanding of the molecular machinery of ncRNAs as related to pluripotency, cellular reprogramming, and lineage-specific differentiation is essential for progress of cancer therapy.
Collapse
Key Words
- CD, cytosine deaminase
- CSC, cancer stem cell
- EMT, epithelial to mesenchymal transition
- ESCs, embryonic stem cells
- MET, mesenchymal to epithelial transition
- MSCs, mesenchymal stem cells
- Non-coding RNA
- Stem cell-based therapy
- T-UCR, transcribed ultraconserved region
- Transcribed ultraconserved region
- iPSCs, induced pluripotent stem cells
- lincRNA, long inverting non-coding RNA
- lncRNA, long ncRNA
- miRNAs, microRNAs
- ncRNAs, non-coding RNAs
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ririno Honma
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Cancer Biology Program, University of Hawaii Cancer Center, United States
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Ishikawa
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Hutchins ED, Eckalbar WL, Wolter JM, Mangone M, Kusumi K. Differential expression of conserved and novel microRNAs during tail regeneration in the lizard Anolis carolinensis. BMC Genomics 2016; 17:339. [PMID: 27150582 PMCID: PMC4858913 DOI: 10.1186/s12864-016-2640-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/22/2016] [Indexed: 12/25/2022] Open
Abstract
Background Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their role in lizard regeneration has not been investigated. Results MicroRNA sequencing of green anole lizard (Anolis carolinensis) regenerating tail and associated tissues revealed 350 putative novel and 196 known microRNA precursors. Eleven microRNAs were differentially expressed between the regenerating tail tip and base during maximum outgrowth (25 days post autotomy), including miR-133a, miR-133b, and miR-206, which have been reported to regulate regeneration and stem cell proliferation in other model systems. Three putative novel differentially expressed microRNAs were identified in the regenerating tail tip. Conclusions Differentially expressed microRNAs were identified in the regenerating lizard tail, including known regulators of stem cell proliferation. The identification of 3 putative novel microRNAs suggests that regulatory networks, either conserved in vertebrates and previously uncharacterized or specific to lizards, are involved in regeneration. These findings suggest that differential regulation of microRNAs may play a role in coordinating the timing and expression of hundreds of genes involved in regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2640-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth D Hutchins
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Walter L Eckalbar
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Justin M Wolter
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, 85287, USA
| | - Marco Mangone
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, 85287, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA. .,Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA.
| |
Collapse
|
10
|
Regeneration: Lessons from the Lizard. INNOVATIONS IN MOLECULAR MECHANISMS AND TISSUE ENGINEERING 2016. [DOI: 10.1007/978-3-319-44996-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Pourrajab F, Vakili Zarch A, Hekmatimoghaddam S, Zare-Khormizi MR. MicroRNAs; easy and potent targets in optimizing therapeutic methods in reparative angiogenesis. J Cell Mol Med 2015; 19:2702-14. [PMID: 26416208 PMCID: PMC4687703 DOI: 10.1111/jcmm.12669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The age‐related senescence of adult tissues is associated with the decreased level of angiogenic capability and with the development of a degenerative disease such as atherosclerosis which thereafter result in the deteriorating function of multiple systems. Findings indicate that tissue senescence not only diminishes repair processes but also promotes atherogenesis, serving as a double‐edged sword in the development and prognosis of ischaemia‐associated diseases. Evidence evokes microRNAs (miRNAs) as molecular switchers that underlie cellular events in different tissues. Here, miRNAs would promote new potential targets for optimizing therapeutic methods in blood flow recovery to the ischaemic area. Effectively beginning an ischaemia therapy, a more characteristic of miRNA changes in adult tissues is prerequisite and in the forefront. It may also be a preliminary phase in treatment strategies by stem cell‐based therapy.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Vakili Zarch
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
12
|
Huang N, Wu J, Qiu W, Lyu Q, He J, Xie W, Xu N, Zhang Y. MiR-15a and miR-16 induce autophagy and enhance chemosensitivity of Camptothecin. Cancer Biol Ther 2015; 16:941-8. [PMID: 25945419 PMCID: PMC4622988 DOI: 10.1080/15384047.2015.1040963] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been reported that persistent or excessive autophagy promotes cancer cell death during chemotherapy, either by enhancing the induction of apoptosis or mediating autophagic cell death. Here, we show that miR-15a and miR-16 are potent inducers of autophagy. Rictor, a component of mTORC2 complex, is directly targeted by miR-15a/16. Overexpression of miR-15a/16 or depletion of endogenous Rictor attenuates the phosphorylation of mTORC1 and p70S6K, inhibits cell proliferation and G1/S cell cycle transition in human cervical carcinoma HeLa cells. Moreover, miR-15a/16 dramatically enhances anticancer drug camptothecin (CPT)-induced autophagy and apoptotic cell death in HeLa cells. Collectively, these data demonstrate that miR-15a/16 induced autophagy contribute partly to their inhibition of cell proliferation and enhanced chemotherapeutic efficacy of CPT.
Collapse
Affiliation(s)
- Nunu Huang
- a School of Life Sciences; Tsinghua University ; Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|