1
|
Song MH, Sun Y, Qiu XB. Hijacking autophagy for infection by flaviviruses. Virus Res 2024; 347:199422. [PMID: 38901564 PMCID: PMC11252935 DOI: 10.1016/j.virusres.2024.199422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a lysosomal degradative pathway, which regulates the homeostasis of eukaryotic cells. This pathway can degrade misfolded or aggregated proteins, clear damaged organelles, and eliminate intracellular pathogens, including viruses, bacteria, and parasites. But, not all types of viruses are eliminated by autophagy. Flaviviruses (e.g., Yellow fever, Japanese encephalitis, Hepatitis C, Dengue, Zika, and West Nile viruses) are single-stranded and enveloped RNA viruses, and transmitted to humans primarily through the bites of arthropods, leading to severe and widespread illnesses. Like the coronavirus SARS-CoV-II, flaviviruses hijack autophagy for their infection and escape from host immune clearance. Thus, it is possible to control these viral infections by inhibiting autophagy. In this review, we summarize recent research progresses on hijacking of autophagy by flaviviruses and discuss the feasibility of antiviral therapies using autophagy inhibitors.
Collapse
Affiliation(s)
- Ming-Hui Song
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China.
| |
Collapse
|
2
|
Skurat AV, Segvich DM, Contreras CJ, Hu YC, Hurley TD, DePaoli-Roach AA, Roach PJ. Impaired malin expression and interaction with partner proteins in Lafora disease. J Biol Chem 2024; 300:107271. [PMID: 38588813 PMCID: PMC11063907 DOI: 10.1016/j.jbc.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Christopher J Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Cameron JM, Ellis CA, Berkovic SF. ILAE Genetics Literacy series: Progressive myoclonus epilepsies. Epileptic Disord 2023; 25:670-680. [PMID: 37616028 PMCID: PMC10947580 DOI: 10.1002/epd2.20152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Progressive Myoclonus Epilepsy (PME) is a rare epilepsy syndrome characterized by the development of progressively worsening myoclonus, ataxia, and seizures. A molecular diagnosis can now be established in approximately 80% of individuals with PME. Almost fifty genetic causes of PME have now been established, although some remain extremely rare. Herein, we provide a review of clinical phenotypes and genotypes of the more commonly encountered PMEs. Using an illustrative case example, we describe appropriate clinical investigation and therapeutic strategies to guide the management of this often relentlessly progressive and devastating epilepsy syndrome. This manuscript in the Genetic Literacy series maps to Learning Objective 1.2 of the ILAE Curriculum for Epileptology (Epileptic Disord. 2019;21:129).
Collapse
Affiliation(s)
- Jillian M. Cameron
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneAustin HealthMelbourneVictoriaAustralia
| | - Colin A. Ellis
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneAustin HealthMelbourneVictoriaAustralia
| | | |
Collapse
|
4
|
Kumarasinghe L, Garcia-Gimeno MA, Ramirez J, Mayor U, Zugaza JL, Sanz P. P-Rex1 is a novel substrate of the E3 ubiquitin ligase Malin associated with Lafora disease. Neurobiol Dis 2023; 177:105998. [PMID: 36638890 PMCID: PMC10682699 DOI: 10.1016/j.nbd.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Laforin and Malin are two proteins that are encoded by the genes EPM2A and EPM2B, respectively. Laforin is a glucan phosphatase and Malin is an E3-ubiquitin ligase, and these two proteins function as a complex. Mutations occurring at the level of one of the two genes lead to the accumulation of an aberrant form of glycogen meant to cluster in polyglucosans that go under the name of Lafora bodies. Individuals affected by the appearance of these polyglucosans, especially at the cerebral level, experience progressive neurodegeneration and several episodes of epilepsy leading to the manifestation of a fatal form of a rare disease called Lafora disease (LD), for which, to date, no treatment is available. Despite the different dysfunctions described for this disease, many molecular aspects still demand elucidation. An effective way to unknot some of the nodes that prevent the achievement of better knowledge of LD is to focus on the substrates that are ubiquitinated by the E3-ubiquitin ligase Malin. Some substrates have already been provided by previous studies based on protein-protein interaction techniques and have been associated with some alterations that mark the disease. In this work, we have used an unbiased alternative approach based on the activity of Malin as an E3-ubiquitin ligase. We report the discovery of novel bonafide substrates of Malin and have characterized one of them more deeply, namely PIP3-dependent Rac exchanger 1 (P-Rex1). The analysis conducted upon this substrate sets the genesis of the delineation of a molecular pathway that leads to altered glucose uptake, which could be one of the origin of the accumulation of the polyglucosans present in the disease.
Collapse
Affiliation(s)
- L Kumarasinghe
- Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain
| | - M A Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de València, 46022, Valencia, Spain
| | - J Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
| | - U Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 48009 Bilbao, Spain
| | - J L Zugaza
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 48009 Bilbao, Spain; Achucarro Basque Center for Neuroscience, Scientific Park UPV/EHU, 48940 Leioa, Bizkaia, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Bizkaia, Spain
| | - P Sanz
- Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Mitra S, Chen B, Wang P, Chown EE, Dear M, Guisso DR, Mariam U, Wu J, Gumusgoz E, Minassian BA. Laforin targets malin to glycogen in Lafora progressive myoclonus epilepsy. Dis Model Mech 2023; 16:dmm049802. [PMID: 36511140 PMCID: PMC9844227 DOI: 10.1242/dmm.049802] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure. Laforin binds glycogen, and LD-causing mutations disrupt this binding, laforin-malin interactions and malin's ligase activity, all indicating a critical role for malin. Neither malin's endogenous function nor location had previously been studied due to lack of suitable antibodies. Here, we generated a mouse in which the native malin gene is tagged with the FLAG sequence. We show that the tagged gene expresses physiologically, malin localizes to glycogen, laforin and malin indeed interact, at glycogen, and malin's presence at glycogen depends on laforin. These results, and mice, open the way to understanding unknown mechanisms of glycogen synthesis critical to LD and potentially other much more common diseases due to incompletely understood defects in glycogen metabolism.
Collapse
Affiliation(s)
- Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baozhi Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Erin E. Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Mathew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dikran R. Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ummay Mariam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emrah Gumusgoz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berge A. Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
An empirical pipeline for personalized diagnosis of Lafora disease mutations. iScience 2021; 24:103276. [PMID: 34755096 PMCID: PMC8564118 DOI: 10.1016/j.isci.2021.103276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients. Lafora disease (LD) patients present with varying clinical progression LD missense mutations differentially affect laforin function An empirical in vitro pipeline is used to classify laforin missense mutations Patient progression can be predicted based on mutation class
Collapse
|
7
|
Shang M, Weng L, Xu G, Wu S, Liu B, Yin X, Mao A, Zou X, Wang Z. TRIM11 suppresses ferritinophagy and gemcitabine sensitivity through UBE2N/TAX1BP1 signaling in pancreatic ductal adenocarcinoma. J Cell Physiol 2021; 236:6868-6883. [PMID: 33629745 DOI: 10.1002/jcp.30346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Gemcitabine is first-line chemotherapy for pancreatic cancer, however, the development of resistance limits its effectiveness. The tripartite motif-containing 11 (TRIM11) protein plays crucial roles in tumor development and undergoes auto-polyubiquitination to promote interactions in selective autophagy. Therefore, Understanding whether TRIM11 is involved in ferritinophagy and gemcitabine resistance in pancreatic cancer is critical in developing pancreatic cancer therapeutics. TRIM11 expression was validated by Western blot analysis, real-time polymease chain reaction, and immunohistochemical staining. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Colony formation assays were performed to investigate pancreatic ductal adenocarcinomas (PDAC) cell viability. Mouse xenograft model of PDAC cells was established to verify the role of TRIM11 in vivo. Coimmunoprecipitation was used to identify the reciprocal regulation between TRIM11 and UBE2N. In this study, we found that TRIM11 expression were higher in PDAC cells and tissues. TRIM11 overexpression promotes PDAC cell proliferation in vitro and tumor growth in vivo. Decreased expression of TRIM11 in PDAC patients is associated with decreased UBE2N and increased TAX1BP1 expression. Coimmunoprecipitation established that TRIM11 interacts and colocalizes with UBE2N. Mechanistically, TRIM11 promoted gemcitabine resistance and suppressed ferritinophagy through UBE2N-TAX1BP1 signaling. Our findings identify TRIM11 as a key regulator of TAX1BP1 signaling with a crucial role in ferritinophagy and gemcitabine resistance in PDAC.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Autophagy/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Ferroptosis/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Signal Transduction
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Tumor Burden/drug effects
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Mingyi Shang
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Weng
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guifang Xu
- Department of gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shaoqiu Wu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Yin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiwu Mao
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoping Zou
- Department of interventional radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongmin Wang
- Department of gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
8
|
Mitra S, Gumusgoz E, Minassian BA. Lafora disease: Current biology and therapeutic approaches. Rev Neurol (Paris) 2021; 178:315-325. [PMID: 34301405 DOI: 10.1016/j.neurol.2021.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The ubiquitin system impacts most cellular processes and is altered in numerous neurodegenerative diseases. However, little is known about its role in neurodegenerative diseases due to disturbances of glycogen metabolism such as Lafora disease (LD). In LD, insufficiently branched and long-chained glycogen forms and precipitates into insoluble polyglucosan bodies (Lafora bodies), which drive neuroinflammation, neurodegeneration and epilepsy. LD is caused by mutations in the gene encoding the glycogen phosphatase laforin or the gene coding for the laforin interacting partner ubiquitin E3 ligase malin. The role of the malin-laforin complex in regulating glycogen structure remains with full of gaps. In this review we bring together the disparate body of data on these two proteins and propose a mechanistic hypothesis of the disease in which malin-laforin's role to monitor and prevent over-elongation of glycogen branch chains, which drive glycogen molecules to precipitate and accumulate into Lafora bodies. We also review proposed connections between Lafora bodies and the ensuing neuroinflammation, neurodegeneration and intractable epilepsy. Finally, we review the exciting activities in developing therapies for Lafora disease based on replacing the missing genes, slowing the enzyme - glycogen synthase - that over-elongates glycogen branches, and introducing enzymes that can digest Lafora bodies. Much more work is needed to fill the gaps in glycogen metabolism in which laforin and malin operate. However, knowledge appears already adequate to advance disease course altering therapies for this catastrophic fatal disease.
Collapse
Affiliation(s)
- S Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - E Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - B A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
TRIM32 and Malin in Neurological and Neuromuscular Rare Diseases. Cells 2021; 10:cells10040820. [PMID: 33917450 PMCID: PMC8067510 DOI: 10.3390/cells10040820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/27/2022] Open
Abstract
Tripartite motif (TRIM) proteins are RING E3 ubiquitin ligases defined by a shared domain structure. Several of them are implicated in rare genetic diseases, and mutations in TRIM32 and TRIM-like malin are associated with Limb-Girdle Muscular Dystrophy R8 and Lafora disease, respectively. These two proteins are evolutionary related, share a common ancestor, and both display NHL repeats at their C-terminus. Here, we revmniew the function of these two related E3 ubiquitin ligases discussing their intrinsic and possible common pathophysiological pathways.
Collapse
|
10
|
Suppression of glycogen synthesis as a treatment for Lafora disease: Establishing the window of opportunity. Neurobiol Dis 2020; 147:105173. [PMID: 33171226 DOI: 10.1016/j.nbd.2020.105173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Lafora disease (LD) is a fatal adolescence-onset neurodegenerative condition. The hallmark of LD is the accumulation of aberrant glycogen aggregates called Lafora bodies (LBs) in the brain and other tissues. Impeding glycogen synthesis from early embryonic stages by genetic suppression of glycogen synthase (MGS) in an animal model of LD prevents LB formation and ultimately the pathological manifestations of LD thereby indicating that LBs are responsible for the pathophysiology of the disease. However, it is not clear whether eliminating glycogen synthesis in an adult animal after LBs have already formed would halt or reverse the progression of LD. Herein we generated a mouse model of LD with inducible MGS suppression. We evaluated the effect of MGS suppression at different time points on LB accumulation as well as on the appearance of neuroinflammation, a pathologic trait of LD models. In the skeletal muscle, MGS suppression in adult LD mice blocked the formation of new LBs and reduced the number of glycogen aggregates. In the brain, early but not late MGS suppression halted the accumulation of LBs. However, the neuroinflammatory response was still present, as shown by the levels of reactive astrocytes, microglia and inflammatory cytokines. Our results confirm that MGS as a promising therapeutic target for LD and highlight the importance of an early diagnosis for effective treatment of the disease.
Collapse
|
11
|
Lescouzères L, Bomont P. E3 Ubiquitin Ligases in Neurological Diseases: Focus on Gigaxonin and Autophagy. Front Physiol 2020; 11:1022. [PMID: 33192535 PMCID: PMC7642974 DOI: 10.3389/fphys.2020.01022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates the fate of proteins and therefore modulates a myriad of cellular functions. At the last step of this sophisticated enzymatic cascade, E3 ubiquitin ligases selectively direct ubiquitin attachment to specific substrates. Altogether, the ∼800 distinct E3 ligases, combined to the exquisite variety of ubiquitin chains and types that can be formed at multiple sites on thousands of different substrates confer to ubiquitination versatility and infinite possibilities to control biological functions. E3 ubiquitin ligases have been shown to regulate behaviors of proteins, from their activation, trafficking, subcellular distribution, interaction with other proteins, to their final degradation. Largely known for tagging proteins for their degradation by the proteasome, E3 ligases also direct ubiquitinated proteins and more largely cellular content (organelles, ribosomes, etc.) to destruction by autophagy. This multi-step machinery involves the creation of double membrane autophagosomes in which engulfed material is degraded after fusion with lysosomes. Cooperating in sustaining homeostasis, actors of ubiquitination, proteasome and autophagy pathways are impaired or mutated in wide range of human diseases. From initial discovery of pathogenic mutations in the E3 ligase encoding for E6-AP in Angelman syndrome and Parkin in juvenile forms of Parkinson disease, the number of E3 ligases identified as causal gene for neurological diseases has considerably increased within the last years. In this review, we provide an overview of these diseases, by classifying the E3 ubiquitin ligase types and categorizing the neurological signs. We focus on the Gigaxonin-E3 ligase, mutated in giant axonal neuropathy and present a comprehensive analysis of the spectrum of mutations and the recent biological models that permitted to uncover novel mechanisms of action. Then, we discuss the common functions shared by Gigaxonin and the other E3 ligases in cytoskeleton architecture, cell signaling and autophagy. In particular, we emphasize their pivotal roles in controlling multiple steps of the autophagy pathway. In light of the various targets and extending functions sustained by a single E3 ligase, we finally discuss the challenge in understanding the complex pathological cascade underlying disease and in designing therapeutic approaches that can apprehend this complexity.
Collapse
Affiliation(s)
- Léa Lescouzères
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
12
|
Sanchez-Martin P, Lahuerta M, Viana R, Knecht E, Sanz P. Regulation of the autophagic PI3KC3 complex by laforin/malin E3-ubiquitin ligase, two proteins involved in Lafora disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118613. [PMID: 31758957 DOI: 10.1016/j.bbamcr.2019.118613] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
Lafora progressive myoclonus epilepsy is a fatal rare neurodegenerative disorder characterized by the accumulation of insoluble abnormal glycogen deposits in the brain and peripheral tissues. Mutations in at least two genes are responsible for the disease: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the RING-type E3-ubiquitin ligase malin. Both laforin and malin form a functional complex in which laforin recruits the substrates to be ubiquitinated by malin. We and others have described that, in cellular and animal models of this disease, there is an autophagy impairment which leads to the accumulation of dysfunctional mitochondria. In addition, we established that the autophagic defect occurred at the initial steps of autophagosome formation. In this work, we present evidence that in cellular models of the disease there is a decrease in the amount of phosphatidylinositol-3P. This is probably due to defective regulation of the autophagic PI3KC3 complex, in the absence of a functional laforin/malin complex. In fact, we demonstrate that the laforin/malin complex interacts physically and co-localizes intracellularly with core components of the PI3KC3 complex (Beclin1, Vps34 and Vps15), and that this interaction is specific and results in the polyubiquitination of these proteins. In addition, the laforin/malin complex is also able to polyubiquitinate ATG14L and UVRAG. Finally, we show that overexpression of the laforin/malin complex increases PI3KC3 activity. All these results suggest a new role of the laforin/malin complex in the activation of autophagy via regulation of the PI3KC3 complex and explain the defect in autophagy described in Lafora disease.
Collapse
Affiliation(s)
- Pablo Sanchez-Martin
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Marcos Lahuerta
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Erwin Knecht
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
13
|
Abstract
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin-malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Collapse
|
14
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
15
|
Adriaens ME, Lodder EM, Moreno‐Moral A, Šilhavý J, Heinig M, Glinge C, Belterman C, Wolswinkel R, Petretto E, Pravenec M, Remme CA, Bezzina CR. Systems Genetics Approaches in Rat Identify Novel Genes and Gene Networks Associated With Cardiac Conduction. J Am Heart Assoc 2018; 7:e009243. [PMID: 30608189 PMCID: PMC6404199 DOI: 10.1161/jaha.118.009243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 01/20/2023]
Abstract
Background Electrocardiographic ( ECG ) parameters are regarded as intermediate phenotypes of cardiac arrhythmias. Insight into the genetic underpinnings of these parameters is expected to contribute to the understanding of cardiac arrhythmia mechanisms. Here we used HXB / BXH recombinant inbred rat strains to uncover genetic loci and candidate genes modulating ECG parameters. Methods and Results RR interval, PR interval, QRS duration, and QT c interval were measured from ECG s obtained in 6 male rats from each of the 29 available HXB / BXH recombinant inbred strains. Genes at loci displaying significant quantitative trait loci (QTL) effects were prioritized by assessing the presence of protein-altering variants, and by assessment of cis expression QTL ( eQTL ) effects and correlation of transcript abundance to the respective trait in the heart. Cardiac RNA -seq data were additionally used to generate gene co-expression networks. QTL analysis of ECG parameters identified 2 QTL for PR interval, respectively, on chromosomes 10 and 17. At the chromosome 10 QTL , cis- eQTL effects were identified for Acbd4, Cd300lg, Fam171a2, and Arhgap27; the transcript abundance in the heart of these 4 genes was correlated with PR interval. At the chromosome 17 QTL , a cis- eQTL was uncovered for Nhlrc1 candidate gene; the transcript abundance of this gene was also correlated with PR interval. Co-expression analysis furthermore identified 50 gene networks, 6 of which were correlated with PR interval or QRS duration, both parameters of cardiac conduction. Conclusions These newly identified genetic loci and gene networks associated with the ECG parameters of cardiac conduction provide a starting point for future studies with the potential of identifying novel mechanisms underlying cardiac electrical function.
Collapse
Affiliation(s)
- Michiel E. Adriaens
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
- Maastricht Centre for Systems BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Elisabeth M. Lodder
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | | | - Jan Šilhavý
- Institute of PhysiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
| | - Matthias Heinig
- Institute of Computational BiologyHelmholtz Zentrum MünchenMünchenGermany
| | - Charlotte Glinge
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | - Charly Belterman
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | - Rianne Wolswinkel
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | - Enrico Petretto
- The MRC London Institute of Medical SciencesImperial College LondonLondonUnited Kingdom
- Duke‐NUS Medical SchoolSingapore
| | - Michal Pravenec
- Institute of PhysiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
| | - Carol Ann Remme
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | - Connie R. Bezzina
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
16
|
Sánchez-Martín P, Komatsu M. p62/SQSTM1 - steering the cell through health and disease. J Cell Sci 2018; 131:131/21/jcs222836. [PMID: 30397181 DOI: 10.1242/jcs.222836] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SQSTM1 (also known as p62) is a multifunctional stress-inducible scaffold protein involved in diverse cellular processes. Its functions are tightly regulated through an extensive pattern of post-translational modifications, and include the isolation of cargos degraded by autophagy, induction of the antioxidant response by the Keap1-Nrf2 system, as well as the regulation of endosomal trafficking, apoptosis and inflammation. Accordingly, malfunction of SQSTM1 is associated with a wide range of diseases, including bone and muscle disorders, neurodegenerative and metabolic diseases, and multiple forms of cancer. In this Review, we summarize current knowledge regarding regulation, post-translational modifications and functions of SQSTM1, as well as how they are dysregulated in various pathogenic contexts.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan .,Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
17
|
Lafora Disease: A Ubiquitination-Related Pathology. Cells 2018; 7:cells7080087. [PMID: 30050012 PMCID: PMC6116066 DOI: 10.3390/cells7080087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022] Open
Abstract
Lafora disease (LD, OMIM254780) is a rare and fatal form of progressive myoclonus epilepsy (PME). Among PMEs, LD is unique because of the rapid neurological deterioration of the patients and the appearance in brain and peripheral tissues of insoluble glycogen-like (polyglucosan) inclusions, named Lafora bodies (LBs). LD is caused by mutations in the EPM2A gene, encoding the dual phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Laforin and malin form a functional complex that is involved in the regulation of glycogen synthesis. Thus, in the absence of a functional complex glycogen accumulates in LBs. In addition, it has been suggested that the laforin-malin complex participates in alternative physiological pathways, such as intracellular protein degradation, oxidative stress, and the endoplasmic reticulum unfolded protein response. In this work we review the possible cellular functions of laforin and malin with a special focus on their role in the ubiquitination of specific substrates. We also discuss here the pathological consequences of defects in laforin or malin functions, as well as the therapeutic strategies that are being explored for LD.
Collapse
|
18
|
|
19
|
Nitschke F, Sullivan MA, Wang P, Zhao X, Chown EE, Perri AM, Israelian L, Juana-López L, Bovolenta P, Rodríguez de Córdoba S, Steup M, Minassian BA. Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease. EMBO Mol Med 2018; 9:906-917. [PMID: 28536304 PMCID: PMC5494504 DOI: 10.15252/emmm.201707608] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD.
Collapse
Affiliation(s)
- Felix Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Mitchell A Sullivan
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Erin E Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Lori Israelian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Lucia Juana-López
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas and Ciber de Enfermedades Raras, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ciber de Enfermedades Raras, Universidad Autónoma de Madrid, Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas and Ciber de Enfermedades Raras, Madrid, Spain
| | - Martin Steup
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Berge A Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
20
|
Pathogenesis of Lafora Disease: Transition of Soluble Glycogen to Insoluble Polyglucosan. Int J Mol Sci 2017; 18:ijms18081743. [PMID: 28800070 PMCID: PMC5578133 DOI: 10.3390/ijms18081743] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Lafora disease (LD, OMIM #254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD.
Collapse
|