1
|
Li P, Xia C, Kong X, Zhang J. Enhancing nicotinamide N-methyltransferase bisubstrate inhibitor activity through 7-deazaadenosine and linker modifications. Bioorg Chem 2024; 143:106963. [PMID: 38048700 DOI: 10.1016/j.bioorg.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to nicotinamide (NAM) and other pyridine-related compounds and is involved in various metabolic processes in the human body. In addition, abnormal expression of NNMT occurs under various pathological conditions such as cancer, diabetes, metabolic disorders, and neurodegenerative diseases, making it a promising drug target worthy of in-depth research. Small-molecule NNMT inhibitors with high potency and selectivity are necessary chemical tools to test biological hypotheses and potential therapies. In this study, we developed a series of highly active NNMT inhibitors by modifying N7 position of adenine. Among them, compound 3-12 (IC50 = 47.9 ± 0.6 nM) exhibited potent inhibitory activity and also had an excellent selectivity profile over a panel of human methyltransferases. We showed that the N7 position of adenine in the NNMT bisubstrate inhibitor was a modifiable site, thus offering insights into the development of NNMT inhibitors.
Collapse
Affiliation(s)
- Pengyu Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cuicui Xia
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiangqian Kong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China.
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Parsons RB, Facey PD. Nicotinamide N-Methyltransferase: An Emerging Protagonist in Cancer Macro(r)evolution. Biomolecules 2021; 11:1418. [PMID: 34680055 PMCID: PMC8533529 DOI: 10.3390/biom11101418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) has progressed from being considered merely a Phase II metabolic enzyme to one with a central role in cell function and energy metabolism. Over the last three decades, a significant body of evidence has accumulated which clearly demonstrates a central role for NNMT in cancer survival, metastasis, and drug resistance. In this review, we discuss the evidence supporting a role for NNMT in the progression of the cancer phenotype and how it achieves this by driving the activity of pro-oncogenic NAD+-consuming enzymes. We also describe how increased NNMT activity supports the Warburg effect and how it promotes oncogenic changes in gene expression. We discuss the regulation of NNMT activity in cancer cells by both post-translational modification of the enzyme and transcription factor binding to the NNMT gene, and describe for the first time three long non-coding RNAs which may play a role in the regulation of NNMT transcription. We complete the review by discussing the development of novel anti-cancer therapeutics which target NNMT and provide insight into how NNMT-based therapies may be best employed clinically.
Collapse
Affiliation(s)
- Richard B. Parsons
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D. Facey
- Singleton Park Campus, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
| |
Collapse
|
3
|
Gao Y, van Haren MJ, Buijs N, Innocenti P, Zhang Y, Sartini D, Campagna R, Emanuelli M, Parsons RB, Jespers W, Gutiérrez-de-Terán H, van Westen GJP, Martin NI. Potent Inhibition of Nicotinamide N-Methyltransferase by Alkene-Linked Bisubstrate Mimics Bearing Electron Deficient Aromatics. J Med Chem 2021; 64:12938-12963. [PMID: 34424711 PMCID: PMC8436214 DOI: 10.1021/acs.jmedchem.1c01094] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Nicotinamide N-methyltransferase (NNMT) methylates
nicotinamide (vitamin B3) to generate 1-methylnicotinamide (MNA).
NNMT overexpression has been linked to a variety of diseases, most
prominently human cancers, indicating its potential as a therapeutic
target. The development of small-molecule NNMT inhibitors has gained
interest in recent years, with the most potent inhibitors sharing
structural features based on elements of the nicotinamide substrate
and the S-adenosyl-l-methionine (SAM) cofactor.
We here report the development of new bisubstrate inhibitors that
include electron-deficient aromatic groups to mimic the nicotinamide
moiety. In addition, a trans-alkene linker was found
to be optimal for connecting the substrate and cofactor mimics in
these inhibitors. The most potent NNMT inhibitor identified exhibits
an IC50 value of 3.7 nM, placing it among the most active
NNMT inhibitors reported to date. Complementary analytical techniques,
modeling studies, and cell-based assays provide insights into the
binding mode, affinity, and selectivity of these inhibitors.
Collapse
Affiliation(s)
- Yongzhi Gao
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ned Buijs
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Yurui Zhang
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Davide Sartini
- Department of Clinical Sciences, Universitá Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Universitá Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Universitá Politecnica delle Marche, Via Ranieri 65, 60131 Ancona, Italy
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Willem Jespers
- Drug Discovery and Safety, Leiden Academic Center for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | | | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Center for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
4
|
The Utility of Nicotinamide N-Methyltransferase as a Potential Biomarker to Predict the Oncological Outcomes for Urological Cancers: An Update. Biomolecules 2021; 11:biom11081214. [PMID: 34439880 PMCID: PMC8393883 DOI: 10.3390/biom11081214] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation reaction of nicotinamide, using S-adenosyl-L-methionine as the methyl donor. Enzyme overexpression has been described in many non-neoplastic diseases, as well as in a wide range of solid malignancies. This review aims to report and discuss evidence available in scientific literature, dealing with NNMT expression and the potential involvement in main urologic neoplasms, namely, renal, bladder and prostate cancers. Data illustrated in the cited studies clearly demonstrated NNMT upregulation (pathological vs. normal tissue) in association with these aforementioned tumors. In addition to this, enzyme levels were also found to correlate with key prognostic parameters and patient survival. Interestingly, NNMT overexpression also emerged in peripheral body fluids, such as blood and urine, thus leading to candidate the enzyme as promising biomarker for the early and non-invasive detection of these cancers. Examined results undoubtedly showed NNMT as having the capacity to promote cell proliferation, migration and invasiveness, as well as its potential participation in fundamental events highlighting cancer progression, metastasis and resistance to chemo- and radiotherapy. In the light of this evidence, it is reasonable to attribute to NNMT a promising role as a potential biomarker for the diagnosis and prognosis of urologic neoplasms, as well as a molecular target for effective anti-cancer treatment.
Collapse
|
5
|
Li Y, Zhang Y, Cheng Y, Du T, Zhang J. Solvent inhibition profiles and inverse solvent isotope effects for enzymatic methyl transfer catalyzed by nicotinamide N‐methyltransferase. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuping Li
- School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Yali Zhang
- School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Yiting Cheng
- School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Tianshu Du
- School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Jianyu Zhang
- School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
6
|
Gao Y, van Haren MJ, Moret EE, Rood JJM, Sartini D, Salvucci A, Emanuelli M, Craveur P, Babault N, Jin J, Martin NI. Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT) with Enhanced Activity. J Med Chem 2019; 62:6597-6614. [PMID: 31265285 PMCID: PMC6713424 DOI: 10.1021/acs.jmedchem.9b00413] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the methylation of nicotinamide to form N-methylnicotinamide. Overexpression of NNMT is associated with a variety of diseases, including a number of cancers and metabolic disorders, suggesting a role for NNMT as a potential therapeutic target. By structural modification of a lead NNMT inhibitor previously developed in our group, we prepared a diverse library of inhibitors to probe the different regions of the enzyme's active site. This investigation revealed that incorporation of a naphthalene moiety, intended to bind the hydrophobic nicotinamide binding pocket via π-π stacking interactions, significantly increases the activity of bisubstrate-like NNMT inhibitors (half-maximal inhibitory concentration 1.41 μM). These findings are further supported by isothermal titration calorimetry binding assays as well as modeling studies. The most active NNMT inhibitor identified in the present study demonstrated a dose-dependent inhibitory effect on the cell proliferation of the HSC-2 human oral cancer cell line.
Collapse
Affiliation(s)
- Yongzhi Gao
- Biological Chemistry Group, Institute of Biology Leiden , Leiden University , Sylviusweg 72 , 2333 BE Leiden , The Netherlands
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden , Leiden University , Sylviusweg 72 , 2333 BE Leiden , The Netherlands
| | | | | | - Davide Sartini
- Department of Clinical Sciences , Universitá Politecnica delle Marche , Via Ranieri 65 , 60131 Ancona , Italy
| | - Alessia Salvucci
- Department of Clinical Sciences , Universitá Politecnica delle Marche , Via Ranieri 65 , 60131 Ancona , Italy
| | - Monica Emanuelli
- Department of Clinical Sciences , Universitá Politecnica delle Marche , Via Ranieri 65 , 60131 Ancona , Italy
| | - Pierrick Craveur
- Synsight , Genopole Entreprises , 4 Rue Pierre Fontaine , 91000 Évry , France
| | - Nicolas Babault
- Synsight , Genopole Entreprises , 4 Rue Pierre Fontaine , 91000 Évry , France.,Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden , Leiden University , Sylviusweg 72 , 2333 BE Leiden , The Netherlands
| |
Collapse
|
7
|
Sen S, Mondal S, Zheng L, Salinger AJ, Fast W, Weerapana E, Thompson PR. Development of a Suicide Inhibition-Based Protein Labeling Strategy for Nicotinamide N-Methyltransferase. ACS Chem Biol 2019; 14:613-618. [PMID: 30933557 DOI: 10.1021/acschembio.9b00211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the S-adenosyl-l-methionine-dependent methylation of nicotinamide to form N-methylnicotinamide. This enzyme detoxifies xenobiotics and regulates NAD+ biosynthesis. Additionally, NNMT is overexpressed in various cancers. Herein, we describe the first NNMT-targeted suicide substrates. These compounds, which include 4-chloropyridine and 4-chloronicotinamide, exploit the broad substrate scope of NNMT; methylation of the pyridine nitrogen enhances the electrophilicity of the C4 position, thereby promoting an aromatic nucleophilic substitution by C159, a noncatalytic cysteine. On the basis of this activity, we developed a suicide inhibition-based protein labeling strategy using an alkyne-substituted 4-chloropyridine that selectively labels NNMT in vitro and in cells. In total, this study describes the first NNMT-directed activity-based probes.
Collapse
Affiliation(s)
- Sudeshna Sen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Li Zheng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ari J. Salinger
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
- Program in Chemical Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|