1
|
Wang X, Zhang K, Zhang J, Xu G, Guo Z, Lu X, Liang C, Gu X, Huang L, Liu S, Wang L, Li J. Cordyceps militaris solid medium extract alleviates lipopolysaccharide-induced acute lung injury via regulating gut microbiota and metabolism. Front Immunol 2025; 15:1528222. [PMID: 39902053 PMCID: PMC11788161 DOI: 10.3389/fimmu.2024.1528222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Acute lung injury (ALI) is a common respiratory disease, Cordycepin has been reported to reduce ALI, which is an effective component in Cordyceps militaris solid medium extract (CMME). Therefore, we aimed to explore the alleviating effect and mechanism of CMME on ALI. This study evaluated the effect of CMME on lipopolysaccharide (LPS)-induced ALI mice by analyzing intestinal flora and metabolomics to explore its potential mechanism. We assessed pulmonary changes, inflammation, oxidative stress, and macrophage and neutrophil activation levels, then we analyzed the gut microbiota through 16S rRNA and analyzed metabolomics profile by UPLC-QTOF/MS. The results showed that CMME treatment improved pulmonary injury, reduced inflammatory factors and oxidative stress levels, and decreased macrophage activation and neutrophil recruitment. The 16S rRNA results revealed that CMME significantly increased gut microbiota richness and diversity and reduced the abundance of Bacteroides compared with Mod group significantly. Metabolic analysis indicated that CMME reversed the levels of differential metabolites and may ameliorate lung injury through purine metabolism, nucleotide metabolism, and bile acid (BA) metabolism, and CMME did reverse the changes of BA metabolites in ALI mice, and BA metabolites were associated with inflammatory factors and intestinal flora. Therefore, CMME may improve lung injury by regulating intestinal flora and correcting metabolic disorders, providing new insights into its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lei Wang
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jianxi Li
- Traditional Chinese Veterinary Technology Innovation Center of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Yue M, Shang W, Zhang J, Chen R, Wei L, Wang H, Meng M, Zhang M, Liu Q. The polysaccharide from purple sweet potato (Ipomoea batatas (L.) Lam) alleviates lipopolysaccharide-induced acute lung injury in mice via the VIP/cAMP/PKA/AQPs signaling pathway. Int J Biol Macromol 2024; 282:137428. [PMID: 39522908 DOI: 10.1016/j.ijbiomac.2024.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The polysaccharide (PSP) from purple sweet potato has great potential for regulating apoptosis, but its regulatory role in acute lung injury (ALI) is unknown. METHODS The objective of this study was to investigate the protective effect of PSP on lipopolysaccharide (LPS)-induced ALI in mice and lung epithelial A549 cells and its mechanism. Moreover, subacute toxicity evaluation of PSP was carried out on ICR mice. RESULTS The results showed that compared with the ALI group, PSP significantly reduced the total protein content, wet-to-dry (W/D) ratio, the number of neutrophils, lymphocytes, and monocytes. Moreover, PSP was able to reduce cell apoptosis, the levels of macrophage inflammatory protein-2 (MIP-2), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA) and myeloperoxidase (MPO) and increase the level of superoxide (SOD). In addition, PSP could up-regulate the levels of VIP, cAMP, p-PKA/PKA and AQP1 in mice and A549 cells. And PSP exhibited no apparent adverse effects on the mice. CONCLUSIONS PSP had a protective effect on LPS-induced ALI in mice and lung epithelial A549 cells, which may be related to the inflammatory response and via VIP/cAMP/PKA/AQPs signaling pathway. Thus, PSP may be a promising pharmacologic agent for ALI therapy.
Collapse
Affiliation(s)
- Maokui Yue
- Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Wenli Shang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Junli Zhang
- Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Ran Chen
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Li Wei
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - HaiDong Wang
- Shandong First Medical University, No.2, Yingsheng East Road, Taian 271000, China
| | - Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, China
| | - Min Zhang
- Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China.
| | - Qinghua Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China.
| |
Collapse
|
3
|
Zhang J, Zhao H, Wang F, Zhou J, Li M, Li H, Ren M, Wang L, Ren Q, Zhong X, Jiang X, Zhang Z. Asiaticoside alleviates lipopolysaccharide-induced acute lung injury by blocking Sema4D/CD72 and inhibiting mitochondrial dysfunction in RAW264.7 cell and mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7573-7587. [PMID: 38664244 PMCID: PMC11450039 DOI: 10.1007/s00210-024-03091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI) is a common disease with complex pathogenesis. However, the treatment is mainly symptomatic with limited clinical options. Asiaticoside (AS), a Chinese herbal extract, has protective effects against LPS-induced ALI in mice and inhibits nitric oxide and prostaglandin E2 synthesis; however, the specific mechanism of AS in the prevention and treatment of LPS-induced ALI needs further study. Sema4D/CD72 pathway, mitochondrial dysfunction, and miRNA-21 are closely associated with inflammation. Therefore, the present study aimed to explore whether AS exerts its therapeutic effect on ALI by influencing Sema4D/CD72 pathway and mitochondrial dysfunction, restoring the balance of inflammatory factors, and influencing miRNA-21 expression. Cell and animal experiments were performed to investigate the effect of AS on ALI. Lipopolysaccharide (LPS) was used to establish the ALI model. CCK8 and flow cytometry were used to detect the cell viability and apoptosis rate. HE staining and wet-to-dry weight ratio (W/D) of lung tissue were determined. The expressions of Sema4D, CD72, NF-κB p65, Bax, Bcl2, and caspase 3 in RAW264.7 cells and lung tissues were detected by western blot, and the levels of IL-10 and IL-1β induced by LPS in supernatant of RAW264.7 cells and BALF were measured by ELISA. And the expression of miRNA-21 in cells and lung tissues was detected by fluorescence quantitative PCR. The result shows that AS treatment suppressed LPS-induced cell damage and lung injury in mice. AS treatment could alleviate the pathological changes such as inflammatory infiltration and histopathological changes in the lungs caused by LPS, and reduce the ratio of W/D. AS significantly alleviated the decrease of mitochondrial membrane potential induced by LPS, inhibited the increase of ROS production, and reduced the expression of mitochondrial fission proteins Drp1 and Fis1. The high-dose AS group significantly downregulated the expression of Sema4D, CD72, phosphorylated NF-κB p65, and apoptosis-related proteins, decreased the pro-inflammatory factor IL-1β, and enhanced the level of anti-inflammatory factor IL-10. In addition, AS promoted miRNA-21 expression. These effects inhibited apoptosis and restored the balance between anti- and pro-inflammatory factors. This represents the inaugural report elucidating the mechanism by which AS inhibits the Sema4D/CD72 signaling pathway. These findings offer novel insights into the potential application of AS in both preventing and treating ALI.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, China
| | - Hao Zhao
- Department of Pharmacy, The Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jie Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mao Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Meiping Ren
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lulu Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingyi Ren
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, China.
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Hemdan M, Abdel Mageed SS, Abulsoud AI, Faraag AHI, Zaki MB, Mansour RM, Raouf AA, Ali MA, Mohammed OA, Salman A, Salah AN, Abdel-Reheim MA, Doghish AS. Approaches based on miRNAs in Behçet's Disease: Unveiling pathogenic mechanisms, diagnostic strategies, and therapeutic applications. Life Sci 2024; 354:122950. [PMID: 39128821 DOI: 10.1016/j.lfs.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Behçet's Disease (BD) is an intricate medical puzzle, captivating researchers with its enigmatic pathogenesis. This complex ailment, distinguished by recurrent mouth and genital lesions, eye irritation, and skin injuries, presents a substantial obstacle to therapeutic research. This review explores the complex interaction of microRNAs (miRNAs) with BD, highlighting their crucial involvement in the disease's pathophysiology. miRNAs, recognized for regulatory influence in diverse biological processes, hold a pivotal position in the molecular mechanisms of autoimmune diseases, such as BD. The exploration begins with examining miRNA biogenic pathways and functions, establishing a foundational understanding of their regulatory mechanisms. Shifting to the molecular landscape governing BD, the review highlights miRNA-mediated impacts on critical signaling pathways like Notch, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and protein kinase B (AKT)/mammalian target of rapamycin (mTOR), offering insights into intricate pathophysiological mechanisms. Dissecting the immunological landscape reveals the profound influence of miRNAs on BD, shedding light on the intricate modulation of immune responses and offering novel perspectives on disease etiology and progression. Beyond molecular intricacies, the review explores the clinical relevance of miRNAs in BD, emphasizing their potential as diagnostic and prognostic indicators. The discussion extends to the promising realm of miRNA-based therapeutic interventions, highlighting their potential in alleviating symptoms and altering disease progression. This comprehensive review, serving as a valuable resource for researchers, clinicians, and stakeholders, aims to decipher the intricate molecular tapestry of BD and explore the therapeutic potential of miRNAs.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Akram N Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
5
|
Zhang G, Wu S, Xia G. MiR-326 sponges TET2 triggering imbalance of Th17/Treg differentiation to exacerbate pyroptosis of hepatocytes in concanavalin A-induced autoimmune hepatitis. Ann Hepatol 2024; 29:101183. [PMID: 38043702 DOI: 10.1016/j.aohep.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION AND OBJECTIVES MicroRNA-326 is abnormally expressed in autoimmune diseases, but its roles in autoimmune hepatitis (AIH) are unknown. In this study, we aimed to investigate the effect of miR-326 on AIH and the underlying mechanism. MATERIALS AND METHODS Concanavalin A was administrated to induce AIH in mice and the expression levels of miR-326 and TET2 was evaluated by qRT-PCR and western blot, respectively. The percentages of Th17 and Treg cells were evaluated by flow cytometry and their marker proteins were determined by western blot and ELISA. The mitochondrial membrane potential (MMP) and ROS level were tested with the JC-1 kit and DCFH-DA assay. The binding relationships between miR-326 and TET2 were verified by dual-luciferase reporter assay. The liver tissues were stained by the HE staining. In vitro, AML12 cells were cocultured with mouse CD4+T cells. The expression levels of pyroptosis-related proteins were assessed by western blot. RESULTS Concanavalin A triggered AIH and enhanced the expression level of miR-326 in mice. It increased both Th17/Treg ratio and the levels of their marker proteins. The expression of TET2 was decreased in AIH mice. Knockdown of miR-326 could decrease the levels of pyroptosis-related proteins, the ROS level and increase MMP. In mouse CD4+T cells, miR-326 sponged TET2 to release IL-17A. Coculture of AML12 cells with isolated CD4+T cells from miR-326 knockdown AIH mice could relieve pyroptosis. CONCLUSIONS Knockdown of miR-326 exerted anti-pyroptosis effects via suppressing TET2 and downstream NF-κB signaling to dampen AIH. We highlighted a therapeutic target in AIH.
Collapse
Affiliation(s)
- Genglin Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; Key Lab for Biotech-Drugs of National Health Commission; Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan city, Shandong province 250062, PR China
| | - Sensen Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan city, Shandong province 250012, PR China
| | - Guangtao Xia
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), No. 324, Jingwuweiqi Road, Jinan city, Shandong province 250021, PR China.
| |
Collapse
|
6
|
Yu T, Cui Y, Xin S, Fu Y, Ding Y, Hao L, Nie H. Mesenchymal stem cell conditioned medium alleviates acute lung injury through KGF-mediated regulation of epithelial sodium channels. Biomed Pharmacother 2023; 169:115896. [PMID: 37984305 DOI: 10.1016/j.biopha.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Acute lung injury (ALI) is a progressive inflammatory injury, and mesenchymal stem cells (MSCs) can be used to treat ALI. MSC-conditioned medium (MSC-CM) contains many cytokines, in which keratinocyte growth factor (KGF) is a soluble factor that plays a role in lung development. We aim to explore the protective effects of MSCs secreted KGF on ALI, and investigate the involvement of epithelial sodium channel (ENaC), which are important in alveolar fluid reabsorption. Both lipopolysaccharides (LPS)-induced mouse and alveolar organoid ALI models were established to confirm the potential therapeutic effect of MSCs secreted KGF. Meanwhile, the expression and regulation of ENaC were determined in alveolar type II epithelial (ATII) cells. The results demonstrated that MSC-CM and KGF could alleviate the extent of inflammation-related pulmonary edema in ALI mice, which was abrogated by a KGF neutralizing antibody. In an alveolar organoid ALI model, KGF in MSC-CM could improve the proliferation and decrease the differentiation of ATII cells. At the cellular level, the LPS-inhibited protein expression of ENaC could be reversed by KGF in MSC-CM. In addition, bioinformatics analysis and our experimental data provided the evidence that the NF-κB signaling pathway may be involved in the regulation of ENaC. Our research confirmed that the therapeutic effect of MSC-CM on edematous ALI was closely related to KGF, which may be involved in the proliferation and differentiation of ATII cells, as well as the upregulation of ENaC expression by the inhibition of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shuning Xin
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
7
|
Yu H, Ju Q, Cheng S. Regulating Function of miR-146a Derived from Bone Marrow Mesenchymal Stem Cell (BMSC) in Acute Lung Injury. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study assesses the mechanism of miR-146a derived from Bone marrow mesenchymal stem cell (BMSC) in acute lung injury. The model of ALI rats was established through endotracheal perfusion of LPS followed by analysis histological changes by HE staining. The source of BMSC was detected
through flow cytometry and change of miRNA was detected through Array method. The miR-146a level in lung tissue was detected with RT-PCR and expression of Bcl-2, Bax and Capase-9 was detected with IF and Western Blot. A high expression of CD90 and CD105 was found in BMSC with negative CD11bc
and CD34 level. 39 downregulated miRNAs and 20 upregulated miRNAs were found in ALI with miR-146a being the most significant. The apoptotic level induced with LPS could be restrained by miR-146a. In addition, miR-146a could upregulate Bcl-2 and downregulate Bax and Caspase-9. In conclusion,
ALI could be restrained by the low expression of miR-146a.
Collapse
Affiliation(s)
- Honglei Yu
- Department of Pediatrics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Qiu Ju
- Department of Pediatrics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Shouchao Cheng
- Department of Pediatrics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| |
Collapse
|
8
|
lncRNA SNHG12 Inhibition Based on Microsystem Cell Imaging Technology Protects the Endothelium from LPS-Induced Inflammation by Inhibiting the Expression of miR-140-3p Target Gene fndc5. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1681864. [PMID: 36034208 PMCID: PMC9392626 DOI: 10.1155/2022/1681864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/19/2022]
Abstract
Acute lung injury (ALI) is a serious disease with a high incidence rate, characterized by uncontrolled inflammation and apoptosis. At present, long-chain noncoding RNA (lncRNA) is a noncoding RNA with a length of more than 200 nucleotides. It plays an important role in ALI, cell cycle regulation, cell differentiation regulation, and many other life activities. Therefore, the current focus is to identify and evaluate the possible functions and potential molecular mechanisms of lncRNA small nuclear host gene 12 (SNHG12). Lipopolysaccharide (LPS)-induced mice model and in vitro cell model were established. Gene knockout is to use the principle of DNA homologous recombination to replace the target gene fragment with the designed homologous fragment, so as to achieve the purpose of gene knockout. The relationship between lncRNA SNHG12 expression and ALI was studied through knockdown and overexpression experiments. The qRT-PCR, ROS, immunohistochemistry, histopathology, TUNEL, and cell permeability tests were performed to further verify the possible targets and mechanisms of action. The expression of lncRNA SNHG12 in lung tissue was lower than that in normal tissue. The results showed that lncRNA SNHG12 could reduce lung cell injury and inflammatory cytokines induced by ALI. Bioinformatics analysis showed that lncRNA SNHG12 interacted with miR-140-3p. Subsequent experiments confirmed the link between lncRNA SNHG12, miR-140-3p, and fndc5. Furthermore, this study indicates that lncRNA SNHG12 has a key function in ALI. The results of this study demonstrated the role of lncRNA SNHG12 in the pathological process of ALI and provided a reference for developing novel anti-ALI treatments so that patients can get timely treatment, avoid causing multiple organ failure, and will not endanger their life safety.
Collapse
|
9
|
Yang H, Zhang C, Zhao Z. Lipopolysaccharide-induced lung cell inflammation and apoptosis are enhanced by circ_0003420/miR-424-5p/TLR4 axis via inactivating the NF-κB signaling pathway. Transpl Immunol 2022; 74:101639. [PMID: 35667541 DOI: 10.1016/j.trim.2022.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) can regulate disease progression, including sepsis-induced acute lung injury (ALI). This research aimed at investigating the function of circ_0003420 in lipopolysaccharide (LPS)-treated lung cells, as well as the functional mechanism. METHODS Enzyme-linked immunosorbent assay was used for inflammation analysis. Cell viability and proliferation were examined using Cell Counting Kit-8 assay and EdU assay. Cell apoptosis was measured by flow cytometry. Western blot was used for protein detection. Reverse transcription-quantitative polymerase chain reaction assay was performed for quantification of circ_0003420, microRNA-424-5p (miR-424-5p) or toll-like receptor (TLR4). The interaction between miR-424-5p and circ_0003420 or TLR4 was conducted through dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS Lung cell inflammation and apoptosis were promoted, but cell viability and proliferation were inhibited by LPS. Silence of circ_0003420 attenuated the LPS-mediated lung cell injury. Circ_0003420 could interact with miR-424-5p. The protective function by knockdown of si-circ_0003420 was relieved by miR-424-5p inhibition in LPS-treated cells. TLR4 served as a downstream target of miR-424-5p. Overexpression of miR-424-5p repressed inflammatory and apoptotic damages in LPS-treated lung cells via downregulating TLR4. Circ_0003420 upregulated the TLR4 level by targeting miR-424-5p and circ_0003420 regulated the NF-κB signaling pathway through the miR-424-5p/TLR4 axis. CONCLUSION These results uncovered that circ_0003420 contributed to the LPS-induced lung cell injury via activating the miR-424-5p/TLR4-related NF-κB signaling pathway. Circ_0003420 might be a therapeutic target in sepsis-induced ALI.
Collapse
Affiliation(s)
- Hailing Yang
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Chunmei Zhang
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhongyan Zhao
- Department of Critical Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
10
|
Lu Q, Yu S, Meng X, Shi M, Huang S, Li J, Zhang J, Liang Y, Ji M, Zhao Y, Fan H. MicroRNAs: Important Regulatory Molecules in Acute Lung Injury/Acute Respiratory Distress Syndrome. Int J Mol Sci 2022; 23:5545. [PMID: 35628354 PMCID: PMC9142048 DOI: 10.3390/ijms23105545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an overactivated inflammatory response caused by direct or indirect injuries that destroy lung parenchymal cells and dramatically reduce lung function. Although some research progress has been made in recent years, the pathogenesis of ALI/ARDS remains unclear due to its heterogeneity and etiology. MicroRNAs (miRNAs), a type of small noncoding RNA, play a vital role in various diseases. In ALI/ARDS, miRNAs can regulate inflammatory and immune responses by targeting specific molecules. Regulation of miRNA expression can reduce damage and promote the recovery of ALI/ARDS. Consequently, miRNAs are considered as potential diagnostic indicators and therapeutic targets of ALI/ARDS. Given that inflammation plays an important role in the pathogenesis of ALI/ARDS, we review the miRNAs involved in the inflammatory process of ALI/ARDS to provide new ideas for the pathogenesis, clinical diagnosis, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Siyu Huang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
11
|
Gao Y, Zhang Q, Sun J, Liang Y, Zhang M, Zhao M, Zhang K, Dong C, Ma Q, Liu W, Li W, Chen Y, Han L, Jin F. Extracellular vesicles derived from PM2.5‐exposed alveolar epithelial cells mediate endothelial adhesion and atherosclerosis in ApoE
−/−
mice. FASEB J 2022; 36:e22161. [PMID: 35061300 DOI: 10.1096/fj.202100927rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Yongheng Gao
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Qian Zhang
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Jinbo Sun
- Department of Urology General Hospital of the Central Theater Command Wuhan China
| | - Yuan Liang
- Department of Geriatrics 920th Hospital of Joint Logistics Support Force Kunming China
| | - Minlong Zhang
- Department of Respiration The 309th Hospital of the Chinese People's Liberation Army Beijing China
| | - Mingxuan Zhao
- Research Center of Clinical Pharmacology the First Affiliated Hospital of Yunnan University of Chinese Medicine Kunming China
| | - Kailiang Zhang
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Chuan Dong
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Qiong Ma
- Department of Orthopedics Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Wei Liu
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Wangping Li
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Yanwei Chen
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Luyao Han
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Faguang Jin
- Department of Respiration Tangdu Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
12
|
Jia X, Huang J, Wu B, Yang M, Xu W. A Competitive Endogenous RNA Network Based on Differentially Expressed lncRNA in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Front Genet 2021; 12:745715. [PMID: 34917127 PMCID: PMC8669720 DOI: 10.3389/fgene.2021.745715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Non-coding RNAs have remarkable roles in acute lung injury (ALI) initiation. Nevertheless, the significance of long non-coding RNAs (lncRNAs) in ALI is still unknown. Herein, we purposed to identify potential key genes in ALI and create a competitive endogenous RNA (ceRNA) modulatory network to uncover possible molecular mechanisms that affect lung injury. We generated a lipopolysaccharide-triggered ALI mouse model, whose lung tissue was subjected to RNA sequencing, and then we conducted bioinformatics analysis to select genes showing differential expression (DE) and to build a lncRNA-miRNA (microRNA)- mRNA (messenger RNA) modulatory network. Besides, GO along with KEGG assessments were conducted to identify major biological processes and pathways, respectively, involved in ALI. Then, RT-qPCR assay was employed to verify levels of major RNAs. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and the hub genes were obtained with the Molecular Complex Detection plugin. Finally, a key ceRNA subnetwork was built from major genes and their docking sites. Overall, a total of 8,610 lncRNAs were identified in the normal and LPS groups. Based on the 308 DE lncRNAs [p-value < 0.05, |log2 (fold change) | > 1] and 3,357 DE mRNAs [p-value < 0.05, |log2 (fold change) | > 1], lncRNA-miRNA and miRNA-mRNA pairs were predicted using miRanda. The lncRNA-miRNA-mRNA network was created from 175 lncRNAs, 22 miRNAs, and 209 mRNAs in ALI. The RT-qPCR data keep in step with the RNA sequencing data. GO along with KEGG analyses illustrated that DE mRNAs in this network were mainly bound up with the inflammatory response, developmental process, cell differentiation, cell proliferation, apoptosis, and the NF-kappa B, PI3K-Akt, HIF-1, MAPK, Jak-STAT, and Notch signaling pathways. A PPI network on the basis of the 209 genes was established, and three hub genes (Nkx2-1, Tbx2, and Atf5) were obtained from the network. Additionally, a lncRNA-miRNA-hub gene subnetwork was built from 15 lncRNAs, 3 miRNAs, and 3 mRNAs. Herein, novel ideas are presented to expand our knowledge on the regulation mechanisms of lncRNA-related ceRNAs in the pathogenesis of ALI.
Collapse
Affiliation(s)
- Xianxian Jia
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhui Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Yin J, Han B, Shen Y. RETRACTED: LncRNA NEAT1 inhibition upregulates miR-16-5p to restrain the progression of sepsis-induced lung injury via suppressing BRD4 in a mouse model. Int Immunopharmacol 2021; 97:107691. [PMID: 33962228 DOI: 10.1016/j.intimp.2021.107691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 5B and 6B, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Jianhong Yin
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China
| | - Bin Han
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China
| | - Yuan Shen
- Department of Emergency, the First People's Hospital of Yunnan Province, Kunming, 650032 Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan, China.
| |
Collapse
|
14
|
Li X, Chu Q, Wang H. MicroRNA-16 regulates lipopolysaccharide-induced inflammatory factor expression by targeting TLR4 in normal human bronchial epithelial cells. Exp Ther Med 2021; 22:982. [PMID: 34345264 PMCID: PMC8311244 DOI: 10.3892/etm.2021.10414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) is mainly caused by inflammation and is associated with high mortality rates. Emerging evidence has suggested that microRNAs (miRNAs or miRs) serve a significant function in ALI. However, the fundamental mechanism underlying ALI remain to be fully elucidated. Although miR-16 has been reported to be involved in the occurrence and development of a number of diseases its association with ALI has not been previously investigated. Therefore, the present study aimed to explore the role of miR-16 in the lipopolysaccharide (LPS)-induced ALI model. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were measured by ELISA in the blood samples of rats with ALI and in the normal human bronchial epithelial (NHBE) cell line. The role of miR-16 in inflammation was evaluated using gene overexpression and silencing experiments in NHBE cells by reverse transcription-quantitative PCR. In addition, the expression levels of inflammatory factors TNF-α, IL-1β and IL-6 were also determined using ELISA. The potential interaction between miR-16 and TLR4 was assessed using bioinformatics analysis by the TargetScan database and then verified in 293T cells using luciferase reporter assay. The expression of miR-16 was notably decreased in the lung tissues of rats with LPS-induced ALI compared with the PBS treated-group. Additionally, the levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 were reduced following transfection of NHBE cells with miR-16 mimics compared with those in the miR-negative control group. Western blot analysis revealed that miR-16 overexpression could downregulate TLR4 expression in NHBE cells compared with that in the miR-NC group. Luciferase reporter assay confirmed that TLR4 may be directly targeted by miR-16. The effect of miR-16 on TLR4 was rescued in NHBE cells following treatment with LPS. Overall, these aforementioned findings suggest that miR-16 may serve a protective role against LPS-mediated inflammatory responses in NHBE cells by regulating TLR4, where this mechanism may be considered to be a novel approach for treating ALI in the future.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qian Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huaqi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Zhu L, Shi D, Cao J, Song L. LncRNA CASC2 Alleviates Sepsis-induced Acute Lung Injury by Regulating the miR-152-3p/PDK4 Axis. Immunol Invest 2021; 51:1257-1271. [PMID: 34165388 DOI: 10.1080/08820139.2021.1928693] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Acute lung injury (ALI) is an early complication of sepsis and it is also considered as an important cause of high mortality in sepsis patients. This research aimed to explore the potential role and mechanism of long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) in sepsis-induced ALI. Methods: The levels of CASC2, microRNA-152-3p (miR-152-3p) and pyruvate dehydrogenase kinase 4 (PDK4) in sepsis patients and LPS-treated HPAEpiC were detected by quantitative real-time PCR and western blot. Cell viability and apoptosis were assessed by Counting Kit-8 (CCK-8) assay and flow cytometry. The concentrations of inflammatory factors were tested by Enzyme-linked immunosorbent assay. Oxidative stress was evaluated by the levels of reactive oxygen species and superoxide dismutase using corresponding commercial kits. The targeting relationship between miR-152-3p and CASC2 or PDK4 was verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays.Results: CASC2 and PDK4 were down-regulated, while miR-152-3p was up-regulated in sepsis patients and LPS-stimulated HPAEpiC. Overexpression of CASC2 relieved the LPS-resulted cell viability inhibition, apoptosis promotion, inflammatory and oxidative damages in HPAEpiC. In addition, miR-152-3p was a miRNA target of CASC2 and CASC2 alleviated cell injury in LPS-disposed HPAEpiC by sponging miR-152-3p. Moreover, miR-152-3p directly targeted PDK4 and CASC2 increased the PDK4 expression by depending on the sponge effect on miR-152-3p. Meanwhile, inhibition of miR-152-3p attenuated LPS-triggered HPAEpiC injury by upregulating the level of PDK4.Conclusion: These results suggested that CASC2 ameliorated the LPS-induced injury in HPAEpiC via regulating miR-152-3p/PDK4 pathway.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dongwu Shi
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Jianghong Cao
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Lu Song
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Le A, Wu Y, Liu W, Wu C, Hu P, Zou J, Kuang L. MiR-144-induced KLF2 inhibition and NF-kappaB/CXCR1 activation promote neutrophil extracellular trap-induced transfusion-related acute lung injury. J Cell Mol Med 2021; 25:6511-6523. [PMID: 34120407 PMCID: PMC8278117 DOI: 10.1111/jcmm.16650] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Transfusion‐related acute lung injury (TRALI) is a clinical syndrome which is associated with the formation of neutrophil extracellular trap (NET). Recent studies have demonstrated the roles of microRNAs (miRNAs) in the pathophysiological process of TRALI. Here, the study focused on the role of miR‐144 and the molecular mechanisms in NET‐induced TRALI. Up‐regulated miR‐144 and under‐expressed KLF2 were determined in patients with TRALI. In the mouse model of a two‐event TRALI induced by intraperitoneal injections with lipopolysaccharide and anti‐H‐2Kd mAb, we determined expression patterns of miR‐144, Krüppel‐like factor 2 (KLF2), chemokine (C‐X‐C motif) receptor 1 (CXCR1) and nuclear factor kappa‐B (NF‐kappaB) p65. The results confirmed that miR‐144 was highly expressed, while KLF2 was poorly expressed in mice with TRALI. Dual‐luciferase reporter gene assay identified that miR‐144 could target KLF2. Using gain‐ and loss‐of‐function approaches, we analysed the effects of miR‐144 and its interaction with KLF2 on TRALI. Enforced expression of miR‐144 was found to aggravate NET‐induced TRALI by down‐regulating KLF2 and activating the NF‐kappaB/CXCR1 signalling pathway in TRALI mice. Collectively, miR‐144‐targeted inhibition of KLF2 and activation of NF‐kappaB/CXCR1 are possible mechanisms responsible for NET‐caused TRALI. These findings aid in the development of therapeutic modalities for the treatment of TRALI.
Collapse
Affiliation(s)
- Aiping Le
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yize Wu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Liu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenggao Wu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Piaoping Hu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juan Zou
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linju Kuang
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Tang J, Xu L, Zeng Y, Gong F. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol 2021; 91:107272. [PMID: 33360370 DOI: 10.1016/j.intimp.2020.107272] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a common acute respiratory disease treated in the clinic. Intestinal microflora disorder affect lung diseases through the gut-lung axis. In this study, we explored the regulatory mechanism of the gut flora in the host defense against lipopolysaccharide (LPS)-induced ALI through the TLR4/NF-kB pathway by constructing a gut microflora dysbiosis-model with antibiotic administration and reconstruction of the intestinal microecology. Then, high-throughput sequencing was performed, and the levels of secreted IgA (sIgA), β-defensins, and Muc2 were measured to assess the gut flora and mucosal barrier. The expression of TLR4, NF-kB, TNF-α, IL-1β, oxidative stress and the lung wet/dry (W/D) ratio were evaluated to assess lung damage. Hematoxylin and eosin (HE) staining was performed to evaluate the damage to the gut and lung tissues. Accordingly, gut microbiota imbalance may regulate the TLR4/NF-kB signaling pathway in the lung immune system, activating oxidative stress in the lung and mediating lung injury through the regulation of the gut barrier. However, fecal microbiota transplantation (FMT) impairs the activity of the TLR4/NF-kB signaling pathway in the lung and decreases oxidative stress in animals with ALI by restoring the gut microecology. CONCLUSIONS: Our results indicated the protective effect of gut flora in regulating immunity of LPS-induced ALI by modulating the TLR4/NF-kB signaling pathway which may induce inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jia Tang
- Department of Pediatrics, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing 402160, China; Department of Pediatrics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lingqi Xu
- Department of Pediatrics, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing 402160, China
| | - Yiwen Zeng
- Department of Pediatrics, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing 402160, China
| | - Fang Gong
- Department of Pediatrics, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
18
|
Yang Y, Li L. Depleting microRNA-146a-3p attenuates lipopolysaccharide-induced acute lung injury via up-regulating SIRT1 and mediating NF-κB pathway. J Drug Target 2021; 29:420-429. [PMID: 33185125 DOI: 10.1080/1061186x.2020.1850738] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The role of microRNAs (miRs) in acute lung injury (ALI) has been discussed. This study is to uncover the effects of miR-146a-3p/Sirtuin-1 (SIRT1)/Nuclear factor-kappa B (NF-κB) axis on ALI. METHODS Human normal lung epithelial cell line BEAS-2B was exposed to lipopolysaccharide (LPS) to establish an in vitro model of ALI. NF-κB expression, cell activity, apoptosis, inflammatory factors, oxidative stress indices were detected in LPS-induced BEAS-2B cells after miR-146a-3p was down-regulated or SIRT1 was up-regulated. ALI rat model was established and the NF-κB expression, wet/dry weight (W/D) ratio, pathological changes, pneumonocyte apoptosis, inflammatory factors, oxidative stress indices were detected in ALI rats after miR-146a-3p was down-regulated or SIRT1 was up-regulated. The target relationship between miR-146a-3p and SIRT1 was confirmed. RESULTS Reduced SIRT1 and raised miR-146a-3p were found in LPS-induced BEAS-2B cells and ALI rats. SIRT1-overexpressing or miR-146a-3p-underexpressing up-regulated NF-κB expression, promoted viability and inhibited apoptosis of LPS-induced BEAS-2B cells in vitro, and increased NF-κB expression, down-regulated the W/D ratio, attenuated pathological changes, suppressed apoptosis, and alleviated inflammatory response and oxidative stress in the lung of ALI rats. MiR-146a-3p directly binds to the 3'UTR of SIRT1 mRNA. CONCLUSION Depleting miR-146a-3p improves ALI through up-regulating SIRT1 and mediating NF-κB pathway.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Overexpression of miR-129-5p Mitigates Sepsis-Induced Acute Lung Injury by Targeting High Mobility Group Box 1. J Surg Res 2020; 256:23-30. [PMID: 32682121 DOI: 10.1016/j.jss.2020.05.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs are dysregulated in sepsis. Acute lung injury is a progressive syndrome during sepsis. However, the role of miR-129-5p in the development of acute lung injury induced by sepsis remains unclear. METHODS The acute lung injury of sepsis model was established by cecal ligation puncture (CLP)-treated mice and lipopolysaccharide (LPS)-treated murine alveolar epithelial cell line (MLE)-12 cells. The lung injury in vivo was investigated by hematoxylin and eosin staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining, enzyme-linked immunosorbent assay, lung wet-to-dry weight ratio, and myeloperoxidase activity. The lung injury in vitro was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assay. The expression levels of miR-129-5p and high mobility group box 1 (HMGB1) were measured by quantitative real-time polymerase chain reaction and Western blot. The association between miR-129-5p and HMGB1 was validated by luciferase assay and RNA immunoprecipitation. RESULTS The expression of miR-129-5p was decreased in CLP model and LPS-treated MLE-12 cells. Overexpression of miR-129-5p attenuated inflammatory response, apoptosis, lung wet/dry weight ratio, and myeloperoxidase activity induced by CLP surgery in vivo. Moreover, addition of miR-129-5p increased cell viability and suppressed cell apoptosis and inflammatory response in vitro. HMGB1 as a target of miR-129-5p alleviated miR-129-5p-mediated injury suppression in LPS-treated MLE-12 cells. CONCLUSIONS miR-129-5p protects against sepsis-induced acute lung injury by decreasing HMGB1 expression, providing new target for sepsis treatment.
Collapse
|
20
|
Chen X, Hu J, Pan Y, Tang Z. Novel noncoding RNAs biomarkers in acute respiratory distress syndrome. Expert Rev Respir Med 2020; 14:299-306. [PMID: 31903804 DOI: 10.1080/17476348.2020.1711736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Acute respiratory distress syndrome (ARDS) is a very common condition associated with critically ill patients, which causes substantial morbidity and mortality. Currently, there is no effective clinical ARDS treatment strategy. Novel targets that effectively treat ARDS need to be found.Areas covered: Data sources were published articles through June 2019 in PubMed using the following keywords: 'acute respiratory distress syndrome,' 'miRNAs,' 'lncRNAs,' and 'biomarkers.' The selection of studies focused on in cellular model, animal model, and clinical studies of ARDS.Expert commentary: Accumulated evidence revealed that some specific miRNAs and lncRNAs could regulate the signaling pathways of the pathophysiology by targeting specific molecule in ARDS. The differentially expressed miRNAs exert a crucial role in apoptosis of neutrophil, antigen-presenting cells and lung epithelial cell, and the dysfunction of mitochondrial. Recently, the influence of lncRNAs upon miRNA function is also rapidly emerging. In some cases, lncRNA MALAT1 target TLR4 to mediate the p38 MAPK and NF-κB signaling pathway in ARDS rat model. In other cases, lncRNA CASC2 was found to act as a ceRNA of miR-144-3p which directly targeted AQP1 in LPS-induced A549 cell. In addition, other miRNA-lncRNA regulatory patterns in ARDS and novel biomarkers still require deeper research.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Juntao Hu
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yiping Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhanhong Tang
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| |
Collapse
|
21
|
Wang L, Zheng Z, Feng X, Zang X, Ding W, Wu F, Zhao Q. circRNA/lncRNA-miRNA-mRNA Network in Oxidized, Low-Density, Lipoprotein-Induced Foam Cells. DNA Cell Biol 2019; 38:1499-1511. [PMID: 31804889 DOI: 10.1089/dna.2019.4865] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhaoshi Zheng
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaona Feng
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuege Zang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenhui Ding
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fan Wu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qini Zhao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory for Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
23
|
Ju M, Liu B, He H, Gu Z, Liu Y, Su Y, Zhu D, Cang J, Luo Z. MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell Cycle 2018; 17:2001-2018. [PMID: 30231673 DOI: 10.1080/15384101.2018.1509635] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Acute lung injury (ALI) is a critical clinical condition with a high mortality rate, characterized with excessive uncontrolled inflammation and apoptosis. Recently, microRNAs (miRNAs) have been found to play crucial roles in the amelioration of various inflammation-induced diseases, including ALI. However, it remains unknown the biological function and regulatory mechanisms of miRNAs in the regulation of inflammation and apoptosis in ALI. The aim of this study is to identify and evaluate the potential role of miRNAs in ALI and reveal the underlying molecular mechanisms of their effects. Here, we analyzed microRNA expression profiles in lung tissues from LPS-challenged mice using miRNA microarray. Because microRNA-27a (miR-27a) was one of the miRNAs being most significantly downregulated, which has an important role in regulation of inflammation, we investigated its function. Overexpression of miR-27a by agomir-27a improved lung injury, as evidenced by the reduced histopathological changes, lung wet/dry (W/D) ratio, lung microvascular permeability and apoptosis in the lung tissues, as well as ameliorative survival of ALI mice. This was accompanied by the alleviating of inflammation, such as the reduced total BALF cell and neutrophil counts, decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-6) interleukin-1β (IL-1β) and myeloperoxidase (MPO) activity in BAL fluid. Toll-like receptor 4 (TLR4), an important regulator of the nuclear factor kappa-B (NF-κB) signaling pathway, was identified as a novel target of miR-27a in RAW264.7 cells. Furthermore, our results showed that LPS stimulation increased the expression of MyD88 and NF-κB p65 (p-p65), but inhibited the expression of inhibitor of nuclear factor-κB-α (IκB-α), suggesting the activation of NF-κB signaling pathway. Further investigations revealed that agomir-miR-27a reversed the promoting effect of LPS on NF-κB signaling pathway. The results here suggested that miR-27a alleviates LPS-induced ALI in mice via reducing inflammation and apoptosis through blocking TLR4/MyD88/NF-κB activation.
Collapse
Affiliation(s)
- MinJie Ju
- a Department of Critial Care Medicine , Zhongshan Hospital, Fudan University , Shanghai China
| | - BoFei Liu
- b Department of Intensive Care Medicine , 1st People Hospital , ZhangjiaGang , China
| | - HongYu He
- a Department of Critial Care Medicine , Zhongshan Hospital, Fudan University , Shanghai China
| | - ZhunYong Gu
- a Department of Critial Care Medicine , Zhongshan Hospital, Fudan University , Shanghai China
| | - YiMei Liu
- a Department of Critial Care Medicine , Zhongshan Hospital, Fudan University , Shanghai China
| | - Ying Su
- a Department of Critial Care Medicine , Zhongshan Hospital, Fudan University , Shanghai China
| | - DuMing Zhu
- a Department of Critial Care Medicine , Zhongshan Hospital, Fudan University , Shanghai China
| | - Jing Cang
- c Department of Anesthesiology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Zhe Luo
- a Department of Critial Care Medicine , Zhongshan Hospital, Fudan University , Shanghai China
| |
Collapse
|