1
|
Li X, Lv Z, Zhou P, Zhang S, Jiang C. Sox9: A potential regulator of cancer stem cells in osteosarcoma. Open Med (Wars) 2024; 19:20240995. [PMID: 38978960 PMCID: PMC11229887 DOI: 10.1515/med-2024-0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
Osteosarcoma is a highly aggressive bone tumor primarily affecting children and adolescents. Despite advancements in treatment modalities, the prognosis for osteosarcoma patients remains poor, emphasizing the need for a deeper understanding of its underlying mechanisms. In recent years, the concept of cancer stem cells (CSCs) has emerged as a crucial factor in tumor initiation, progression, and therapy resistance. These specialized subpopulations of cells possess self-renewal capacity, tumorigenic potential, and contribute to tumor heterogeneity. Sox9, a transcription factor known for its critical role in embryonic development and tissue homeostasis, has been implicated in various malignancies, including osteosarcoma. This review aims to summarize the current knowledge regarding the role of Sox9 in CSCs in osteosarcoma and its potential implications as a prognosis and therapeutic target.
Collapse
Affiliation(s)
- Xiucheng Li
- Department of Orthopaedics, Shaoxing People’ Hospital, Shaoxing, China
| | - Zuo Lv
- Department of Orthopaedics, Shaoxing People’ Hospital, Shaoxing, China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’ Hospital, Shaoxing, China
| | - SongOu Zhang
- Department of Orthopaedics, Shaoxing People’ Hospital, Shaoxing, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Chao Jiang
- Department of Orthopaedics, Shaoxing People’ Hospital, Shaoxing, China
| |
Collapse
|
2
|
Chen XY, Cheng AY, Wang ZY, Jin JM, Lin JY, Wang B, Guan YY, Zhang H, Jiang YX, Luan X, Zhang LJ. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol 2024; 223:116141. [PMID: 38499108 DOI: 10.1016/j.bcp.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zi-Ying Wang
- School of Biological Engineering, Tianjin University of Science&Technology, Tianjin 301617, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Fakhri S, Moradi SZ, Abbaszadeh F, Faraji F, Amirian R, Sinha D, McMahon EG, Bishayee A. Targeting the key players of phenotypic plasticity in cancer cells by phytochemicals. Cancer Metastasis Rev 2024; 43:261-292. [PMID: 38169011 DOI: 10.1007/s10555-023-10161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Plasticity of phenotypic traits refers to an organism's ability to change in response to environmental stimuli. As a result, the response may alter an organism's physiological state, morphology, behavior, and phenotype. Phenotypic plasticity in cancer cells describes the considerable ability of cancer cells to transform phenotypes through non-genetic molecular signaling activities that promote therapy evasion and tumor metastasis via amplifying cancer heterogeneity. As a result of metastable phenotypic state transitions, cancer cells can tolerate chemotherapy or develop transient adaptive resistance. Therefore, new findings have paved the road in identifying factors and agents that inhibit or suppress phenotypic plasticity. It has also investigated novel multitargeted agents that may promise new effective strategies in cancer treatment. Despite the efficiency of conventional chemotherapeutic agents, drug toxicity, development of resistance, and high-cost limit their use in cancer therapy. Recent research has shown that small molecules derived from natural sources are capable of suppressing cancer by focusing on the plasticity of phenotypic responses. This systematic, comprehensive, and critical review analyzes the current state of knowledge regarding the ability of phytocompounds to target phenotypic plasticity at both preclinical and clinical levels. Current challenges/pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700 026, West Bengal, India
| | - Emily G McMahon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
4
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Rodrigues P, Bangali H, Hammoud A, Mustafa YF, Al-Hetty HRAK, Alkhafaji AT, Deorari MM, Al-Taee MM, Zabibah RS, Alsalamy A. COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers. Med Oncol 2024; 41:41. [PMID: 38165473 DOI: 10.1007/s12032-023-02256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Cyclooxygenase (COX) enzymes are pivotal in inflammation and cancer development. COX-2, in particular, has been implicated in tumor growth, angiogenesis, and immune evasion. Recently, COX-2 inhibitors have arisen as potential therapeutic agents in cancer treatment. In addition, combining COX inhibitors with other treatment modalities has demonstrated the potential to improve therapeutic efficacy. This review aims to investigate the effects of COX inhibition, both alone and in combination with other methods, on signaling pathways and carcinogenesis in various cancers. In this study, a literature search of all major academic databases was conducted (PubMed, Scholar google), including the leading research on the mechanisms of COX-2, COX-2 inhibitors, monotherapy with COX-2 inhibitors, and combining COX-2-inhibitors with chemotherapeutic agents in tumors. The study encompasses preclinical and clinical evidence, highlighting the positive findings and the potential implications for clinical practice. According to preclinical studies, multiple signaling pathways implicated in tumor cell proliferation, survival, invasion, and metastasis can be suppressed by inhibiting COX. In addition, combining COX inhibitors with chemotherapy drugs, targeted therapies, immunotherapies, and miRNA-based approaches has enhanced anti-tumor activity. These results suggest that combination therapy has the potential to overcome resistance mechanisms and improve treatment outcomes. However, caution must be exercised when selecting and administering combination regimens. Not all combinations of COX-2 inhibitors with other drugs result in synergistic effects; some may even have unfavorable interactions. Therefore, personalized approaches that consider the specific characteristics of the cancer and the medications involved are crucial for optimizing therapeutic strategies. In conclusion, as monotherapy or combined with other methods, COX inhibition bears promise in modulating signaling pathways and inhibiting carcinogenesis in various cancers. Additional studies and well-designed clinical trials are required to completely elucidate the efficacy of COX inhibition and combination therapy in enhancing cancer treatment outcomes. This narrative review study provides a detailed summary of COX-2 monotherapy and combination targeted therapy in cancer treatment.
Collapse
Affiliation(s)
- Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Asir-Abha, Kingdom of Saudi Arabia
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia.
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Mubarak Al-Abdullah, Kuwait.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | | | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Rahman S Zabibah
- College of Medical Technique, the Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
6
|
Doustmihan A, Fathi M, Mazloomi M, Salemi A, Hamblin MR, Jahanban-Esfahlan R. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A narrative review. J Control Release 2023; 363:57-83. [PMID: 37739017 DOI: 10.1016/j.jconrel.2023.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
There is increasing evidence that malignant tumors are initiated and maintained by a sub-population of tumor cells that have similar biological properties to normal adult stem cells. This very small population of Cancer Stem Cells (CSC) comprises tumor initiating cells responsible for cancer recurrence, drug resistance and metastasis. Conventional treatments such as chemotherapy, radiotherapy and surgery, in addition to being potentially toxic and non-specific, may paradoxically increase the population, spread and survival of CSCs. Next-generation sequencing and omics technologies are increasing our understanding of the pathways and factors involved in the development of CSCs, and can help to discover new therapeutic targets against CSCs. In addition, recent advances in nanomedicine have provided hope for the development of optimal specific therapies to eradicate CSCs. Moreover, the use of artificial intelligence and nano-informatics can elucidate new drug targets, and help to design drugs and nanoparticles (NPs) to deal with CSCs. In this review, we first summarize the properties of CSCs and describe the signaling pathways and molecular characteristics responsible for the emergence and survival of CSCs. Also, the location of CSCs within the tumor and the effect of host factors on the creation and maintenance of CSCs are discussed. Newly discovered molecular targets involved in cancer stemness and some novel therapeutic compounds to combat CSCs are highlighted. The optimum properties of anti-CSC NPs, including blood circulation and stability, tumor accumulation and penetration, cellular internalization, drug release, endosomal escape, and aptamers designed for specific targeting of CSCs are covered. Finally, some recent smart NPs designed for therapeutic and theranostic purposes to overcome CSCs are discussed.
Collapse
Affiliation(s)
- Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Yang QC, Wang S, Liu YT, Song A, Wu ZZ, Wan SC, Li HM, Sun ZJ. Targeting PCSK9 reduces cancer cell stemness and enhances antitumor immunity in head and neck cancer. iScience 2023; 26:106916. [PMID: 37305703 PMCID: PMC10250824 DOI: 10.1016/j.isci.2023.106916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to play a critical role in regulating cholesterol homeostasis and T cell antitumor immunity. However, the expression, function, and therapeutic value of PCSK9 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we found that the expression of PCSK9 was upregulated in HNSCC tissues, and higher PCSK9 expression indicated poorer prognosis in HNSCC patients. We further found that pharmacological inhibition or siRNA downregulating PCSK9 expression suppressed the stemness-like phenotype of cancer cells in an LDLR-dependent manner. Moreover, PCSK9 inhibition enhanced the infiltration of CD8+ T cells and reduced the myeloid-derived suppressor cells (MDSCs) in a 4MOSC1 syngeneic tumor-bearing mouse model, and it also enhanced the antitumor effect of anti-PD-1 immune checkpoint blockade (ICB) therapy. Together, these results indicated that PCSK9, a traditional hypercholesterolemia target, may be a novel biomarker and therapeutic target to enhance ICB therapy in HNSCC.
Collapse
Affiliation(s)
- Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan-Tong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - An Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
9
|
Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization. Molecules 2023; 28:molecules28041725. [PMID: 36838713 PMCID: PMC9964887 DOI: 10.3390/molecules28041725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer stemness is the process by which cancer cells acquire chemoresistance and self-renewal in the tumor microenvironment. Glucose-regulated protein 78 (GRP78) is a biomarker for gastric cancer and is involved in cancer stemness. By inducing cancer stemness in various types of cancer, the polarization of macrophages into tumor-associated macrophages (TAMs) controls tumor progression. Betulinic acid (BA) is a bioactive natural compound with anticancer properties. However, whether GRP78 regulates TAM-mediated cancer stemness in the tumor microenvironment and whether BA inhibits GRP78-mediated cancer stemness in gastric cancer remain unknown. In this study, we investigated the role of GRP78 in gastric cancer stemness in a tumor microenvironment regulated by BA. The results indicated that BA inhibited not only GRP78-mediated stemness-related protein expression and GRP78-TGF-β-mediated macrophage polarization into TAMs, but also TAM-mediated cancer stemness. Therefore, BA is a promising candidate for clinical application in combination-chemotherapy targeting cancer stemness.
Collapse
|
10
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
11
|
Liang J, Sun J, Liu A, Chen L, Ma X, Liu X, Zhang C. Saikosaponin D improves chemosensitivity of glioblastoma by reducing the its stemness maintenance. Biochem Biophys Rep 2022; 32:101342. [PMID: 36186734 PMCID: PMC9516410 DOI: 10.1016/j.bbrep.2022.101342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Chemotherapy is one of the important adjuvant methods for the treatment of glioblastoma (GBM), and chemotherapy resistance is a clinical problem that neurooncologists need to solve urgently. It is reported that Saikosaponin D (SSD), an active component of Bupleurum chinense, had various of antitumor activities and could also enhance the chemosensitivity of liver cancer and other tumors. However, it is not clear whether it has an effect on the chemosensitivity of glioma and its specific mechanism. Methods The CCK8 assay, Wound healing assay and Matrigel invasion assay were used to detect the effect of SSD on the phenotype of GBM cells. We detected the effect of SSD on the chemosensitivity of GSM by Flow cytometry, LDH content and MTT assay. Then, we used cell plate cloning, semi-quantitative PCR and western blotting experiments to detect the effect of SSD on the stem potential of GBM cells. Finally, the effect of SSD on the chemosensitivity of GBM and its potential mechanism were verified by nude mouse experiments in vivo. Results firstly, we found that SSD could partially inhibit the malignant phenotype of LN-229 cells, including inhibiting migration, invasion and apoptosis, and increasing the apoptosis rate and lactate dehydrogenase (LDH) release of LN-229 cells under the treatment of temozolomide (TMZ), that is to say, increasing the chemotherapy effect of TMZ on the cells. In addition, we unexpectedly found that SSD could partially inhibit the colony forming ability of LN-229 cells, which directly related to the stemness maintenance potential of cancer stem cells. Subsequently, our results showed that SSD could inhibit the gene and protein expression of stemness factors (OCT4, SOX2, c-Myc and Klf4) in LN-229 cells. Finally, we verified that SSD could improve the chemotherapy effect of TMZ by inhibiting the stem potential of glioblastoma in vivo nude mice. Conclusion this research can provide a certain theoretical basis for the application of SSD in the chemotherapy resistance of GBM and its mechanism of action, and provide a new hope for the clinical treatment of glioblastoma. SSD could inhibit the malignant phenotype of LN-229 cells, increase the chemotherapy effect of TMZ on the cells. SSD could inhibit the colony forming ability of LN-229 cells, and also inhibit their gene and protein expression of stemness factors. We verified that SSD could improve the chemotherapy effect of TMZ by inhibiting the stem potential of glioblastoma.
Collapse
|
12
|
Passalacqua MI, Rizzo G, Santarpia M, Curigliano G. 'Why is survival with triple negative breast cancer so low? insights and talking points from preclinical and clinical research'. Expert Opin Investig Drugs 2022; 31:1291-1310. [PMID: 36522800 DOI: 10.1080/13543784.2022.2159805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Triple negative breast cancer is typically related to poor prognosis, early metastasis, and high recurrence rate. Intrinsic and extrinsic biological features of TNBC and resistance mechanisms to conventional therapies can support its aggressive behavior, characterizing TNBC how extremely heterogeneous. Novel combination strategies are under investigation, including immunotherapeutic agents, anti-drug conjugates, PARP inhibitors, and various targeting agents, exploring, in the meanwhile, possible predictive biomarkers to correctly select patients for the optimal treatment for their specific subtype. AREAS COVERED This article examines the main malignity characteristics across different subtype, both histological and molecular, and the resistance mechanisms, both primary and acquired, to different drugs explored in the landscape of TNBC treatment, that lead TNBC to still has high mortality rate. EXPERT OPINION The complexity of TNBC is not only the main reason of its aggressivity, but its heterogeneity should be exploited in terms of therapeutics opportunities, combining agents with different mechanism of action, after a correct selection by biologic or molecular biomarkers. The main goal is to understand what TNBC really is and to act selectively on its characteristics, with a personalized anticancer treatment.
Collapse
Affiliation(s)
- Maria Ilenia Passalacqua
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Graziella Rizzo
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
13
|
Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022; 8:4673-4696. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer has recently been the second leading cause of death worldwide, trailing only cardiovascular disease. Cancer stem cells (CSCs), represented as tumor-initiating cells (TICs), are mainly liable for chemoresistance and disease relapse due to their self-renewal capability and differentiating capacity into different types of tumor cells. The intricate molecular mechanism is necessary to elucidate CSC's chemoresistance properties and cancer recurrence. Establishing efficient strategies for CSC maintenance and enrichment is essential to elucidate the mechanisms and properties of CSCs and CSC-related therapeutic measures. Current approaches are insufficient to mimic the in vivo chemical and physical conditions for the maintenance and growth of CSC and yield unreliable research results. Biomaterials are now widely used for simulating the bone marrow microenvironment. Biomaterial-based three-dimensional (3D) approaches for the enrichment of CSC provide an excellent promise for future drug discovery and elucidation of molecular mechanisms. In the future, the biomaterial-based model will contribute to a more operative and predictive CSC model for cancer therapy. Design strategies for materials, physicochemical cues, and morphology will offer a new direction for future modification and new methods for studying the CSC microenvironment and its chemoresistance property. This review highlights the critical roles of the microenvironmental cues that regulate CSC function and endow them with drug resistance properties. This review also explores the latest advancement and challenges in biomaterial-based scaffold structure for therapeutic approaches against CSC chemoresistance. Since the recent entry of extracellular vesicles (EVs), cell-derived nanostructures, have opened new avenues of investigation into this field, which, together with other more conventionally studied signaling pathways, play an important role in cell-to-cell communication. Thus, this review further explores the subject of EVs in-depth. This review also discusses possible future biomaterial and biomaterial-EV-based models that could be used to study the tumor microenvironment (TME) and will provide possible therapeutic approaches. Finally, this review concludes with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| | - Madhurima Das
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| |
Collapse
|
14
|
Fang J, Ma Y, Li Y, Li J, Zhang X, Han X, Ma S, Guan F. CCT4 knockdown enhances the sensitivity of cisplatin by inhibiting glycolysis in human esophageal squamous cell carcinomas. Mol Carcinog 2022; 61:1043-1055. [DOI: 10.1002/mc.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jiarui Fang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Yingchao Ma
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Ya Li
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Jianhui Li
- Department of Pathology Xuchang Central Hospital Affiliated to Henan University of Science and Technology Xuchang China
| | - Xishen Zhang
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Xiao Han
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Shanshan Ma
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| | - Fangxia Guan
- School of Life Sciences Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
15
|
Regulation of the Cancer Stem Phenotype by Long Non-Coding RNAs. Cells 2022; 11:cells11152352. [PMID: 35954194 PMCID: PMC9367355 DOI: 10.3390/cells11152352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells are a cell population within malignant tumors that are characterized by the ability to self-renew, the presence of specific molecules that define their identity, the ability to form malignant tumors in vivo, resistance to drugs, and the ability to invade and migrate to other regions of the body. These characteristics are regulated by various molecules, such as lncRNAs, which are transcripts that generally do not code for proteins but regulate multiple biological processes through various mechanisms of action. LncRNAs, such as HOTAIR, H19, LncTCF7, LUCAT1, MALAT1, LINC00511, and FMR1-AS1, have been described as key regulators of stemness in cancer, allowing cancer cells to acquire this phenotype. It has been proposed that cancer stem cells are clinically responsible for the high recurrence rates after treatment and the high frequency of metastasis in malignant tumors, so understanding the mechanisms that regulate the stem phenotype could have an impact on the improvement of cancer treatments.
Collapse
|
16
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
17
|
Pashirzad M, Sathyapalan T, Sheikh A, Kesharwani P, Sahebkar A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Liu X, Yin Z, Wu Y, Zhan Q, Huang H, Fan J. Circular RNA lysophosphatidic acid receptor 3 (circ-LPAR3) enhances the cisplatin resistance of ovarian cancer. Bioengineered 2022; 13:3739-3750. [PMID: 35081867 PMCID: PMC8974081 DOI: 10.1080/21655979.2022.2029109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Circular RNA (circRNA) is considered to be an important regulator that mediates cancer chemoresistance. But whether circ-LPAR3 is involved in ovarian cancer (OC) cisplatin (DDP) resistance is unclear. The circ-LPAR3, miR-634 and pyruvate dehydrogenase kinase 1 (PDK1) expression was measured by quantitative real-time PCR (qRT-PCR). Cell cisplatin resistance and viability were measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. In addition, cell colony number, apoptosis, and metastasis were assessed by colony formation assay, flow cytometry and transwell assay. Furthermore, in vivo experiments were performed by constructing mice xenograft models. RNA interaction was confirmed by dual-luciferase reporter assay, and PDK1 protein expression was examined by Western blot analysis. Our results showed that circ-LPAR3 was markedly upregulated in DDP-resistant OC tissues and cells. Silencing of circ-LPAR3 enhanced the DDP sensitivity of OC cells and tumors. MiR-634 could interact with circ-LPAR3, and its inhibitor overturned the regulation of si-circ-LPAR3 on cell DDP resistance. Additionally, PDK1 was targeted by miR-634, and its overexpression inverted the effect of miR-634 on cell DDP resistance. To sum up, circ-LPAR3 might contribute to the DDP resistance of OC via the miR-634/PDK1 axis.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Gynaecology and Obstetrics, Jinan City People's Hospital, Jinan, China
| | - Zhiping Yin
- Department of Laboratory Medicine, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yanjun Wu
- Department of Gynaecology and Obstetrics, Liaocheng People's Hospital, Liaocheng, China
| | - Qian Zhan
- Department of Laboratory Medicine, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| | - Honghong Huang
- Department of Pharmacy, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jiangtao Fan
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
19
|
Guan XY, Guan XL, Jiao ZY. Improving therapeutic resistance: beginning with targeting the tumor microenvironment. J Chemother 2021; 34:492-516. [PMID: 34873999 DOI: 10.1080/1120009x.2021.2011661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a serious threat to human health and life. The tumor microenvironment (TME) not only plays a key role in the occurrence, development and metastasis of cancer, but also has a profound impact on treatment resistance. To improve and solve this problem, an increasing number of strategies targeting the TME have been proposed, and great progress has been made in recent years. This article reviews the characteristics and functions of the main matrix components of the TME and the mechanisms by which each component affects drug resistance. Furthermore, this article elaborates on targeting the TME as a strategy to treat acquired drug resistance, reduce tumor metastasis, recurrence, and improve efficacy.
Collapse
Affiliation(s)
- Xiao-Ying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiao-Li Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zuo-Yi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
20
|
Ledys F, Kalfeist L, Galland L, Limagne E, Ladoire S. Therapeutic Associations Comprising Anti-PD-1/PD-L1 in Breast Cancer: Clinical Challenges and Perspectives. Cancers (Basel) 2021; 13:5999. [PMID: 34885109 PMCID: PMC8656936 DOI: 10.3390/cancers13235999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Despite a few cases of long-responder patients, immunotherapy with anti-PD-(L)1 has so far proved rather disappointing in monotherapy in metastatic breast cancer, prompting the use of synergistic therapeutic combinations incorporating immunotherapy by immune-checkpoint inhibitors. In addition, a better understanding of both the mechanisms of sensitivity and resistance to immunotherapy, as well as the immunological effects of the usual treatments for breast cancer, make it possible to rationally consider this type of therapeutic combination. For several years, certain treatments, commonly used to treat patients with breast cancer, have shown that in addition to their direct cytotoxic effects, they may have an impact on the tumor immune microenvironment, by increasing the antigenicity and/or immunogenicity of a "cold" tumor, targeting the immunosuppressive microenvironment or counteracting the immune-exclusion profile. This review focuses on preclinical immunologic synergic mechanisms of various standard therapeutic approaches with anti-PD-(L)1, and discusses the potential clinical use of anti-PD-1/L1 combinations in metastatic or early breast cancer.
Collapse
Affiliation(s)
- Fanny Ledys
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Laura Kalfeist
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Loick Galland
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| | - Emeric Limagne
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Sylvain Ladoire
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
21
|
Wang X, Sun C, Huang X, Li J, Fu Z, Li W, Yin Y. The Advancing Roles of Exosomes in Breast Cancer. Front Cell Dev Biol 2021; 9:731062. [PMID: 34790660 PMCID: PMC8591197 DOI: 10.3389/fcell.2021.731062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) develops from breast tissue and is the most common aggressive malignant tumor in women worldwide. Although advanced treatment strategies have been applied and reduced current mortality rates, BC control remains unsatisfactory. It is essential to elucidate the underlying molecular mechanisms to assist clinical options. Exosomes are a type of extracellular vesicles and mediate cellular communications by delivering various biomolecules (oncogenes, oncomiRs, proteins, and even pharmacological compounds). These bioactive molecules can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. Extensive studies have implicated exosomes in BC biology, including therapeutic resistance and the surrounding microenvironment. This review focuses on discussing the functions of exosomes in tumor treatment resistance, invasion and metastasis of BC. Moreover, we will also summarize multiple interactions between exosomes and the BC tumor microenvironment. Finally, we propose promising clinical applications of exosomes in BC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternity and Child Medical Institute, Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Yang J, Hu Y, Wang L, Sun X, Yu L, Guo W. Human umbilical vein endothelial cells derived-exosomes promote osteosarcoma cell stemness by activating Notch signaling pathway. Bioengineered 2021; 12:11007-11017. [PMID: 34781817 PMCID: PMC8810022 DOI: 10.1080/21655979.2021.2005220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant tumors of bone in adolescents. Human umbilical vein endothelial cells (HUVECs) derived exosomes are associated with osteosarcoma cell stemness. Little is known about the function of HUVECs-exosomes in osteosarcoma cell stemness. This work aimed to investigate the mechanism of action of HUVECs-exosomes in regulating stem cell-like phenotypes of osteosarcoma cells. HUVECs were treated with GW4869 (exosome inhibitor). Human osteosarcoma cells (U2OS and 143B) were treated with HUVECs supernatant, HUVECs-exosomes with or without RO4929097 (γ secretase inhibitor, used to block Notch signaling pathway). We found that HUVECs supernatant and HUVECs-exosomes enhanced the proportions of STRO-1+CD117+ cells and the expression of stem cell-related proteins Oct4 and Sox2. Both HUVECs supernatant and HUVECs-exosomes promoted the sarcosphere formation efficiency of U2OS and 143B cells. These stem-like phenotypes of U2OS and 143B cells conferred by HUVECs-exosomes were repressed by GW4869. Moreover, HUVECs-exosomes promoted the expression of Notch1, Hes1 and Hey1 in the U2OS and 143B cells. RO4929097 treatment reversed the impact of HUVECs-exosomes on Notch1, Hes1, and Hey1 expression by inhibiting Notch1 signaling pathway. In conclusion, this work demonstrated that HUVECs-exosomes promoted cell stemness in osteosarcoma through activating Notch signaling pathway. Thus, our data reveal the mechanism of HUVECs-exosomes in regulating cell stemness of osteosarcoma, and provide a theoretical basis for osteosarcoma treatment by exosomes.
Collapse
Affiliation(s)
- Jian Yang
- Departments of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong Hu
- Departments of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Departments of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiangran Sun
- Departments of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Yu
- Departments of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weichun Guo
- Departments of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Lv X, Xu G. Regulatory role of the transforming growth factor-β signaling pathway in the drug resistance of gastrointestinal cancers. World J Gastrointest Oncol 2021; 13:1648-1667. [PMID: 34853641 PMCID: PMC8603464 DOI: 10.4251/wjgo.v13.i11.1648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer, including esophageal, gastric, and colorectal cancer, is one of the most prevalent types of malignant carcinoma and the leading cause of cancer-related deaths. Despite significant advances in therapeutic strategies for GI cancers in recent decades, drug resistance with various mechanisms remains the prevailing cause of therapy failure in GI cancers. Accumulating evidence has demonstrated that the transforming growth factor (TGF)-β signaling pathway has crucial, complex roles in many cellular functions related to drug resistance. This review summarizes current knowledge regarding the role of the TGF-β signaling pathway in the resistance of GI cancers to conventional chemotherapy, targeted therapy, immunotherapy, and traditional medicine. Various processes, including epithelial-mesenchymal transition, cancer stem cell development, tumor microenvironment alteration, and microRNA biogenesis, are proposed as the main mechanisms of TGF-β-mediated drug resistance in GI cancers. Several studies have already indicated the benefit of combining antitumor drugs with agents that suppress the TGF-β signaling pathway, but this approach needs to be verified in additional clinical studies. Moreover, the identification of potential biological markers that can be used to predict the response to TGF-β signaling pathway inhibitors during anticancer treatments will have important clinical implications in the future.
Collapse
Affiliation(s)
- Xiaoqun Lv
- Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
25
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
26
|
Colombo J, Moschetta-Pinheiro MG, Novais AA, Stoppe BR, Bonini ED, Gonçalves FM, Fukumasu H, Coutinho LL, Chuffa LGDA, Zuccari DAPDC. Liquid Biopsy as a Diagnostic and Prognostic Tool for Women and Female Dogs with Breast Cancer. Cancers (Basel) 2021; 13:5233. [PMID: 34680380 PMCID: PMC8533706 DOI: 10.3390/cancers13205233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Breast cancer (BC) is the malignant neoplasm with the highest mortality rate in women and female dogs are good models to study BC. OBJECTIVE We investigated the efficacy of liquid biopsy to detect gene mutations in the diagnosis and follow-up of women and female dogs with BC. MATERIALS AND METHODS In this study, 57 and 37 BC samples were collected from women and female dogs, respectively. After core biopsy and plasma samples were collected, the DNA and ctDNA of the tumor fragments and plasma were processed for next generation sequencing (NGS) assay. After preprocessing of the data, they were submitted to the Genome Analysis ToolKit (GATK). RESULTS In women, 1788 variants were identified in tumor fragments and 221 variants in plasma; 66 variants were simultaneously detected in tumors and plasma. Conversely, in female dogs, 1430 variants were found in plasma and 695 variants in tumor fragments; 59 variants were simultaneously identified in tumors and plasma. The most frequently mutated genes in the tumor fragments of women were USH2A, ATM, and IGF2R; in female dogs, they were USH2A, BRCA2, and RRM2. Plasma of women showed the most frequent genetic variations in the MAP3K1, BRCA1, and GRB7 genes, whereas plasma from female dogs had variations in the NF1, ERBB2, and KRT17 genes. Mutations in the AKT1, PIK3CA, and BRIP genes were associated with tumor recurrence, with a highly pathogenic variant in PIK3CA being particularly prominent. We also detected a gain-of-function mutation in the GRB7, MAP3K1, and MLH1 genes. CONCLUSION Liquid biopsy is useful to identify specific genetic variations at the beginning of BC manifestation and may be accompanied over the entire follow-up period, thereby supporting the clinicians in refining interventions.
Collapse
Affiliation(s)
- Jucimara Colombo
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Marina Gobbe Moschetta-Pinheiro
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Adriana Alonso Novais
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Bruna Ribeiro Stoppe
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Enrico Dumbra Bonini
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Francine Moraes Gonçalves
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil;
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil;
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu 18618-689, Brazil;
| | - Debora Aparecida Pires de Campos Zuccari
- Laboratory of Molecular Investigation in Cancer (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José, São José do Rio Preto 15090-000, Brazil; (J.C.); (M.G.M.-P.); (A.A.N.); (B.R.S.); (E.D.B.); (F.M.G.)
| |
Collapse
|
27
|
Malla RR, Padmaraju V, Marni R, Kamal MA. Natural products: Potential targets of TME related long non-coding RNAs in lung cancer. PHYTOMEDICINE 2021; 93:153782. [PMID: 34627097 DOI: 10.1016/j.phymed.2021.153782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lung cancer is a significant health concern worldwide due to high mortality and morbidity, despite the advances in diagnosis, treatment, and management. Recent experimental evidence from different models suggested long non-coding RNAs (lncRNAs) as major modulators of cancer stem cells (CSCs) in the tumor microenvironment (TME) to support metastasis and drug resistance in lung cancer. Evidence-based studies demonstrated that natural products interfere with TME functions. PURPOSE OF STUDY To establish lncRNAs of TME as novel targets of natural compounds for lung cancer management. STUDY DESIGN Current study used a combination of TME and lung CSCs, lncRNAs and enrichment and stemness maintenance, natural products and stem cell management, natural products and lncRNAs, natural products and targeted delivery as keywords to retrieve the literature from Scopus, Web of Science, PubMed, and Google Scholar. This study critically reviewed the current literature and presented cancer stem cells' ability in reprogramming lung TME. RESULTS This review found that TME related oncogenic and tumor suppressor lncRNAs and their signaling pathways control the maintenance of stemness in lung TME. This review explored natural phenolic compounds and found that curcumin, genistein, quercetin epigallocatechin gallate and ginsenoside Rh2 are efficient in managing lung CSCs. They modulate lncRNAs and their upstream mediators by targeting signaling and epigenetic pathways. This review also identified relevant nanotechnology-based phytochemical delivery approaches for targeting lung cancer. CONCLUSION By critical literature analysis, TME related lncRNAs were identified as potential therapeutic targets, aiming to develop natural product-based therapeutics to treat metastatic and drug-resistant lung cancers.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India; Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India.
| | - Vasudevaraju Padmaraju
- Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Rakshmitha Marni
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India; Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be) University, Visakhapatnam, Andhra Pradesh 530045, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
28
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
29
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, Xu Y, Shao J, Wang W, Cai Z. Nanoparticle-Mediated Targeted Drug Delivery to Remodel Tumor Microenvironment for Cancer Therapy. Int J Nanomedicine 2021; 16:5811-5829. [PMID: 34471353 PMCID: PMC8403563 DOI: 10.2147/ijn.s321416] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022] Open
Abstract
Advanced research has revealed the crucial role of tumor microenvironment (TME) in tumorigenesis. TME consists of a complicated network with a variety of cell types including endothelial cells, pericytes, immune cells, cancer-associated fibroblasts (CAFs), cancer stem cells (CSCs) as well as the extracellular matrix (ECM). The TME-constituting cells interact with the cancerous cells through plenty of signaling mechanisms and pathways in a dynamical way, participating in tumor initiation, progression, metastasis, and response to therapies. Hence, TME is becoming an attractive therapeutic target in cancer treatment, exhibiting potential research interest and clinical benefits. Presently, the novel nanotechnology applied in TME regulation has made huge progress. The nanoparticles (NPs) can be designed as demand to precisely target TME components and to inhibit tumor progression through TME modulation. Moreover, nanotechnology-mediated drug delivery possesses many advantages including prolonged circulation time, enhanced bioavailability and decreased toxicity over traditional therapeutic modality. In this review, update information on TME remodeling through NPs-based targeted drug delivery strategies for anticancer therapy is summarized.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yonggang Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
31
|
Sanyal S, Law S. Chronic pesticide exposure induced aberrant Notch signalling along the visual pathway in a murine model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117077. [PMID: 33839617 DOI: 10.1016/j.envpol.2021.117077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Pesticides aid in crop-protection against pests and increase yield. However, the xenobiotic stress exerted by pesticides leads to the deterioration of human and animal health. There is a lacuna in our knowledge about their impact on the ocular surface The present work sheds light on this gap by analysing the deterioration of visual acuity as a consequence of pesticide induced xenobiotic stress and Notch pathway dysregulation. Alteration in the expression of vital components of the notch signalling was analyzed along the visual pathway with special focus on its two terminals-the cornea and the visual cortex, by mimicking the on-field scenario regarding chronic pesticide exposure in experimental murine model (Swiss albino mice; Mus musculus). Various aspects were taken into consideration through visual acuity tests, histological evaluations, culture analyses, wound healing assays, flowcytometric evaluation, fluorescence microscopic studies etc. Complete dysregulation of key players of the Notch signalling pathway was observed in both: cells of the ocular surface as well as those in the murine visual cortex post pesticide exposure, indicating activities relating to cell proliferation, differentiation and wound healing in the pesticide exposed samples. Ultra-microscopic analyses corroborated our findings by revealing the loss of fine neural processes in the visual cortex of the pesticide exposed murine samples, thereby hinting at delayed perception to visual stimuli. In vivo evaluations of the functional capacity of the neuroanatomical structures along the visual pathway also confirmed that pesticide exposure leads to severe damage along the various parts of the visual pathway, right from the ocular surface to the visual cortex.
Collapse
Affiliation(s)
- Shalini Sanyal
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, India
| | - Sujata Law
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, India.
| |
Collapse
|
32
|
Zhang G, Tan G, Li T, Ai J, Song Y, Zhou Z, Xiao J, Li W. Analysis of ceRNA network of differentially expressed genes in FaDu cell line and a cisplatin-resistant line derived from it. PeerJ 2021; 9:e11645. [PMID: 34249502 PMCID: PMC8255068 DOI: 10.7717/peerj.11645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hypopharyngeal cancer accounts for 2% in head and neck cancers and has a poor prognosis. Cisplatin is a widely used chemotherapeutic drug in kinds of carcinomas, concluding hypopharyngeal cancer. However, the resistance of cisplatin appeared in recent years. Cisplatin-resistance has been partly explored before, but rarely in hypopharyngeal cancer. Methods We cultured the hypopharyngeal cancer cell (FaDu) and induced its cisplatin-resistant cell (FaDu/DDP4). Then we tested the differentially expressed genes (DEGs) between FaDu and FaDu/DDP4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted on the DEGs, and we drew the ceRNA networks of DEGs. Finally, we chose eight miRNAs and six mRNAs for qRT-PCR to verify our microarray. Results We induced cisplatin-resistant FaDu/DDP4 and proved its chemoresistance. The resistance index (RI) of FaDu/DDP4 was 2.828. DEGs contain 2,388 lncRNAs, 1,932 circRNAs, 745 mRNAs and 202 miRNAs. These 745 mRNAs were classified into three domains and 47 secondary GO terms. In KEGG pathway enrichment, the “TNF signaling pathway”, “IL-17 signaling pathway” and “JAK-STAT signaling pathway” were potentially significant signaling pathways. Then, 52 lncRNAs, 148 circRNAs, 155 mRNAs and 18 miRNAs were selected to draw the network. We noticed several potential targets (as miR-197-5p, miR-6808-5p, APOE, MMP1, S100A9 and CYP24A1). At last, the eight miRNAs and six mRNAs that are critical RNAs in ceRNA network were verified by qRT-PCR. Conclusion The microarray helped to find DEGs in cisplatin-resistant hypopharyngeal cancer. TNF, IL-17 and JAK-STAT signaling pathways might be more significant for cisplatin-resistance. MiR-197-5p, miR-6808-5p, APOE, MMP1, S100A9 and CYP24A1 might be potential genes inducing resistance.
Collapse
Affiliation(s)
- Gehou Zhang
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tieqi Li
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingang Ai
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yexun Song
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zheng Zhou
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Xiao
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Kim IG, Lee JH, Kim SY, Heo CK, Kim RK, Cho EW. Targeting therapy-resistant lung cancer stem cells via disruption of the AKT/TSPYL5/PTEN positive-feedback loop. Commun Biol 2021; 4:778. [PMID: 34163000 PMCID: PMC8222406 DOI: 10.1038/s42003-021-02303-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) are regarded as essential targets to overcome tumor progression and therapeutic resistance; however, practical targeting approaches are limited. Here, we identify testis-specific Y-like protein 5 (TSPYL5) as an upstream regulator of CSC-associated genes in non-small cell lung cancer cells, and suggest as a therapeutic target for CSC elimination. TSPYL5 elevation is driven by AKT-dependent TSPYL5 phosphorylation at threonine-120 and stabilization via inhibiting its ubiquitination. TSPYL5-pT120 also induces nuclear translocation and functions as a transcriptional activator of CSC-associated genes, ALDH1 and CD44. Also, nuclear TSPYL5 suppresses the transcription of PTEN, a negative regulator of PI3K signaling. TSPYL5-pT120 maintains persistent CSC-like characteristics via transcriptional activation of CSC-associated genes and a positive feedback loop consisting of AKT/TSPYL5/PTEN signaling pathway. Accordingly, elimination of TSPYL5 by inhibiting TSPYL5-pT120 can block aberrant AKT/TSPYL5/PTEN cyclic signaling and TSPYL5-mediated cancer stemness regulation. Our study suggests TSPYL5 be an effective target for therapy-resistant cancer. In order to assist the development of cancer stem cell (CSC) therapy, Kim et al identified testis-specific Y-like protein 5 (TSPYL5) as an upstream regulator of CSC-associated genes in non-small cell lung cancer cells. They demonstrated in cancer cell lines and in vivo that TSPYL5 activity is dependent on AKT signalling and that disruption of TSPYL5 signalling could serve as a potential strategy to tackle therapy-resistant cancers.
Collapse
Affiliation(s)
- In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, South Korea. .,Department of Radiation Science and Technology, Korea University of Science and Technology, Daejeon, South Korea.
| | - Jei-Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, South Korea
| | - Seo-Yeon Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, South Korea
| | - Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Rae-Kwon Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, South Korea.,Department of Radiation Science and Technology, Korea University of Science and Technology, Daejeon, South Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| |
Collapse
|
34
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Dias AS, Helguero L, Almeida CR, Duarte IF. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Molecules 2021; 26:molecules26123494. [PMID: 34201298 PMCID: PMC8228554 DOI: 10.3390/molecules26123494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a heterogenous assemblage of malignant and non-malignant cells, including infiltrating immune cells and other stromal cells, together with extracellular matrix and a variety of soluble factors. This complex and dynamic milieu strongly affects tumor differentiation, progression, immune evasion, and response to therapy, thus being an important therapeutic target. The phenotypic and functional features of the various cell types present in the TME are largely dependent on their ability to adopt different metabolic programs. Hence, modulating the metabolism of the cells in the TME, and their metabolic crosstalk, has emerged as a promising strategy in the context of anticancer therapies. Natural compounds offer an attractive tool in this respect as their multiple biological activities can potentially be harnessed to ‘(re)-educate’ TME cells towards antitumoral roles. The present review discusses how natural compounds shape the metabolism of stromal cells in the TME and how this may impact tumor development and progression.
Collapse
Affiliation(s)
- Ana S. Dias
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Luisa Helguero
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Catarina R. Almeida
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234-401-418
| |
Collapse
|
36
|
Kumar B, Ahmad R, Sharma S, Gowrikumar S, Primeaux M, Rana S, Natarajan A, Oupicky D, Hopkins CR, Dhawan P, Singh AB. PIK3C3 Inhibition Promotes Sensitivity to Colon Cancer Therapy by Inhibiting Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13092168. [PMID: 33946505 PMCID: PMC8124755 DOI: 10.3390/cancers13092168] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) represents a heterogeneous population of tumor cells and cancer stem cells (CSCs) where CSCs are postulated to resist the chemotherapy, and support cancer malignancy. Eliminating CSC can therefore improve CRC therapy and patient survival; however, such strategies have not yielded the desired outcome. Inhibiting autophagy has shown promise in suppressing therapy resistance; however, current autophagy inhibitors have failed in the clinical trials. In the current study, we provided data supporting the efficacy of 36-077, a potent inhibitor of PIK3C3/VPS34, in inhibiting autophagy to kill the CSC to promote the efficacy of colon cancer therapy. Abstract Background: Despite recent advances in therapies, resistance to chemotherapy remains a critical problem in the clinical management of colorectal cancer (CRC). Cancer stem cells (CSCs) play a central role in therapy resistance. Thus, elimination of CSCs is crucial for effective CRC therapy; however, such strategies are limited. Autophagy promotes resistance to cancer therapy; however, whether autophagy protects CSCs to promote resistance to CRC-therapy is not well understood. Moreover, specific and potent autophagy inhibitors are warranted as clinical trials with hydroxychloroquine have not been successful. Methods: Colon cancer cells and tumoroids were used. Fluorescent reporter-based analysis of autophagy flux, spheroid and side population (SP) culture, and qPCR were done. We synthesized 36-077, a potent inhibitor of PIK3C3/VPS34 kinase, to inhibit autophagy. Combination treatments were done using 5-fluorouracil (5-FU) and 36-077. Results: The 5-FU treatment induced autophagy only in a subset of the treated colon cancer. These autophagy-enriched cells also showed increased expression of CSC markers. Co-treatment with 36-077 significantly improved efficacy of the 5-FU treatment. Mechanistic studies revealed that combination therapy inhibited GSK-3β/Wnt/β-catenin signaling to inhibit CSC population. Conclusion: Autophagy promotes resistance to CRC-therapy by specifically promoting GSK-3β/Wnt/β-catenin signaling to promote CSC survival, and 36-077, a PIK3C3/VPS34 inhibitor, helps promote efficacy of CRC therapy.
Collapse
Affiliation(s)
- Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA; (B.K.); (R.A.); (S.G.); (M.P.); (P.D.)
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA; (B.K.); (R.A.); (S.G.); (M.P.); (P.D.)
| | - Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA; (S.S.); (D.O.); (C.R.H.)
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA; (B.K.); (R.A.); (S.G.); (M.P.); (P.D.)
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA; (B.K.); (R.A.); (S.G.); (M.P.); (P.D.)
| | - Sandeep Rana
- Eppley Institute for Cancer Research Program, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA; (S.R.); (A.N.)
| | - Amarnath Natarajan
- Eppley Institute for Cancer Research Program, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA; (S.R.); (A.N.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - David Oupicky
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA; (S.S.); (D.O.); (C.R.H.)
| | - Corey R. Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA; (S.S.); (D.O.); (C.R.H.)
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA; (B.K.); (R.A.); (S.G.); (M.P.); (P.D.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105-1850, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-6125, USA; (B.K.); (R.A.); (S.G.); (M.P.); (P.D.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105-1850, USA
- Correspondence:
| |
Collapse
|
37
|
Microvesicles - promising tiny players' of cancer stem cells targeted liver cancer treatments: The interesting interactions and therapeutic aspects. Pharmacol Res 2021; 169:105609. [PMID: 33852962 DOI: 10.1016/j.phrs.2021.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Liver cancer is one of the most malignant cancers worldwide with poor prognosis. Intracellular mediators like microvesicles (MVs) and cancer stem cells (CSCs) are considered as potential candidates in liver cancer progression. CSCs receive stimuli from the tumor microenvironment to initiate tumor formation in which it's secreted MVs play a noteworthy role. The phenotypic conversion of tumor cells during epithelial-to-mesenchymal transition (EMT) is a key step in tumor invasion and metastasis which indicates that the diverse cell populations within the primary tumor are in a dynamic balance and can be regulated by cell to cell communication via secreted microvesicles. Thus, in this review, we aim to highlight the evidences that suggest CSCs are crucial for liver cancer development where the microvesicles plays an important part in the maintenance of its stemness properties. In addition, we summarize the existing evidences that support the concept of microvesicles, the tiny particles have a big role behind the rare immortal CSCs which controls the tumor initiation, propagation and metastasis in liver cancer. Identifying interactions between CSCs and microvesicles may offer new insights into precise anti-cancer therapies in the future.
Collapse
|
38
|
Xu G, Zhao H, Xu J, Zhang Y, Qi X, Shi A. Hard antler extract inhibits invasion and epithelial-mesenchymal transition of triple-negative and Her-2 + breast cancer cells by attenuating nuclear factor-κB signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113705. [PMID: 33346025 DOI: 10.1016/j.jep.2020.113705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hard antler extract (HAE) is a traditional Chinese medicine and has potent antitumor, antioxidative, anti-inflammatory, and immunomodulatory activities. Previous studies have demonstrated that HAE can inhibit human prostate cancer metastasis and murine breast cancer proliferation. However, the effect of HAE on human breast cancer cells has not been clarified. AIM OF THE STUDY To investigate the effects and underlying mechanism of HAE on self-renewal of stem-like cells and spontaneous and transforming growth factor (TGF)-β1-enhanced wound healing, invasion and epithelial-mesenchymal transition (EMT) in breast cancer cells. METHODS HAE was prepared from sika deer by sequential enzymatic digestions and the active compounds were determined by HPLC. The effects of HAE on the viability, mammosphere formation, wound healing and invasion of MDA-MB-231 and SK-BR3 cells were determined. The impact of HAE treatment on spontaneous and TGF-β1-promoted EMT and the nuclear factor (NF)-κB signaling in breast cancer cells was examined by quantitative RT-PCR and western blotting. RESULTS Treatment with HAE at varying concentrations did not change the viability of breast cancer cells. However, HAE at 0.25 or 0.5 mg/mL significantly reduced the number and size of formed mammospheres, and inhibited spontaneous and TGF-β1-enhanced wound healing, invasion and EMT in MDA-MB-231 and SK-BR3 cells in a dose-dependent manner. TGF-β1 treatment significantly decreased IκBα expression and increased NF-kBp65 phosphorylation in breast cancer cells, indicating that TGF-β1 enhanced NF-κB signaling. In contrast, HAE treatment attenuated the spontaneous and TGF-β1-enhanced NF-κB signaling in breast cancer cells. CONCLUSION Our data indicated that HAE inhibited the self-renewal of stem-like cells and spontaneous and TGF-β1-enhanced wound healing, invasion and EMT in breast cancer cells by attenuating the NF-κB signaling in vitro.
Collapse
Affiliation(s)
- Gege Xu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Haiping Zhao
- Institute of Special Animal and Plant Sciences of CAAS, Changchun, 130112, China
| | - Jingdong Xu
- Biology Major, the University of Texas at Austin, Austin, TX, 78705, USA
| | - Yu Zhang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoyan Qi
- Institute of Special Animal and Plant Sciences of CAAS, Changchun, 130112, China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
39
|
Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel) 2021; 13:cancers13030376. [PMID: 33498502 PMCID: PMC7864187 DOI: 10.3390/cancers13030376] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications.
Collapse
|
40
|
Pineda JR, Badiola I, Ibarretxe G. Stem and Cancer Stem Cell Identities, Cellular Markers, Niche Environment and Response to Treatments to Unravel New Therapeutic Targets. BIOLOGY 2021; 10:biology10010025. [PMID: 33401684 PMCID: PMC7824359 DOI: 10.3390/biology10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022]
Affiliation(s)
- Jose R. Pineda
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Achucarro Basque Center for Neuroscience Fundazioa, 48940 Leioa, Spain
- Correspondence: (J.R.P.); (G.I.); Tel.: +34-9460-12426 (J.R.P.); +34-9460-13218 (G.I.)
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Correspondence: (J.R.P.); (G.I.); Tel.: +34-9460-12426 (J.R.P.); +34-9460-13218 (G.I.)
| |
Collapse
|
41
|
Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5:228. [PMID: 33028808 PMCID: PMC7541492 DOI: 10.1038/s41392-020-00313-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial-mesenchymal transition, acquisition properties of cancer stem cells, and trans-differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to improve patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, 611137, Chengdu, People's Republic of China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, People's Republic of China.
| |
Collapse
|
42
|
Chen B, Ye P, Chen Y, Liu T, Cha JH, Yan X, Yang WH. Involvement of the Estrogen and Progesterone Axis in Cancer Stemness: Elucidating Molecular Mechanisms and Clinical Significance. Front Oncol 2020; 10:1657. [PMID: 33014829 PMCID: PMC7498570 DOI: 10.3389/fonc.2020.01657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen and progesterone regulate the growth and development of human tissues, including the reproductive system and breasts, through estrogen and progesterone receptors, respectively. These receptors are also important indicators for the clinical prognosis of breast cancer and various reproductive cancers. Many studies have reported that cancer stem cells (CSCs) play a key role in tumor initiation, progression, metastasis, and recurrence. Although the role of estrogen and progesterone in human organs and various cancers has been studied, the molecular mechanisms underlying the action of these hormones on CSCs remain unclear. Therefore, further elucidation of the effects of estrogen and progesterone on CSCs should provide a new direction for developing pertinent therapies. In this review, we summarize the current knowledge on the estrogen and progesterone axis involved in cancer stemness and discuss potential therapeutic strategies to inhibit CSCs by targeting relevant pathways.
Collapse
Affiliation(s)
- Bi Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Peng Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,The Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wen-Hao Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
43
|
Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting Multiple Signaling Pathways in Cancer: The Rutin Therapeutic Approach. Cancers (Basel) 2020; 12:E2276. [PMID: 32823876 PMCID: PMC7463935 DOI: 10.3390/cancers12082276] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Multiple dysregulated signaling pathways are implicated in the pathogenesis of cancer. The conventional therapies used in cancer prevention/treatment suffer from low efficacy, considerable toxicity, and high cost. Hence, the discovery and development of novel multi-targeted agents to attenuate the dysregulated signaling in cancer is of great importance. In recent decades, phytochemicals from dietary and medicinal plants have been successfully introduced as alternative anticancer agents due to their ability to modulate numerous oncogenic and oncosuppressive signaling pathways. Rutin (also known as rutoside, quercetin-3-O-rutinoside and sophorin) is an active plant-derived flavonoid that is widely distributed in various vegetables, fruits, and medicinal plants, including asparagus, buckwheat, apricots, apples, cherries, grapes, grapefruit, plums, oranges, and tea. Rutin has been shown to target various inflammatory, apoptotic, autophagic, and angiogenic signaling mediators, including nuclear factor-κB, tumor necrosis factor-α, interleukins, light chain 3/Beclin, B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein, caspases, and vascular endothelial growth factor. A comprehensive and critical analysis of the anticancer potential of rutin and associated molecular targets amongst various cancer types has not been performed previously. Accordingly, the purpose of this review is to present an up-to-date and critical evaluation of multiple cellular and molecular mechanisms through which the anticancer effects of rutin are known to be exerted. The current challenges and limitations as well as future directions of research are also discussed.
Collapse
Affiliation(s)
- Zeinab Nouri
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Keyvan Nouri
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Carly E. Wallace
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|
44
|
Lin H, Zhang L, Zhang C, Liu P. Exosomal MiR-500a-3p promotes cisplatin resistance and stemness via negatively regulating FBXW7 in gastric cancer. J Cell Mol Med 2020; 24:8930-8941. [PMID: 32588541 PMCID: PMC7417713 DOI: 10.1111/jcmm.15524] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance has been a major challenge in advanced gastric cancer (GC) therapy. Exosomal transfer of oncogenic miRNAs implicates important effects in mediating recipient cell chemoresistance by transmitting active molecules. In this study, we found that microRNA‐500a‐3p was highly expressed in cisplatin (DDP) resistant GC cells (MGC803/DDP and MKN45/DDP) and their secreted exosomes than that in the corresponding parental cells. MGC803/DDP‐derived exosomes enhance DDP resistance and stemness properties of MGC803 recipient cells via exosomal delivery of miR‐500a‐3p in vitro and in vivo through targeting FBXW7. However, reintroduction of FBXW7 in MGC803 cells reverses miR‐500a‐3p‐mediated DDP resistance as well as stemness properties. Furthermore, elevated miR‐500a‐3p in the plasma exosomes of GC patients is correlated with DDP resistance and thereby results in poor progression‐free prognosis. Our finding highlights the potential of exosomal miR‐500a‐3p as an potential modality for the prediction and treatment of GC with chemoresistance.
Collapse
Affiliation(s)
- Hao Lin
- Department of General Surgery, XuZhou Central Hospital, Xuzhou, China
| | - Liang Zhang
- Department of General Surgery, XuZhou Central Hospital, Xuzhou, China
| | - Caihua Zhang
- Department of General Surgery, XuZhou Central Hospital, Xuzhou, China
| | - Pengpeng Liu
- Department of General Surgery, XuZhou Central Hospital, Xuzhou, China
| |
Collapse
|
45
|
Deepak KGK, Vempati R, Nagaraju GP, Dasari VR, S N, Rao DN, Malla RR. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 2020; 153:104683. [PMID: 32050092 DOI: 10.1016/j.phrs.2020.104683] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is most aggressive subtype of breast cancers with high probability of metastasis as well as lack of specific targets and targeted therapeutics. TNBC is characterized with unique tumor microenvironment (TME), which differs from other subtypes. TME is associated with induction of proliferation, angiogenesis, inhibition of apoptosis and immune system suppression, and drug resistance. Exosomes are promising nanovesicles, which orchestrate the TME by communicating with different cells within TME. The components of TME including transformed ECM, soluble factors, immune suppressive cells, epigenetic modifications and re-programmed fibroblasts together hamper antitumor response and helps progression and metastasis of TNBCs. Therefore, TME could be a therapeutic target of TNBC. The current review presents latest updates on the role of exosomes in modulation of TME, approaches for targeting TME and combination of immune checkpoint inhibitors and target chemotherapeutics. Finally, we also discussed various phytochemicals that alter genetic, transcriptomic and proteomic profiles of TME along with current challenges and future implications. Thus, as TME is associated with the hallmarks of TNBC, the understanding of the impact of different components can improve the clinical benefits of TNBC patients.
Collapse
Affiliation(s)
- K G K Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Rahul Vempati
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 N. Academy Ave, Danville, PA, 17822, USA
| | - Nagini S
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608 002, India
| | - D N Rao
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| |
Collapse
|
46
|
Caffeic Acid Attenuates Multi-Drug Resistance in Cancer Cells by Inhibiting Efflux Function of Human P-glycoprotein. Molecules 2020; 25:molecules25020247. [PMID: 31936160 PMCID: PMC7024235 DOI: 10.3390/molecules25020247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/26/2023] Open
Abstract
: Multidrug resistance (MDR) is a complicated ever-changing problem in cancer treatment, and P-glycoprotein (P-gp), a drug efflux pump, is regarded as the major cause. In the way of developing P-gp inhibitors, natural products such as phenolic acids have gotten a lot of attention recently. The aim of the present study was to investigate the modulating effects and mechanisms of caffeic acid on human P-gp, as well as the attenuating ability on cancer MDR. Calcein-AM, rhodamine123, and doxorubicin were used to analyze the interaction between caffeic acid and P-gp, and the ATPase activity of P-gp was evaluated as well. Resistance reversing effects were revealed by SRB and cell cycle assay. The results indicated that caffeic acid uncompetitively inhibited rhodamine123 efflux and competitively inhibited doxorubicin efflux. In terms of P-gp ATPase activity, caffeic acid exhibited stimulation in both basal and verapamil-stimulated activity. The combination of chemo drugs and caffeic acid resulted in decreased IC50 in ABCB1/Flp-InTM-293 and KB/VIN, indicating that the resistance was reversed. Results of molecular docking suggested that caffeic acid bound to P-gp through GLU74 and TRY117 residues. The present study demonstrated that caffeic acid is a promising candidate for P-gp inhibition and cancer MDR attenuation.
Collapse
|
47
|
Saki N, Farshchi N, Azandeh S, Jalali M. Biologic profile evaluation of mesenchymal stem cells in co-culture with K562 cells. CLINICAL CANCER INVESTIGATION JOURNAL 2020. [DOI: 10.4103/ccij.ccij_24_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
Conciatori F, Bazzichetto C, Falcone I, Ferretti G, Cognetti F, Milella M, Ciuffreda L. Colorectal cancer stem cells properties and features: evidence of interleukin-8 involvement. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:968-979. [PMID: 35582268 PMCID: PMC9019202 DOI: 10.20517/cdr.2019.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) still remains a disease with high percentage of death, principally due to therapy resistance and metastasis. During the time the hypothesis has been reinforced that CRC stem cells (CRCSC) are involved in allowing intratumoral heterogeneity, drug escape mechanisms and secondary tumors. CRCSC are characterized by specific surface markers (i.e., CD44 and CD133), signaling pathways activation (i.e., Wnt and Notch) and gene expression (i.e., Oct4 and Snail), which confer to CRCSC self-renewal abilities and pluripotent capacity. Interleukin (IL)-8 is correlated to CRC progression, development of liver metastases and chemoresistance; moreover, IL-8 modulates not only stemness maintenance but also stemness promotion, such as epithelial-mesenchymal transition. This review wants to give a brief and up-to-date overview on IL-8 implication in CRCSC cues.
Collapse
Affiliation(s)
- Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy.,SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
49
|
Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
50
|
Zhang Z, Wiencke JK, Koestler DC, Salas LA, Christensen BC, Kelsey KT. Absence of an embryonic stem cell DNA methylation signature in human cancer. BMC Cancer 2019; 19:711. [PMID: 31324166 PMCID: PMC6642562 DOI: 10.1186/s12885-019-5932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Differentiated cells that arise from stem cells in early development contain DNA methylation features that provide a memory trace of their fetal cell origin (FCO). The FCO signature was developed to estimate the proportion of cells in a mixture of cell types that are of fetal origin and are reminiscent of embryonic stem cell lineage. Here we implemented the FCO signature estimation method to compare the fraction of cells with the FCO signature in tumor tissues and their corresponding nontumor normal tissues. METHODS We applied our FCO algorithm to discovery data sets obtained from The Cancer Genome Atlas (TCGA) and replication data sets obtained from the Gene Expression Omnibus (GEO) data repository. Wilcoxon rank sum tests, linear regression models with adjustments for potential confounders and non-parametric randomization-based tests were used to test the association of FCO proportion between tumor tissues and nontumor normal tissues. P-values of < 0.05 were considered statistically significant. RESULTS Across 20 different tumor types we observed a consistently lower FCO signature in tumor tissues compared with nontumor normal tissues, with 18 observed to have significantly lower FCO fractions in tumor tissue (total n = 6,795 tumor, n = 922 nontumor, P < 0.05). We replicated our findings in 15 tumor types using data from independent subjects in 15 publicly available data sets (total n = 740 tumor, n = 424 nontumor, P < 0.05). CONCLUSIONS The results suggest that cancer development itself is substantially devoid of recapitulation of normal embryologic processes. Our results emphasize the distinction between DNA methylation in normal tightly regulated stem cell driven differentiation and cancer stem cell reprogramming that involves altered methylation in the service of great cell heterogeneity and plasticity.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI USA
| | - John K. Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California San Francisco, San Francisco, CA USA
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS USA
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
- Departments of Molecular and Systems Biology, and Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH USA
| | - Karl T. Kelsey
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI USA
| |
Collapse
|