1
|
Turingan MJ, Li T, Wright J, Sharma A, Ding K, Khan S, Lee B, Grewal SS. Hypoxia delays steroid-induced developmental maturation in Drosophila by suppressing EGF signaling. PLoS Genet 2024; 20:e1011232. [PMID: 38669270 PMCID: PMC11098494 DOI: 10.1371/journal.pgen.1011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Animals often grow and develop in unpredictable environments where factors like food availability, temperature, and oxygen levels can fluctuate dramatically. To ensure proper sexual maturation into adulthood, juvenile animals need to adapt their growth and developmental rates to these fluctuating environmental conditions. Failure to do so can result in impaired maturation and incorrect body size. Here we describe a mechanism by which Drosophila larvae adapt their development in low oxygen (hypoxia). During normal development, larvae grow and increase in mass until they reach critical weight (CW), after which point a neuroendocrine circuit triggers the production of the steroid hormone ecdysone from the prothoracic gland (PG), which promotes maturation to the pupal stage. However, when raised in hypoxia (5% oxygen), larvae slow their growth and delay their maturation to the pupal stage. We find that, although hypoxia delays the attainment of CW, the maturation delay occurs mainly because of hypoxia acting late in development to suppress ecdysone production. This suppression operates through a distinct mechanism from nutrient deprivation, occurs independently of HIF-1 alpha and does not involve dilp8 or modulation of Ptth, the main neuropeptide that initiates ecdysone production in the PG. Instead, we find that hypoxia lowers the expression of the EGF ligand, spitz, and that the delay in maturation occurs due to reduced EGFR/ERK signaling in the PG. Our study sheds light on how animals can adjust their development rate in response to changing oxygen levels in their environment. Given that hypoxia is a feature of both normal physiology and many diseases, our findings have important implications for understanding how low oxygen levels may impact animal development in both normal and pathological situations.
Collapse
Affiliation(s)
- Michael J. Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Tan Li
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Jenna Wright
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Sharma
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Kate Ding
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Shahoon Khan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
2
|
Wei JY, Hu MY, Chen XQ, Wei JS, Chen J, Qin XK, Lei FY, Zou JS, Zhu SQ, Qin YH. Hypobaric Hypoxia Aggravates Renal Injury by Inducing the Formation of Neutrophil Extracellular Traps through the NF-κB Signaling Pathway. Curr Med Sci 2023:10.1007/s11596-023-2744-3. [PMID: 37264195 DOI: 10.1007/s11596-023-2744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 06/03/2023]
Abstract
OBJECTIVE The hypersensitivity of the kidney makes it susceptible to hypoxia injury. The involvement of neutrophil extracellular traps (NETs) in renal injury resulting from hypobaric hypoxia (HH) has not been reported. In this study, we aimed to investigate the expression of NETs in renal injury induced by HH and the possible underlying mechanism. METHODS A total of 24 SD male rats were divided into three groups (n=8 each): normal control group, hypoxia group and hypoxia+pyrrolidine dithiocarbamate (PDTC) group. Rats in hypoxia group and hypoxia+PDTC group were placed in animal chambers with HH which was caused by simulating the altitude at 7000 meters (oxygen partial pressure about 6.9 kPa) for 7 days. PDTC was administered at a dose of 100 mg/kg intraperitoneally once daily for 7 days. Pathological changes of the rat renal tissues were observed under a light microscope; the levels of serum creatinine (SCr), blood urea nitrogen (BUN), cell-free DNA (cf-DNA) and reactive oxygen species (ROS) were measured; the expression levels of myeloperoxidase (MPO), citrullinated histone H3 (cit-H3), B-cell lymphoma 2 (Bcl-2), Bax, nuclear factor kappa B (NF-κB) p65 and phospho-NF-κB p65 (p-NF-κB p65) in rat renal tissues were detected by qRT-qPCR and Western blotting; the localization of NF-κB p65 expression in rat renal tissues was observed by immunofluorescence staining and the expression changes of NETs in rat renal tissues were detected by multiplex fluorescence immunohistochemical staining. RESULTS After hypoxia, the expression of NF-κB protein in renal tissues was significantly increased, the levels of SCr, BUN, cf-DNA and ROS in serum were significantly increased, the formation of NETs in renal tissues was significantly increased, and a large number of tubular dilatation and lymphocyte infiltration were observed in renal tissues. When PDTC was used to inhibit NF-κB activation, NETs formation in renal tissue was significantly decreased, the expression level of Bcl-2 in renal tissues was significantly increased, the expression level of Bax was significantly decreased, and renal injury was significantly alleviated. CONCLUSION HH induces the formation of NETs through the NF-κB signaling pathway, and it promotes apoptosis and aggravates renal injury by decreasing Bcl-2 and increasing Bax expression.
Collapse
Affiliation(s)
- Jun-Yu Wei
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Miao-Yue Hu
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xiu-Qi Chen
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jin-Shuang Wei
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jie Chen
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xuan-Kai Qin
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Feng-Ying Lei
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Jia-Sen Zou
- Children's Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Shi-Qun Zhu
- Shenzhen Children's Hospital, Shenzhen, 518034, China
| | - Yuan-Han Qin
- Department of Pediatrics, the First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
3
|
Ike T, Doi S, Nakashima A, Sasaki K, Ishiuchi N, Asano T, Masaki T. The hypoxia-inducible factor-α prolyl hydroxylase inhibitor FG4592 ameliorates renal fibrosis by inducing the H3K9 demethylase JMJD1A. Am J Physiol Renal Physiol 2022; 323:F539-F552. [PMID: 36074918 DOI: 10.1152/ajprenal.00083.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transcription factors hypoxia-inducible factor-1α and -2α (HIF-1α/2α) are the major regulators of the cellular response to hypoxia and play a key role in renal fibrosis associated with acute and chronic kidney disease. Jumonji domain-containing 1a (JMJD1A), a histone H3 lysine 9 (H3K9) demethylase, is reported to be an important target gene of HIF-α. However, whether JMJD1A and H3K9 methylation status play a role in renal fibrosis is unclear. Here, we investigated the involvement of HIF-α, JMJD1A, and monomethylated/dimethylated H3K9 (H3K9me1/H3K9me2) levels in unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice. Intraperitoneal administration of FG4592, an inhibitor of HIF-α prolyl hydroxylase, which controls HIF-α protein stability, significantly attenuated renal fibrosis on days 3 and 7 following UUO. FG4592 concomitantly increased JMJD1A expression, decreased H3K9me1/me2 levels, reduced profibrotic gene expression, and increased erythropoietin expression in renal tissues of UUO mice. The beneficial effects of FG4592 on renal fibrosis were inhibited by the administration of JMJD1A-specific siRNA to mice immediately following UUO. Incubation of normal rat kidney-49F and/or -52E cells with transforming growth factor-β1 (TGF-β1) in vitro resulted in upregulated expression of α-smooth muscle actin and H3K9me1/me2, and these effects were inhibited by cotreatment with FG4592. In contrast, FG4592 treatment further enhanced the TGF-β1-stimulated upregulation of JMJD1A but had no effect on TGF-β1-stimulated expression of the H3K9 methyltransferase euchromatic histone-lysine N-methyltransferase 2. Collectively, these findings establish a crucial role for the HIF-α1/2-JMJD1A-H3K9me1/me2 regulatory axis in the therapeutic effect of FG4592 in renal fibrosis.NEW & NOTEWORTHY Using a mouse model of renal fibrosis and transforming growth factor-β1-stimulated rat cell lines, we show that treatment with FG4592, an inhibitor of hypoxia-inducible factor-1α and -2α (HIF-1α/2α) prolyl hydroxylase decreases renal fibrosis and concomitantly reduces methylated lysine 9 of histone H3 (H3K9) levels via upregulation of Jumonji domain-containing 1a (JMJD1A). The results identify a novel role for the HIF-1α/2α-JMJD1A-H3K9 regulatory axis in suppressing renal fibrosis.
Collapse
Affiliation(s)
- Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
4
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
5
|
Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8280. [PMID: 34444030 PMCID: PMC8392481 DOI: 10.3390/ijerph18168280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022]
Abstract
Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.
Collapse
Affiliation(s)
- Manju Padmasekar
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Seeger
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| |
Collapse
|
6
|
Li N, Li Q, Bai J, Chen K, Yang H, Wang W, Fan F, Zhang Y, Meng X, Kuang T, Fan G. The multiple organs insult and compensation mechanism in mice exposed to hypobaric hypoxia. Cell Stress Chaperones 2020; 25:779-791. [PMID: 32430880 PMCID: PMC7479670 DOI: 10.1007/s12192-020-01117-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 01/13/2023] Open
Abstract
This study was first and systematically conducted to evaluate the hypoxia response of the brain, heart, lung, liver, and kidney of mice exposed to an animal hypobaric chamber. First, we examined the pathological damage of the above tissues by Hematoxylin & eosin (H&E) staining. Secondly, biochemical assays were used to detect oxidative stress indicators such as superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH), and oxidized glutathione (GSSG). Finally, the hypoxia compensation mechanism of tissues was evaluated by expression levels of hypoxia-inducible factor 1 alpha (HIF-1α), erythropoietin (EPO), and vascular endothelial growth factor (VEGF). During the experiment, the mice lost weight gradually on the first 3 days, and then, the weight loss tended to remain stable, and feed consumption showed the inverse trend. H&E staining results showed that there were sparse and atrophic neurons and dissolved chromatin in the hypoxia group. And hyperemia occurred in the myocardium, lung, liver, and kidney. Meanwhile, hypoxia stimulated the enlargement of myocardial space, the infiltration of inflammatory cells in lung tissue, the swelling of epithelial cells in hepatic lobules and renal tubules, and the separation of basal cells. Moreover, hypoxia markedly inhibited the activity of SOD and GSH and exacerbated the levels of MDA and GSSG in the serum and five organs. In addition, hypoxia induced the expression of HIF-1α, EPO, and VEGF in five organs. These results suggest hypoxia leads to oxidative damage and compensation mechanism of the brain, heart, lung, liver, and kidney in varying degrees of mice.
Collapse
Affiliation(s)
- Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiuyue Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinrong Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hailing Yang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenxiang Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Zhang Y, Wang Y, Zhou X, Wang J, Shi M, Wang J, Li F, Chen Q. Osmolarity controls the differentiation of adipose-derived stem cells into nucleus pulposus cells via histone demethylase KDM4B. Mol Cell Biochem 2020; 472:157-171. [PMID: 32594337 DOI: 10.1007/s11010-020-03794-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/13/2020] [Indexed: 12/25/2022]
Abstract
Adipose-derived stem cells (ADSCs) are an ideal source of cells for intervertebral disc (IVD) regeneration, but the effect of an increased osmotic microenvironment on ADSC differentiation remains unclear. Here, we aimed to elucidate whether hyperosmolarity facilitates ADSC nucleus pulposus (NP)-like differentiation and whether histone demethylase KDM4B is involved in this process. ADSCs were cultured under standard and increased osmolarity conditions for 1-3 weeks, followed by analysis for proliferation and viability. Differentiation was then quantified by gene and protein analysis. Finally, KDM4B knockdown ADSCs were generated using lentiviral vectors. The results showed that increasing the osmolarity of the differentiation medium to 400 mOsm significantly increased NP-like gene expression and the synthesis of extracellular matrix (ECM) components during ADSC differentiation; however, further increasing the osmolarity to 500 mOsm suppressed the NP-like differentiation of ADSCs. KDM4B, as well as the IVD formation regulators forkhead box (Fox)a1/2 and sonic hedgehog (Shh), were found to be significantly upregulated at 400 mOsm. KDM4B knockdown reduced Foxa1/2, Shh, and NP-associated markers' expression, as well as the synthesis of ECM components. The reduction in NP-like differentiation caused by KDM4B knockdown was partially rescued by Purmorphamine, a specific agonist of Shh. Moreover, we found that KDM4B can directly bind to the promoter region of Foxa1/2 and decrease the content of H3K9me3/2. In conclusion, our results indicate that a potential optimal osmolarity window might exist for successful ADSC differentiation. KDM4B plays an essential role in regulating the osmolarity-induced NP-like differentiation of ADSCs by interacting with Foxa1/2-Shh signaling.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yanyan Wang
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xiaopeng Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jingkai Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Fangcai Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| | - Qixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|