1
|
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic and Molecular Heterogeneity of Synovial Sarcoma and Associated Challenges in Therapy. Cells 2024; 13:1695. [PMID: 39451213 PMCID: PMC11506332 DOI: 10.3390/cells13201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Synovial sarcoma (SS) is one of the most common types of pediatric soft tissue sarcoma (STS) being far less frequent in adults. This STS type is characterized by one specific chromosomal translocation SS18-SSX and the associated changes in signaling. However, other genetic and epigenetic abnormalities in SS do not necessarily include SS18-SSX-related events, but abnormalities are more sporadic and do not correlate well with the prognosis and response to therapy. Currently, targeted therapy for synovial sarcoma includes a limited range of drugs, and surgical resection is the mainstay treatment for localized cancer with adjuvant or neoadjuvant chemotherapy and radiotherapy. Understanding the molecular characteristics of synovial sarcoma subtypes is becoming increasingly important for detecting new potential targets and developing innovative therapies. Novel approaches to treating synovial sarcoma include immune-based therapies (such as TCR-T cell therapy to NY-ESO-1, MAGE4, PRAME or using immune checkpoint inhibitors), epigenetic modifiers (HDAC inhibitors, EZH2 inhibitors, BRD disruptors), as well as novel or repurposed receptor tyrosine kinase inhibitors. In the presented review, we aimed to summarize the genetic and epigenetic landscape of SS as well as to find out the potential niches for the development of novel diagnostics and therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
- Oncology Department, Ryazan State Medical University Named after Academician I.P. Pavlov, Ministry of Health of Russia, Ryazan 390026, Russia;
- Institute of Medicine, RUDN University, Moscow 117198, Russia
| | - Timur I. Fetisov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
| | - Beniamin Yu. Bokhyan
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
| | - Varvara P. Maksimova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
| | - Evgeny P. Kulikov
- Oncology Department, Ryazan State Medical University Named after Academician I.P. Pavlov, Ministry of Health of Russia, Ryazan 390026, Russia;
| | - Gennady A. Belitsky
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
- Institute of Medicine, RUDN University, Moscow 117198, Russia
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (G.A.B.); (K.I.K.)
- Institute of Medicine, RUDN University, Moscow 117198, Russia
| |
Collapse
|
2
|
Shahin RK, Elkady MA, Abulsoud AI, Abdelmaksoud NM, Abdel Mageed SS, El-Dakroury WA, Zewail MB, Elazazy M, Sobhy MH, Nomier Y, Elazazy O, Elballal MS, Mohammed OA, Midan HM, Elrebehy MA, Ziada BO, Doghish AS. miRNAs orchestration of gallbladder cancer - Particular emphasis on diagnosis, progression and drug resistance. Pathol Res Pract 2023; 248:154684. [PMID: 37454489 DOI: 10.1016/j.prp.2023.154684] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Gallbladder cancer (GBC) is characterized by a highly invasive nature and a poor prognosis, with adenocarcinoma being the main histological subtype. According to statistical data, patients diagnosed with advanced GBC have a survival rate of less than 5% for 5 years. Despite the novel therapeutic techniques, the unsatisfactory results could be related to the underlying biology of tumor cells and resistance to chemotherapy. Early diagnosis is more important than clinical therapy as it assists in determining the pathological stage of cancer and facilitates the selection of appropriate medication. Hence, it is very important to understand the precise pathogenesis of GBC and to discover potential novel biomarkers for early diagnosis of GBC. Non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have been found to influence the transcriptional regulation of target genes associated with cancer, either directly or indirectly. microRNAs are a group of small, non-coding, single-stranded RNAs that are expressed endogenously. miRNAs play significant roles in various fundamental cellular processes. Therefore, miRNAs have the potential to serve as valuable biomarkers and therapeutic targets for GBC.
Collapse
Affiliation(s)
- Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud Elazazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Sobhy
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th of October City, Giza, Egypt
| | - Yousra Nomier
- Pharmacology Department, Pharmacy College, Jazan University, Saudi Arabia
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Bassant O Ziada
- Research Department, Utopia Pharmaceuticals, Nasr City, 11765 Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
3
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
5
|
Jiang S, Hu Y, Zhou Y, Tang G, Cui W, Wang X, Chen B, Hu Z, Xu B. miRNAs as Biomarkers and Possible Therapeutic Strategies in Synovial Sarcoma. Front Pharmacol 2022; 13:881007. [PMID: 36003502 PMCID: PMC9394702 DOI: 10.3389/fphar.2022.881007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synovial sarcoma (SS) is an epithelial-differentiated malignant stromal tumor that has the highest incidence in young people and can occur almost anywhere in the body. Many noncoding RNAs are involved in the occurrence, development, or pathogenesis of SS. In particular, the role of MicroRNAs (miRNAs) in SS is receiving increasing attention. MiRNA is a noncoding RNA abundant in cells and extracellular serums. Increasing evidence suggests that miRNA has played a significant role in the incidence and development of tumors in recent years, including sarcomas. Previous studies show that various sarcomas have their unique miRNA expression patterns and that various miRNA expression profiles can illustrate the classes of miRNAs that may elicit cancer-relevant activities in specific sarcoma subtypes. Furthermore, SS has been reported to have the most number of differentially expressed miRNAs, which indicated that miRNA is linked to SS. In fact, according to many publications, miRNAs have been shown to have a role in the development and appearance of SS in recent years, according to many publications. Since many studies showing that various miRNAs have a role in the development and appearance of SS in recent years have not been systematically summarized, we summarize the recent studies on the relationship between miRNA and SS in this review. For example, miR-494 promotes the development of SS via modulating cytokine gene expression. The role of miR-494-3p as a tumor suppressor is most likely linked to the CXCR4 (C-X-C chemokine receptor 4) regulator, although the exact mechanism is unknown. Our review aims to reveal in detail the potential biological value and clinical significance of miRNAs for SS and the potential clinical value brought by the association between SS and miRNAs.
Collapse
Affiliation(s)
- Shaowei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yi Zhou
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Guozheng Tang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
- Department of Orthopedics, Lu’an People’s Hospital, Lu’an, China
| | - Wenxu Cui
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinyi Wang
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Zuhong Hu
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Bing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Bing Xu,
| |
Collapse
|
6
|
Sheng W, Xu W, Ding J, Li L, You X, Wu Y, He Q. Curcumol inhibits the malignant progression of prostate cancer and regulates the PDK1/AKT/mTOR pathway by targeting miR‑9. Oncol Rep 2021; 46:246. [PMID: 34590156 PMCID: PMC8493056 DOI: 10.3892/or.2021.8197] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumol has been reported to exert anti-tumor activity, but its intrinsic molecular mechanism in prostate cancer remains to be elucidated. The present study aimed to analyze the effect of curcumol on prostate cancer and identify its possible internal regulatory pathway using in vitro cell culture and in vivo tumor model experiments. The cytotoxicity of curcumol was detected using a Cell Counting Kit-8 assay and it was found that curcumol had no obvious toxicity or side effects on RWPE-1 cells. Wound healing, Transwell and flow cytometry assays demonstrated that curcumol could affect the activity of PC3 cells. The luciferase reporter assay also indicated that microRNA (miR)-9 could directly target pyruvate dehydrogenase kinase 1 (PDK1). After PC3 cells were transfected with miR-9 inhibitor or treated with curcumol, the expression levels of the PDK1/AKT/mTOR signaling pathway-related proteins [PDK1, phosphorylated (p)-AKT and p-mTOR] were increased or decreased, respectively. Next, the prostate cancer cell xenograft model was established. Tumor size and the expression levels of PDK1/AKT/mTOR signaling pathway-related factors were altered following treatment with curcumol. The in vitro and in vivo experiments collectively demonstrated that curcumol could inhibit the PDK1/AKT/mTOR signaling pathway by upregulating the expression level of miR-9. The present study found that curcumol regulates the PDK1/AKT/mTOR signaling pathway via miR-9 and affects the development of prostate cancer. These findings could provide a possible scientific insight for research into treatments for prostate cancer.
Collapse
Affiliation(s)
- Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wenjing Xu
- Dermatology Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410021, P.R. China
| | - Jin Ding
- Andrology Clinic, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518133, P.R. China
| | - Ling Li
- Medical Basic Teaching Experiment Center, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xujun You
- Andrology Clinic, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong 518133, P.R. China
| | - Yongrong Wu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
7
|
Shen Y, Xue C, You G, Liu C. miR-9 alleviated the inflammatory response and apoptosis in caerulein-induced acute pancreatitis by regulating FGF10 and the NF-κB signaling pathway. Exp Ther Med 2021; 22:795. [PMID: 34093751 PMCID: PMC8170642 DOI: 10.3892/etm.2021.10227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) have been implicated in the development of acute pancreatitis (AP). However, the role and potential mechanism of miR-9 in AP progression remains unclear. Caerulein-treated AR42J cells were used as a cellular model of AP. Results revealed caerulein triggered an inflammatory response by promoting the secretion of inflammatory cytokines [tumor necrosis factor-α, interleukin (IL) 1β and IL-6], as evidenced by ELISA. Furthermore, caerulein-induced apoptosis was reported by flow cytometry and western blot assays. Additionally, miR-9 expression was downregulated by caerulein treatment, as demonstrated by reverse transcription quantitative PCR. However, miR-9 overexpression reduced the inflammatory response and apoptosis in caerulein-treated AR42J cells. miR-9 knockdown resulted in opposite effects. Furthermore, fibroblast growth factor (FGF) 10 was validated to be targeted via miR-9 by luciferase, RNA immunoprecipitation and RNA pull-down assays. Results demonstrated increased FGF10 expression in caerulein-treated AR42J cells and that FGF10 overexpression exacerbated the caerulein-induced inflammatory response and apoptosis, while its knockdown had the opposite effect. Additionally, FGF10 reversed the effect of miR-9 on caerulein-induced injury in AR42J cells. Results demonstrated that miR-9 inhibited the expression of the nuclear factor κB (NF-κB) pathway-related proteins by downregulating FGF10. As a result, miR-9 decreased inflammatory response and apoptosis in caerulein-treated AR42J cells by targeting FGF10 and blocking NF-κB signaling, suggesting that miR-9 may serve as a novel target for AP treatment.
Collapse
Affiliation(s)
- Yang Shen
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Chengjun Xue
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Guoli You
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Cui Liu
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| |
Collapse
|
8
|
Feng X, Huang YL, Zhang Z, Wang N, Yao Q, Pang LJ, Li F, Qi Y. The role of SYT-SSX fusion gene in tumorigenesis of synovial sarcoma. Pathol Res Pract 2021; 222:153416. [PMID: 33848939 DOI: 10.1016/j.prp.2021.153416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Synovial sarcoma (SS) is an aggressive malignancy of an unknown tissue origin that is characterized by biphasic differentiation. A possible basis of the pathogenesis of SS is pathognomonic t(X;18) (p11.2; q11.2) translocation, leading to the formation and expression of the SYT-SSX fusion gene. More than a quarter of the patients die of SS metastasis within 5 years after the diagnosis, but the pathogenic factors are unknown. Therefore, there is an urgent need to explore the pathogenesis, invasion, metastasis, and clinical treatment options for SS, especially molecular-targeted drug therapy. Recent studies have shown that the SYT-SSX fusion gene associated with SS may be regulated by different signaling pathways, microRNAs, and other molecules, which may produce stem cell characteristics or promote epithelial-mesenchymal transition, resulting in SS invasion and metastasis. This review article aims to show the relationship between the SYT-SSX fusion gene and the related pathway molecules as well as other molecules involved from different perspectives, which may provide a deeper and clearer understanding of the SYT-SSX fusion gene function. Therefore, this review may provide a more innovative and broader perspective of the current research, treatment options, and prognosis assessment of SS.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ya-Lan Huang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology Suining Central Hospital, Suining, Sichuan, China
| | - Zhen Zhang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ning Wang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Qing Yao
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
9
|
Jin Y, Kang Y, Peng X, Yang L, Li Q, Mei Q, Chen X, Hu G, Tang Y, Yuan X. Irradiation-Induced Activated Microglia Affect Brain Metastatic Colonization of NSCLC Cells via miR-9/ CDH1 Axis. Onco Targets Ther 2021; 14:1911-1922. [PMID: 33758511 PMCID: PMC7981147 DOI: 10.2147/ott.s301412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain metastasis is among the leading causes of death in patients with non-small-cell lung cancer (NSCLC). Through yet unknown mechanisms, prophylactic cranial irradiation (PCI) can significantly decrease the incidence of brain metastases. Given that PCI probably exerts indirect anti-tumoral effects by turning cerebral "soil" unfavorable for the colonization of metastatic tumor "seeds". This study aims to reveal how PCI regulates the brain microenvironment conducing to a reduction in brain metastases. MATERIALS AND METHODS Key markers of M1/M2 microglia types and mesenchymal-to-epithelial transition (MET) were analyzed by qRT-PCR and Western Blot in vitro. The target miR-9 was obtained by miRNA array analysis and confirmed by qRT-PCR in microglia. We used miRTarBase and TargetScan to analyze the target genes of miR-9 and confirmed by luciferase activity assay. Anti-metastatic effects of irradiation on the brain were evaluated by intravital imaging using a brain metastatic A549-F3 cell line in a nude mouse model. RESULTS Irradiation induced M1 microglia activation, which inhibited the MET process of A549 cell lines. Furthermore, levels of miR-9 secreted by irradiated M1 microglia significantly increased and played a vital role in the inhibition of the A549 MET process by directly targeting CDH1, concurrently decreasing cell capacity for localization in the brain, thus reducing brain metastases. CONCLUSION We demonstrated that miR-9 secreted by irradiated M1-type microglia played an important role in modulating A549 cell lines into mesenchymal phenotype and further decreased their localization capabilities in the brain. Our findings signify the modulating effect of irradiation on metastatic soil and the cross-talk between tumour cells and the metastatic microenvironment; importantly, they provide new opportunities for effective anti-metastasis therapies, especially for brain metastasis patients.
Collapse
Affiliation(s)
- Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Yalin Kang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Yang Tang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
10
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
11
|
Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020. [DOI: 10.3390/cancers12123709
expr 991289423 + 939431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
|
12
|
Abstract
RATIONALE Synovial sarcoma (SS) is a malignant neoplasm that arises from soft tissues proximal to the joints. It occurs primarily at the major joints of the extremities, but may also occur in the deep soft tissues around the joints. While primary renal synovial sarcoma (PRSS) is extremely rare, it is important to have a better understanding of their imaging and clinical features to establish an effective treatment plan. Correct identification of PRSS is also useful for treating renal neoplasms. PATIENT'S CONCERNS A 56-year-old Chinese man was admitted to our hospital due to moderate, paroxysmal left-sided loin pain. DIAGNOSIS Renal enhanced computed tomography (CT) scanning showed a relatively hypovascular lesion with calcification in the left kidney. A radical nephrectomy was performed in the left kidney. Postoperative pathology indicated SS with necrosis. The immunohistochemical findings were as follows: 34βE12 (Epithelium+), Bcl-2(+), CD99(+), CK-pan((Epithelium+), EMA(Epithelium+), Ki-67(+60%), and Vimentin(+), CD34(-). INTERVENTIONS The patient underwent radical left nephrectomy with no complications. OUTCOMES After discharge, a close review for 3 months showed no evidence of recurrence. LESSONS PRSS should be considered for the differential diagnosis of renal hypovascular tumors. When problems arise in distinguishing renal hypovascular tumors, surgical pathology is helpful in the final diagnosis and further treatment of the disease.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Radiology, First Hospital of Jilin University
| | - Chao An
- Department of Radiology, Third People's Hospital of Shenzhen City, Guang Zhou University of Chinese Medicine, Shenzhen
| | - Yanjiao Zhang
- Department of Radiology, First Hospital of Jilin University
| | - Junwei Tian
- Department of Bone and Joint Surgery, First Hospital of Jilin University, Changchun, China
| | - Zhuo Wang
- Department of Radiology, First Hospital of Jilin University
| | - Jiping Wang
- Department of Radiology, First Hospital of Jilin University
| |
Collapse
|
13
|
Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, Wang J, Zhang E, Deng L. MicroRNAs target the Wnt/β‑catenin signaling pathway to regulate epithelial‑mesenchymal transition in cancer (Review). Oncol Rep 2020; 44:1299-1313. [PMID: 32700744 PMCID: PMC7448411 DOI: 10.3892/or.2020.7703] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial‑mesenchymal transition (EMT), during which cancer cells lose the epithelial phenotype and gain the mesenchymal phenotype, has been verified to result in tumor migration and invasion. Numerous studies have shown that dysregulation of the Wnt/β‑catenin signaling pathway gives rise to EMT, which is characterized by nuclear translocation of β‑catenin and E‑cadherin suppression. Wnt/β‑catenin signaling was confirmed to be affected by microRNAs (miRNAs), several of which are down‑ or upregulated in metastatic cancer cells, indicating their complex roles in Wnt/β‑catenin signaling. In this review, we demonstrated the targets of various miRNAs in altering Wnt/β‑catenin signaling to promote or inhibit EMT, which may elucidate the underlying mechanism of EMT regulation by miRNAs and provide evidence for potential therapeutic targets in the treatment of invasive tumors.
Collapse
Affiliation(s)
- Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Ge Zhang
- Department of Big Data Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Aiyun Shan
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Chunfeng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Liang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiayu Sun
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Xin Liao
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Changfeng Zhu
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Yueyue Chen
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Enxin Zhang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
14
|
Babion I, Jaspers A, van Splunter AP, van der Hoorn IA, Wilting SM, Steenbergen RD. miR-9-5p Exerts a Dual Role in Cervical Cancer and Targets Transcription Factor TWIST1. Cells 2019; 9:E65. [PMID: 31888045 PMCID: PMC7017350 DOI: 10.3390/cells9010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Squamous cell carcinoma (SCC) and adenocarcinoma (AC) represent the major cervical cancer histotypes. Both histotypes are caused by infection with high-risk HPV (hrHPV) and are associated with deregulated microRNA expression. Histotype-dependent expression has been observed for miR-9-5p, showing increased expression in SCC and low expression in AC. Here, we studied the regulation and functionality of miR-9-5p in cervical SCCs and ACs using cervical tissue samples and hrHPV-containing cell lines. Expression and methylation analysis of cervical tissues revealed that low levels of miR-9-5p in ACs are linked to methylation of its precursor genes, particularly miR-9-1. Stratification of tissue samples and hrHPV-containing cell lines suggested that miR-9-5p depends on both histotype and hrHPV type, with higher expression in SCCs and HPV16-positive cells. MiR-9-5p promoted cell viability and anchorage independence in cervical cancer cell lines SiHa (SCC, HPV16) and CaSki (metastasized SCC, HPV16), while it played a tumor suppressive role in HeLa (AC, HPV18). TWIST1, a transcription factor involved in epithelial-to-mesenchymal transition (EMT), was established as a novel miR-9-5p target. Our results show that miR-9-5p plays a dual role in cervical cancer in a histotype- and hrHPV type-dependent manner. MiR-9-5p mediated silencing of TWIST1 suggests two distinct mechanisms towards EMT in cervical cancer.
Collapse
Affiliation(s)
- Iris Babion
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Annelieke Jaspers
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Annina P. van Splunter
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Iris A.E. van der Hoorn
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Renske D.M. Steenbergen
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|