1
|
Shen T, Oh Y, Jeong S, Cho S, Fiehn O, Youn JH. High-Fat Feeding Alters Circulating Triglyceride Composition: Roles of FFA Desaturation and ω-3 Fatty Acid Availability. Int J Mol Sci 2024; 25:8810. [PMID: 39201497 PMCID: PMC11354557 DOI: 10.3390/ijms25168810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertriglyceridemia is a risk factor for type 2 diabetes and cardiovascular disease (CVD). Plasma triglycerides (TGs) are a key factor for assessing the risk of diabetes or CVD. However, previous lipidomics studies have demonstrated that not all TG molecules behave the same way. Individual TGs with different fatty acid compositions are regulated differentially under various conditions. In addition, distinct groups of TGs were identified to be associated with increased diabetes risk (TGs with lower carbon number [C#] and double-bond number [DB#]), or with decreased risk (TGs with higher C# and DB#). In this study, we examined the effects of high-fat feeding in rats on plasma lipid profiles with special attention to TG profiles. Wistar rats were maintained on either a low-fat (control) or high-fat diet (HFD) for 2 weeks. Plasma samples were obtained before and 2.5 h after a meal (n = 10 each) and subjected to lipidomics analyses. High-fat feeding significantly impacted circulating lipid profiles, with the most significant effects observed on TG profile. The effects of an HFD on individual TG species depended on DB# in their fatty acid chains; an HFD increased TGs with low DB#, associated with increased diabetes risk, but decreased TGs with high DB#, associated with decreased risk. These changes in TGs with an HFD were associated with decreased indices of hepatic stearoyl-CoA desaturase (SCD) activity, assessed from hepatic fatty acid profiles. Decreased SCD activity would reduce the conversion of saturated to monounsaturated fatty acids, contributing to the increases in saturated TGs or TGs with low DB#. In addition, an HFD selectively depleted ω-3 polyunsaturated fatty acids (PUFAs), contributing to the decreases in TGs with high DB#. Thus, an HFD had profound impacts on circulating TG profiles. Some of these changes were at least partly explained by decreased hepatic SCD activity and depleted ω-3 PUFA.
Collapse
Affiliation(s)
- Tong Shen
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA; (T.S.); (O.F.)
| | - Youngtaek Oh
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| | - Shinwu Jeong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA;
| | - Suengmok Cho
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA; (T.S.); (O.F.)
| | - Jang H. Youn
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| |
Collapse
|
2
|
Cardoso C, Valentim J, Gomes R, Matos J, Rego A, Coelho I, Delgado I, Motta C, Castanheira I, Prates JAM, Bandarra NM, Afonso C. Mackerel and Seaweed Burger as a Functional Product for Brain and Cognitive Aging Prevention. Foods 2024; 13:1332. [PMID: 38731702 PMCID: PMC11083232 DOI: 10.3390/foods13091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Most world countries are experiencing a remarkable aging process. Meanwhile, 50 million people are affected by Alzheimer's disease (AD) and related dementia and there is an increasing trend in the incidence of these major health problems. In order to address these, the increasing evidence suggesting the protective effect of dietary interventions against cognitive decline during aging may suggest a response to this challenge. There are nutrients with a neuroprotective effect. However, Western diets are poor in healthy n-3 polyunsaturated fatty acids (n-3 PUFAs), such as docosahexaenoic acid (DHA), iodine (I), and other nutrients that may protect against cognitive aging. Given DHA richness in chub mackerel (Scomber colias), high vitamin B9 levels in quinoa (Chenopodium quinoa), and I abundance in the seaweed Saccorhiza polyschides, a functional hamburger rich in these nutrients by using these ingredients was developed and its formulation was optimized in preliminary testing. The effects of culinary treatment (steaming, roasting, and grilling vs. raw) and digestion on bioaccessibility were evaluated. The hamburgers had high levels of n-3 PUFAs in the range of 42.0-46.4% and low levels of n-6 PUFAs (6.6-6.9%), resulting in high n-3/n-6 ratios (>6). Bioaccessibility studies showed that the hamburgers could provide the daily requirements of eicosapentaenoic acid (EPA) + DHA with 19.6 g raw, 18.6 g steamed, 18.9 g roasted, or 15.1 g grilled hamburgers. Polyphenol enrichment by the seaweed and antioxidant activity were limited. The hamburgers contained high levels of Se and I at 48-61 μg/100 g ww and 221-255 μg/100 g ww, respectively. Selenium (Se) and I bioaccessibility levels were 70-85% and 57-70%, respectively, which can be considered high levels. Nonetheless, for reaching dietary requirements, considering the influence of culinary treatment and bioaccessibility, 152.2-184.2 g would be necessary to ensure daily Se requirements and 92.0-118.1 g for I needs.
Collapse
Affiliation(s)
- Carlos Cardoso
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; (N.M.B.); (C.A.)
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
| | - Jorge Valentim
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
- Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Romina Gomes
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
- MEtRICs/DCTB/NOVA, School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Almada, Portugal
| | - Joana Matos
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
| | - Andreia Rego
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - Inês Coelho
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - Inês Delgado
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - Carla Motta
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - Isabel Castanheira
- Food and Nutrition Department, National Health Institute Doutor Ricardo Jorge (INSA, IP), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (A.R.); (I.C.); (I.D.); (C.M.); (I.C.)
| | - José A. M. Prates
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Narcisa M. Bandarra
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; (N.M.B.); (C.A.)
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
| | - Cláudia Afonso
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; (N.M.B.); (C.A.)
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; (J.V.); (R.G.); (J.M.)
| |
Collapse
|
3
|
Blasi F, Maria Pellegrino R, Br Alabed H, Ianni F, Emiliani C, Cossignani L. Lipidomics of coconut, almond and soybean milks - Comprehensive characterization of triacylglycerol class and comparison with bovine milk. Food Res Int 2023; 172:113147. [PMID: 37689910 DOI: 10.1016/j.foodres.2023.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 06/14/2023] [Indexed: 09/11/2023]
Abstract
Nowadays, plant-based milk consumption, as part of a healthy diet, is continuously increasing. In this paper, for the first time a lipidomic analysis on molecular species of triacylglycerol (TG) fraction of plant-based beverages (almond, soy, coconut) was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A total of 557 TG molecular species was measured, showing significantly different profiles between milk alternatives, compared with bovine milk. The most abundant TG molecular species were TG 18:1_18:1_18:1 and 18:1_18:1_18:2 for almond, TG 18:2_18:2_18:2 and 16:0_18:2_18:2 for soy, TG 12:0_10:0_12:0 and 12:0_12:0_14:0 for coconut. Unconventional fatty acids were detected in almond and soy. The main TG with ethereal linkage were TG-O 56:2, TG-O 56:4, and TG-O 56:5, while the main oxygenated TG was TG 54:5;1O. A total of 30 molecular species were identified as biomarkers for milk differentiation by principal component analysis, providing an interesting support for milk authentication and detection of adulteration on a larger sampling.
Collapse
Affiliation(s)
- Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | | | - Husam Br Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Federica Ianni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; Center for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
4
|
Geng X, Jia X, Liu L, Ma S, Liu H, Liu T. Gametophyte phase of commercial kelps, the potential food supplements for essential fatty acids and n-3 polyunsaturated fatty acids. J Food Sci 2023; 88:2411-2424. [PMID: 37167001 DOI: 10.1111/1750-3841.16596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
For heteromorphic algae with alternating generations, the thallus and gametophyte phases are different morphologies in free-living life history. The thalli are popular used as traditional vegetables and herbal drugs, whereas the gametophyte phases are little involved. To better understand the functional lipids in the gametophyte phase of three commercial kelps, Saccharina japonica, Undaria pinnatifida, and Costaria costata, the contents of total lipids (TLs), fatty acid (FA) profiles, and transcriptomic analysis were performed. For the studied kelps, the TL contents in gametophyte phase were always almost twice more than those in the thallus, and the kelp species, their life stage, and the gender were critical factors affecting lipid accumulation. The gametophyte phases of U. pinnatifida and C. costata were rich in essential FA C18:2 n - 6 and C18:3 n - 3. The S. japonica gametophyte phase contained abundant C20:5 n - 3 and C18:4 n - 3, possessed an ideal ratio of n - 6/n - 3 polyunsaturated fatty acid below 1.0, and was supported by the transcriptome data which showed that the key sjD12/15 (n - 3) gene of gametophyte partially upregulated than sporophyte. The results suggested that S. japonica gametophyte phase was the worthiest of further development and utilization as a functional food. PRACTICAL APPLICATION: It is the first report on the fatty acid characteristics of three gametophyte phases of Saccharina japonica, Undaria pinnatifida, and Costaria costata and find that the S. japonica was worthy of further development and utilization as a functional food owing to its satisfactory fatty acid composition.
Collapse
Affiliation(s)
- Xicheng Geng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Xuli Jia
- College of Marine Life Science, Ocean University of China, Qingdao, P. R. China
| | - Lanqing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Shanpeng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
- NMPA Key Laboratory for Quality Research and Evaluation of Marine Traditional Chinese Medicine, Qingdao, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, P.R. China
| |
Collapse
|
5
|
Mustonen AM, Tollis S, Käkelä R, Sihvo SP, Palosaari S, Pohjanen VM, Yli-Hallila A, Lehenkari P, Nieminen P. Increased n-6 Polyunsaturated Fatty Acids Indicate Pro- and Anti-Inflammatory Lipid Modifications in Synovial Membranes with Rheumatoid Arthritis. Inflammation 2023:10.1007/s10753-023-01816-3. [PMID: 37140681 PMCID: PMC10359413 DOI: 10.1007/s10753-023-01816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
Emerging evidence suggests that fatty acids (FAs) and their lipid mediator derivatives can induce both beneficial and detrimental effects on inflammatory processes and joint degradation in osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA). The present study characterized the detailed FA signatures of synovial membranes collected during knee replacement surgery of age- and gender-matched OA and RA patients (n = 8/diagnosis). The FA composition of total lipids was determined by gas chromatography and analyzed with univariate and multivariate methods supplemented with hierarchical clustering (HC), random forest (RF)-based classification of FA signatures, and FA metabolism pathway analysis. RA synovium lipids were characterized by reduced proportions of shorter-chain saturated FAs (SFAs) and elevated percentages of longer-chain SFAs and monounsaturated FAs, alkenyl chains, and C20 n-6 polyunsaturated FAs compared to OA synovium lipids. In HC, FAs and FA-derived variables clustered into distinct groups, which preserved the discriminatory power of the individual variables in predicting the RA and OA inflammatory states. In RF classification, SFAs and 20:3n-6 were among the most important FAs distinguishing RA and OA. Pathway analysis suggested that elongation reactions of particular long-chain FAs would have increased relevance in RA. The present study was able to determine the individual FAs, FA groups, and pathways that distinguished the more inflammatory RA from OA. The findings suggest modifications of FA elongation and metabolism of 20:4n-6, glycerophospholipids, sphingolipids, and plasmalogens in the chronically inflamed RA synovium. These FA alterations could have implications in lipid mediator synthesis and potential as novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Sylvain Tollis
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Sanna P Sihvo
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Sanna Palosaari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Vesa-Matti Pohjanen
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Aaron Yli-Hallila
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Petri Lehenkari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
- Department of Surgery, Oulu University Hospital, P.O. Box 21, FI-90029, OYS, Oulu, Finland
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
6
|
Guo C, Zhang X, Yu Y, Wu Y, Xie L, Chang C. Lonicerae Japonicae Flos extract and chlorogenic acid attenuates high-fat-diet- induced prediabetes via CTRPs-AdipoRs-AMPK/PPARα axes. Front Nutr 2022; 9:1007679. [PMID: 36313074 PMCID: PMC9614216 DOI: 10.3389/fnut.2022.1007679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Prediabetes is considered an important reversible checkpoint in T2DM development, which can be delayed and prevented by early interventions. Lonicerae Japonicae Flos (LJF), an edible-medicinal herb, is rich in chlorogenic acid (CGA, 5-O-caffeoylquinic acid) and exerts anti-diabetes effects, but its role in prediabetes remains unclear. The purpose of this study was to explore the effects of LJF extract and CGA on rat with prediabetes. Sprague-Dawley rats were given high-fat diet (HFD) to induce prediabetes, and glycolipid metabolism parameters and molecular mechanisms were evaluated. LJF (the LJF extract treatment group) and CGA (the pure CGA treatment group) significantly attenuated HFD-induced prediabetes with impaired glucose tolerance and dyslipidemia, but their mechanisms of action are not exactly the same. Specifically, LJF prioritizes increasing protective lipid species [such as increasing blood polyunsaturated fatty acids (PUFA)-containing diacylglycerol (DAG) species, high-density lipoprotein-cholesterol (HDL-C)], whereas CGA prioritizes reducing detrimental lipid species [such as saturated fatty acid-containing DAG species, low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC)]. In addition, CGA significantly increased the content of blood very-long-chain fatty-acid (VLCFA)-containing ceramides species. This could be explained mechanically by a distinction between LJF and CGA's effects on C1q/TNF-related proteins (CTRPs) which activate adiponectin receptors, triggering several downstream reactions. Because both LJF and CGA upregulated liver expression of adiponectin receptors (AdipoR1 and AdipoR2) and enhanced the activity of downstream AMPK. LJF also increased serum levels of CTRP3 and CTRP9, especially CTRP9, whereas CGA had higher serum CTRP3 and upregulated liver PPARa expression. Additionally, ELOVL6 expression in the liver was greater in CGA than LJF. This study demonstrates that LJF and CGA exert hypoglycemic and lipid modulation capacity to prevent prediabetes may through the CTRPs-AdipoRs-AMPK/PPARα axes and promoting ELOVL6 protein expression.
Collapse
Affiliation(s)
- Chengcheng Guo
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China,Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Xiaoyuan Zhang
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China
| | - Yingxiang Yu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China
| | - Yifan Wu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China
| | - Lan Xie
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China
| | - Cuiqing Chang
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China,*Correspondence: Cuiqing Chang,
| |
Collapse
|
7
|
Gonzalez PA, Simcox J, Raff H, Wade G, Von Bank H, Weisman S, Hainsworth K. Lipid signatures of chronic pain in female adolescents with and without obesity. Lipids Health Dis 2022; 21:80. [PMID: 36042489 PMCID: PMC9426222 DOI: 10.1186/s12944-022-01690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Chronic pain in adolescence is associated with diminished outcomes, lower socioeconomic status in later life, and decreased family well-being. Approximately one third of adolescents with chronic pain have obesity compared to the general population. In obesity, lipid signals regulate insulin sensitivity, satiety, and pain sensation. We determined whether there is a distinct lipid signature associated with chronic pain and its co-occurrence with obesity in adolescents. METHODS We performed global lipidomics in serum samples from female adolescents (N = 67, 13-17 years old) with no pain/healthy weight (Controls), chronic pain/healthy weight (Pain Non-obese), no pain/obesity (Obese), or chronic pain/obesity (Pain Obese). RESULTS The Pain Non-obese group had lipid profiles similar to the Obese and Pain Obese groups. The major difference in these lipids included decreased lysophosphatidylinositol (LPI), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) in the three clinical groups compared to the Control group. Furthermore, ceramides and sphingomyelin were higher in the groups with obesity when compared to the groups with healthy weight, while plasmalogens were elevated in the Pain Obese group only. CONCLUSIONS Serum lipid markers are associated with chronic pain and suggest that specific lipid metabolites may be a signaling mechanism for inflammation associated with co-occurring chronic pain and obesity.
Collapse
Affiliation(s)
- Paula A Gonzalez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hershel Raff
- Departments of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Helaina Von Bank
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven Weisman
- Departments of Anesthesiology and Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Wauwatosa, WI, 53226, USA
| | - Keri Hainsworth
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Wauwatosa, WI, 53226, USA.
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J, Feldman EL. A High-Fat Diet Disrupts Nerve Lipids and Mitochondrial Function in Murine Models of Neuropathy. Front Physiol 2022; 13:921942. [PMID: 36072849 PMCID: PMC9441493 DOI: 10.3389/fphys.2022.921942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|