1
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Kong D, Wu Y, Liu Q, Huang C, Wang T, Huang Z, Gao Y, Li Y, Guo H. Functional analysis and validation of oncodrive gene AP3S1 in ovarian cancer through filtering of mutation data from whole-exome sequencing. Eur J Med Res 2024; 29:231. [PMID: 38609993 PMCID: PMC11015698 DOI: 10.1186/s40001-024-01814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the most aggressive and prevalent subtype of ovarian cancer and accounts for a significant portion of ovarian cancer-related deaths worldwide. Despite advancements in cancer treatment, the overall survival rate for HGSOC patients remains low, thus highlighting the urgent need for a deeper understanding of the molecular mechanisms driving tumorigenesis and for identifying potential therapeutic targets. Whole-exome sequencing (WES) has emerged as a powerful tool for identifying somatic mutations and alterations across the entire exome, thus providing valuable insights into the genetic drivers and molecular pathways underlying cancer development and progression. METHODS Via the analysis of whole-exome sequencing results of tumor samples from 90 ovarian cancer patients, we compared the mutational landscape of ovarian cancer patients with that of TCGA patients to identify similarities and differences. The sequencing data were subjected to bioinformatics analysis to explore tumor driver genes and their functional roles. Furthermore, we conducted basic medical experiments to validate the results obtained from the bioinformatics analysis. RESULTS Whole-exome sequencing revealed the mutational profile of HGSOC, including BRCA1, BRCA2 and TP53 mutations. AP3S1 emerged as the most weighted tumor driver gene. Further analysis of AP3S1 mutations and expression demonstrated their associations with patient survival and the tumor immune response. AP3S1 knockdown experiments in ovarian cancer cells demonstrated its regulatory role in tumor cell migration and invasion through the TGF-β/SMAD pathway. CONCLUSION This comprehensive analysis of somatic mutations in HGSOC provides insight into potential therapeutic targets and molecular pathways for targeted interventions. AP3S1 was identified as being a key player in tumor immunity and prognosis, thus providing new perspectives for personalized treatment strategies. The findings of this study contribute to the understanding of HGSOC pathogenesis and provide a foundation for improved outcomes in patients with this aggressive disease.
Collapse
Affiliation(s)
- Deshui Kong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Qiyu Liu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Cuiyu Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Tongxia Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Zongyao Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
| |
Collapse
|
3
|
Liu R, Chu W, Liu X, Hong J, Wang H. Establishment of Golgi apparatus-related genes signature to predict the prognosis and immunotherapy response in gastric cancer patients. Medicine (Baltimore) 2024; 103:e37439. [PMID: 38489711 PMCID: PMC10939665 DOI: 10.1097/md.0000000000037439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
The Golgi apparatus plays a crucial role in intracellular protein transportation, processing, and sorting. Dysfunctions of the Golgi apparatus have been implicated in tumorigenesis and drug resistance. This study aimed to investigate the prognostic and treatment response assessment value of Golgi apparatus-related gene (GARGs) features in gastric cancer patients. Transcriptome data and clinical information of gastric cancer patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Cox regression analysis was employed to assess the prognostic significance of GARGs and construct risk features. The immune landscape, drug sensitivity, immune therapy response, gene expression patterns, and somatic mutation characteristics were analyzed between different risk groups. A nomogram model for predicting gastric cancer prognosis was developed and evaluated. Among 1643 GARGs examined, 365 showed significant associations with gastric cancer prognosis. Five independent prognostic GARGs (NGF, ABCG1, CHAC1, GBA2, PCSK7) were selected to construct risk features for gastric cancer patients. These risk features effectively stratified patients into high-risk and low-risk groups, with the former exhibiting worse prognosis than the latter. Patients in the high-risk group displayed higher levels of immune cell infiltration, while the expression levels of NGF, CHAC1, GBA2, PCSK7 were significantly correlated with immune cell infiltration. Notably, the low-risk group exhibited higher sensitivity to epothilone.B, metformin, and tipifarnib compared to the high-risk group. Moreover, patients in the low-risk group demonstrated greater responsiveness to immune therapy than those in the high-risk group. In terms of biological processes and KEGG pathways related to immunity regulation, significant suppression was observed in the high-risk group compared to the low-risk group; meanwhile cell cycle pathways exhibited significant activation in the high-risk group. Furthermore, the low-risk group exhibited a higher tumor mutation burden compared to the high-risk group. The risk features derived from GARGs, in conjunction with age, were identified as independent risk factors for gastric cancer. The nomogram incorporating these factors demonstrated improved performance in predicting gastric cancer prognosis. Our study established risk features derived from GARGs that hold potential clinical utility in prognostic assessment and immune therapy response evaluation of gastric cancer patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Gastrointestinal Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Weiwei Chu
- Department of Gastrointestinal Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Xiaojin Liu
- Department of Gastrointestinal Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Jie Hong
- Department of Gastrointestinal Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| | - Haiming Wang
- Department of Gastrointestinal Surgery, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Martins M, Vieira J, Pereira-Leite C, Saraiva N, Fernandes AS. The Golgi Apparatus as an Anticancer Therapeutic Target. BIOLOGY 2023; 13:1. [PMID: 38275722 PMCID: PMC10813373 DOI: 10.3390/biology13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Although the discovery of the Golgi apparatus (GA) was made over 125 years ago, only a very limited number of therapeutic approaches have been developed to target this complex organelle. The GA serves as a modification and transport center for proteins and lipids and also has more recently emerged as an important store for some ions. The dysregulation of GA functions is implicated in many cellular processes associated with cancer and some GA proteins are indeed described as cancer biomarkers. This dysregulation can affect protein modification, localization, and secretion, but also cellular metabolism, redox status, extracellular pH, and the extracellular matrix structure. Consequently, it can directly or indirectly affect cancer progression. For these reasons, the GA is an appealing anticancer pharmacological target. Despite this, no anticancer drug specifically targeting the GA has reached the clinic and few have entered the clinical trial stage. Advances in nanodelivery approaches may help change this scenario by specifically targeting tumor cells and/or the GA through passive, active, or physical strategies. This article aims to examine the currently available anticancer GA-targeted drugs and the nanodelivery strategies explored for their administration. The potential benefits and challenges of modulating and specifically targeting the GA function in the context of cancer therapy are discussed.
Collapse
Affiliation(s)
- Marta Martins
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - João Vieira
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Catarina Pereira-Leite
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Saraiva
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
| | - Ana Sofia Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
| |
Collapse
|
5
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|
6
|
The role of CaMKK2 in Golgi-associated vesicle trafficking. Biochem Soc Trans 2023; 51:331-342. [PMID: 36815702 PMCID: PMC9987998 DOI: 10.1042/bst20220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.
Collapse
|