1
|
Wang X, Li Y, Hou X, Li J, Ma X. Lipid metabolism reprogramming in endometrial cancer: biological functions and therapeutic implications. Cell Commun Signal 2024; 22:436. [PMID: 39256811 PMCID: PMC11385155 DOI: 10.1186/s12964-024-01792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Endometrial cancer is one of the major gynecological cancers, with increasing incidence and mortality in the past decades. Emerging preclinical and clinical data have indicated its close association with obesity and dyslipidemia. Metabolism reprogramming has been considered as the hallmark of cancer, to satisfy the extensive need of nutrients and energy for survival and growth. Particularly, lipid metabolism reprogramming has aroused the researchers' interest in the field of cancer, including tumorigenesis, invasiveness, metastasis, therapeutic resistance and immunity modulation, etc. But the roles of lipid metabolism reprogramming in endometrial cancer have not been fully understood. This review has summarized how lipid metabolism reprogramming induces oncogenesis and progression of endometrial cancer, including the biological functions of aberrant lipid metabolism pathway and altered transcription regulation of lipid metabolism pathway. Besides, we proposed novel therapeutic strategies of targeting lipid metabolism pathway and concentrated on its potential of sensitizing immunotherapy and hormonal therapy, to further optimize the existing treatment modalities of patients with advanced/metastatic endometrial cancer. Moreover, we expect that targeting lipid metabolism plus hormone therapy may block the endometrial malignant transformation and enrich the preventative approaches of endometrial cancer. CONCLUSION Lipid metabolism reprogramming plays an important role in tumor initiation and cancer progression of endometrial cancer. Targeting the core enzymes and transcriptional factors of lipid metabolism pathway alone or in combination with immunotherapy/hormone treatment is expected to decrease the tumor burden and provide promising treatment opportunity for patients with advanced/metastatic endometrial cancer.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Xin Hou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Jingfang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
2
|
Song L, Xu Q, Chen R, Sun W, Zhan J. KLF1 Activates RAC3 to Mediate Fatty Acid Synthesis and Enhance Cisplatin Resistance in Bladder Cancer Cells. Am J Mens Health 2024; 18:15579883241273305. [PMID: 39376007 PMCID: PMC11459471 DOI: 10.1177/15579883241273305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 07/05/2024] [Indexed: 10/09/2024] Open
Abstract
While cisplatin remains a frontline treatment for bladder cancer (BCa), the onset of resistance greatly hampers its effectiveness. RAC3 is closely linked to chemoresistance in cancer cells, but its specific role in cisplatin resistance within BCa is still elusive. RAC3 expression in BCa was analyzed using bioinformatics and quantitative polymerase chain reaction (qPCR). The gene set enrichment analysis (GSEA) identified RAC3-enriched pathways and the correlation between RAC3 and fatty acid synthase (FASN), a gene involved in fatty acid synthesis. Potential upstream transcription factors of RAC3 were predicted and their interaction with RAC3 was confirmed via dual-luciferase and chromatin immunoprecipitation (ChIP) assays. T24/DDP, a cisplatin-resistant BCa cell line, was established to probe into the regulatory role of RAC3 in cisplatin resistance. Cell proliferation was evaluated by colony formation and the IC50 values after cisplatin treatment were determined using cell counting kit-8 (CCK-8). The levels of free fatty acids and triglycerides (TGs), as well as the expression of DGAT2 and FASN proteins, were measured to gauge the extent of fatty acid synthesis in cells. Elevated expression of RAC3 was observed in BCa and the cisplatin-resistant BCa cells (T24/DDP). The knockdown of RAC3 within T24/DDP cells was demonstrated to counteract cisplatin resistance. Subsequent analyses identified RAC3 as being notably enriched in the fatty acid synthesis pathway, with Kruppel-like factor 1 (KLF1) emerging as a key upstream regulator. The overexpression of RAC3 was correlated with increased cisplatin resistance in T24/DDP cells, an effect that was mitigated by the addition of the FASN inhibitor, Orlistat. Furthermore, the downregulation of KLF1 suppressed RAC3 expression, disrupted fatty acid synthesis, and attenuated cisplatin resistance in T24/DDP cells. Conversely, the co-overexpression of RAC3 counteracted the effects conferred by KLF1 knockdown. Our study has validated that KLF1 activates RAC3 to mediate fatty acid synthesis and promote cisplatin resistance in BCa, suggesting the KLF1/RAC3 axis as a potential target for combating cisplatin-resistant BCa.
Collapse
Affiliation(s)
- Lide Song
- Department of Urology, Zhuji People’s Hospital, Zhuji, China
| | - Qi Xu
- Department of Urology, Zhuji People’s Hospital, Zhuji, China
| | - Rong Chen
- Department of Urology, Zhuji People’s Hospital, Zhuji, China
| | - Wanghong Sun
- Department of Urology, Zhuji People’s Hospital, Zhuji, China
| | - Jianfei Zhan
- Department of Urology, Zhuji People’s Hospital, Zhuji, China
| |
Collapse
|
3
|
Chen Y, Huang M, Lu J, Zhang Q, Wu J, Peng S, Chen S, Zhang Y, Cheng L, Lin T, Chen X, Huang J. Establishment of a prognostic model to predict chemotherapy response and identification of RAC3 as a chemotherapeutic target in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:509-528. [PMID: 37310098 DOI: 10.1002/tox.23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
Cisplatin-based chemotherapy is considered the primary treatment option for patients with advanced bladder cancer (BCa). However, the objective response rate to chemotherapy is often unsatisfactory, leading to a poor 5-year survival rate. Furthermore, current strategies for evaluating chemotherapy response and prognosis are limited and inefficient. In this study, we aimed to address these challenges by establishing a chemotherapy response type gene (CRTG) signature consisting of 9 genes and verified the prognostic value of this signature using TCGA and GEO BCa cohorts. The risk scores based on the CRTG signature were found to be associated with advanced clinicopathological status and demonstrated favorable predictive power for chemotherapy response in the TCGA cohort. Meanwhile, tumors with high risk scores exhibited a tendency toward a "cold tumor" phenotype. These tumors showed a low abundance of T cells, CD8+ T cells and cytotoxic lymphocytes, along with a high abundance of cancer-associated fibroblasts. Moreover, they displayed higher mRNA levels of these immune checkpoints: CD200, CD276, CD44, NRP1, PDCD1LG2 (PD-L2), and TNFSF9. Furthermore, we developed a nomogram that integrated the CRTG signature with clinicopathologic risk factors. This nomogram proved to be a more effective tool for predicting the prognosis of BCa patients. Additionally, we identified Rac family small GTPase 3 (RAC3) as a biomarker in our model. RAC3 was found to be overexpressed in chemoresistant BCa tissues and enhance the chemotherapeutic resistance of BCa cells in vitro and in vivo by regulating the PAK1-ERK1/2 pathway. In conclusion, our study presents a novel CRTG model for predicting chemotherapy response and prognosis in BCa. We also highlight the potential of combining chemotherapy with immunotherapy as a promising strategy for chemoresistant BCa and that RAC3 might be a latent target for therapeutic intervention.
Collapse
Affiliation(s)
- Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Siting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| |
Collapse
|
4
|
Huang P, Qian Y, Xia Y, Wang S, Xu C, Zhu X, Gao Q. Integrated analysis identifies RAC3 as an immune-related prognostic biomarker associated with chemotherapy sensitivity in endometrial cancer. J Cell Mol Med 2023; 27:2385-2397. [PMID: 37386813 PMCID: PMC10424291 DOI: 10.1111/jcmm.17824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynaecological malignant tumours with a high incidence, leading to urgent demands for exploring novel carcinogenic mechanisms and developing rational therapeutic strategies. The rac family of small GTPase 3 (RAC3) functions as an oncogene in various human malignant tumours and plays an important role in tumour development. However, the critical roles of RAC3 in the progression of EC need further investigation. Based on TCGA, single-cell RNA-Seq, CCLE and clinical specimens, we revealed that the RAC3 was specifically distributed in EC tumour cells compared to normal tissues and functioned as an independent diagnostic marker with a high area under curve (AUC) score. Meanwhile, the RAC3 expression in EC tissues was also correlated with a poor prognosis. In detail, the high levels of RAC3 in EC tissues were reversely associated with CD8+ T cell infiltration and orchestrated an immunosuppressive microenvironment. Furthermore, RAC3 accelerated tumour cell proliferation and inhibited its apoptosis, without impacting cell cycle stages. Importantly, silencing RAC3 improved the sensitivity of EC cells to chemotherapeutic drugs. In this paper, we revealed that RAC3 was predominantly expressed in EC and significantly correlated with the progression of EC via inducing immunosuppression and regulating tumour cell viability, providing a novel diagnostic biomarker and a promising strategy for sensitizing chemotherapy to EC.
Collapse
Affiliation(s)
- Pu Huang
- Department of Obstetrics and Gynecologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yiyu Qian
- Department of Obstetrics and Gynecologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Xia
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Siyuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cheng Xu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecologythe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Qinglei Gao
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Wu Q, Tian R, Liu J, Ou C, Li Y, Fu X. Deciphering comprehensive features of tumor microenvironment controlled by chromatin regulators to predict prognosis and guide therapies in uterine corpus endometrial carcinoma. Front Immunol 2023; 14:1139126. [PMID: 36936912 PMCID: PMC10022674 DOI: 10.3389/fimmu.2023.1139126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Dysregulation of chromatin regulators (CRs) can perturb the tumor immune microenvironment, but the underlying mechanism remains unclear. We focused on uterine corpus endometrial carcinoma (UCEC) and used gene expression data from TCGA-UCEC to investigate this mechanism. Methods We used weighted gene co-expression network analysis (WGCNA) and consensus clustering algorithm to classify UCEC patients into Cluster_L and Cluster_H. TME-associated CRs were identified using WGCNA and differential gene expression analysis. A CR risk score (CRRS) was constructed using univariate Cox and LASSO-Cox regression analyses. A nomogram was developed based on CRRS and clinicopathologic factors to predict patients' prognosis. Results Lower CRRS was associated with lower grade, more benign molecular subtypes, and improved survival. Patients with low CRRS showed abundant immune infiltration, a higher mutation burden, fewer CNVs, and better response to immunotherapy. Moreover, low CRRS patients were more sensitive to 24 chemotherapeutic agents. Conclusion A comprehensive assessment of CRRS could identify immune activation and improve the efficacy of UCEC treatments.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Yimin Li, ; Chunlin Ou,
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Xiaodan Fu, ; ; Yimin Li, ; Chunlin Ou,
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaodan Fu, ; ; Yimin Li, ; Chunlin Ou,
| |
Collapse
|