1
|
Renata S, Verma N, Peddinti RK. Surface-enhanced Raman spectroscopy as effective tool for detection of sialic acid as cancer biomarker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125631. [PMID: 39736186 DOI: 10.1016/j.saa.2024.125631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
Sialic acid, a negatively charged nine-carbon monosaccharide, is mainly located at the terminal end of glycan chains on glycoproteins and glycolipids of cell surface and most secreted proteins. Elevated levels of sialylated glycans have been known as a hallmark in numerous cancers. As a result, sialic acid acts as a useful and accessible cancer biomarker for early cancer detection and monitoring the disease development during cancer treatment which is crucial in elevating the survival rate. The detection of sialic acid has been done by many tools including surface-enhanced Raman spectroscopy (SERS) which gained incredible attention due to its high selectivity and sensitivity. However, currently, comprehensive reviews of sialic acid detection and imaging as a cancer biomarker using SERS are still lacking. Here, we present the significant breakthroughs in SERS-based detection of sialic acid levels on cells, tissues, and body fluids due to the presence of cancer, different cancer metastasis stages, and in response to the external stimuli. This review covers the SERS substrate and novel SERS strategies, using lectin, boronic acid, metabolic glycan labelling and label-free methods, for sialic acid detection as cancer biomarker. The remaining challenges to detect sialic acid and prospect of future development of SERS for other carbohydrate-based cancer biomarker, for instance fucose, are also discussed.
Collapse
Affiliation(s)
- Septila Renata
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Nitish Verma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
2
|
Chen Q, Tan Z, Tang Y, Fung YME, Chen S, Chen Z, Li X. Comprehensive Glycomic and Glycoproteomic Analyses of Human Programmed Cell Death Protein 1 Extracellular Domain. J Proteome Res 2024; 23:3958-3973. [PMID: 39101792 DOI: 10.1021/acs.jproteome.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Human programmed cell death protein 1 (hPD-1) is an essential receptor in the immune checkpoint pathway. It has played an important role in cancer therapy. However, not all patients respond positively to the PD-1 antibody treatment, and the underlying mechanism remains unknown. PD-1 is a transmembrane glycoprotein, and its extracellular domain (ECD) is reported to be responsible for interactions and signal transduction. This domain contains 4 N-glycosylation sites and 25 potential O-glycosylation sites, which implicates the importance of glycosylation. The structure of hPD-1 has been intensively studied, but the glycosylation of this protein, especially the glycan on each glycosylation site, has not been comprehensively illustrated. In this study, hPD-1 ECD expressed by human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells was analyzed; not only N- and O-glycosylation sites but also the glycans on these sites were comprehensively analyzed using mass spectrometry. In addition, hPD-1 ECD binding to different anti-hPD-1 antibodies was tested, and N-glycans were found functioned differently. All of this glycan information will be beneficial for future PD-1 studies.
Collapse
Affiliation(s)
- Qiushi Chen
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, Shatin, Hong Kong SAR 999077, P. R. China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR 999077, P. R. China
| | - Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR 999077, PR. China
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Yuk Choi Road, Hong Kong SAR 999077, P. R. China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR 999077, P. R. China
| | - Xuechen Li
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, Shatin, Hong Kong SAR 999077, P. R. China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
3
|
Bulangalire N, Claeyssen C, Douffi S, Agbulut O, Cieniewski-Bernard C. A novel 2D-electrophoresis method for the simultaneous visualization of phosphorylated and O-GlcNAcylated proteoforms of a protein. Electrophoresis 2024; 45:1618-1629. [PMID: 38700120 DOI: 10.1002/elps.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
Post-translational modifications (PTMs), such as phosphorylation and O-N-acetyl-β-d-glucosaminylation (O-GlcNAcylation), are involved in the fine spatiotemporal regulation of protein functions, and their dynamic interplay is at the heart of protein language. The coexistence of phosphorylation and O-GlcNAcylation on a protein leads to the diversification of proteoforms. It is therefore essential to decipher the phosphorylation/O-GlcNAcylation interplay on protein species that orchestrates cellular processes in a specific physiological or pathophysiological context. However, simultaneous visualization of phosphorylation and O-GlcNAcylation patterns on a protein of interest remains a challenge. To map the proteoforms of a protein, we have developed an easy-to-use two-dimensional electrophoresis method with a single sample processing permitting simultaneous visualization of the phosphorylated and the O-GlcNAcylated forms of the protein of interest. This method, we termed 2D-WGA-Phos-tag-PAGE relies on proteoforms retardation by affinity gel electrophoresis. With this novel approach, we established the cartography of phospho- and glycoforms of αB-crystallin and desmin in the whole extract and the cytoskeleton protein subfraction in skeletal muscle cells. Interestingly, we have shown that the pattern of phosphorylation and O-GlcNAcylation depends of the subcellular subfraction. Moreover, we have also shown that proteotoxic stress condition increased the complexity of the pattern of PTMs on αB-crystallin.
Collapse
Affiliation(s)
- Nathan Bulangalire
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
- CHU Lille, Université de Lille, F-59000, Lille, France
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Charlotte Claeyssen
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Sana Douffi
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| |
Collapse
|
4
|
Dupas T, Vergnaud A, Pelé T, Blangy-Letheule A, Aillerie V, Bouaud M, Erraud A, Maillard A, Hassoun D, Persello A, Lecomte J, Rivière M, Tessier A, Leroux AA, Rozec B, Denis M, Lauzier B. O-GlcNAcylation levels remain stable regardless of the anaesthesia in healthy rats. Sci Rep 2024; 14:10669. [PMID: 38724577 PMCID: PMC11082205 DOI: 10.1038/s41598-024-61445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.
Collapse
Affiliation(s)
- Thomas Dupas
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France.
| | - Amandine Vergnaud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Thomas Pelé
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | | | - Virginie Aillerie
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Martin Bouaud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Angélique Erraud
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Anaïs Maillard
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Dorian Hassoun
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Antoine Persello
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| | - Jules Lecomte
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Matthieu Rivière
- Faculté des Sciences et des Techniques, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, CNRS, Université de Nantes, Nantes, France
| | - Arnaud Tessier
- Faculté des Sciences et des Techniques, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, CNRS, Université de Nantes, Nantes, France
| | - Aurélia A Leroux
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
- Oniris, 44300, Nantes, France
| | - Bertrand Rozec
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Manon Denis
- INSERM, L'institut du thorax, CHU Nantes, CNRS, Nantes Université, 44000, Nantes, France
| | - Benjamin Lauzier
- INSERM, L'institut du thorax, CNRS, Nantes Université, 8 Quai Moncousu, 44007, Nantes, France
| |
Collapse
|
5
|
Moore WM, Brea RJ, Knittel C, Wrightsman E, Hui B, Lou J, Ancajas CF, Best MD, Devaraj NK, Budin I. Subcellular imaging of lipids and sugars using genetically encoded proximity sensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592120. [PMID: 38746395 PMCID: PMC11092643 DOI: 10.1101/2024.05.01.592120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Live cell imaging of lipids and other metabolites is a long-standing challenge in cell biology. Bioorthogonal labeling tools allow for the conjugation of fluorophores to several phospholipid classes, but cannot discern their trafficking between adjacent organelles or asymmetry across individual membrane leaflets. Here we present fluorogen-activating coincidence sensing (FACES), a chemogenetic tool capable of quantitatively imaging subcellular lipid pools and reporting their transbilayer orientation in living cells. FACES combines bioorthogonal chemistry with genetically encoded fluorogen-activating proteins (FAPs) for reversible proximity sensing of conjugated molecules. We first validate this approach for quantifying discrete phosphatidylcholine pools in the ER and mitochondria that are trafficked by lipid transfer proteins. We then show that transmembrane domain-containing FAPs can be used to reveal the membrane asymmetry of multiple lipid classes that are generated in the trans-Golgi network. Lastly, we demonstrate that FACES is a generalizable tool for subcellular bioorthogonal imaging by measuring changes in mitochondrial N -acetylhexosamine levels. These results demonstrate the use of fluorogenic tags for spatially-defined molecular imaging.
Collapse
|
6
|
Yu H, Liu D, Zhang Y, Tang R, Fan X, Mao S, Lv L, Chen F, Qin H, Zhang Z, van Aalten DMF, Yang B, Yuan K. Tissue-specific O-GlcNAcylation profiling identifies substrates in translational machinery in Drosophila mushroom body contributing to olfactory learning. eLife 2024; 13:e91269. [PMID: 38619103 PMCID: PMC11018347 DOI: 10.7554/elife.91269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Dandan Liu
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Yaowen Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Xunan Fan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Hongtao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan UniversityChangshaChina
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
| | - Daan MF van Aalten
- Department of Molecular Biology and Genetics, University of AarhusAarhusDenmark
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, HangzhouZhejiangChina
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaChina
- The Biobank of Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
7
|
Dupas T, Lauzier B, McGraw S. O-GlcNAcylation: the sweet side of epigenetics. Epigenetics Chromatin 2023; 16:49. [PMID: 38093337 PMCID: PMC10720106 DOI: 10.1186/s13072-023-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.
Collapse
Affiliation(s)
- Thomas Dupas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Benjamin Lauzier
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada
- Nantes Université, CNRS, INSERM, L'institut du Thorax, 44000, Nantes, France
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|