1
|
Hashiguchi S, Tanaka T, Mano R, Kondo S, Kodama S. CCN2-induced lymphangiogenesis is mediated by the integrin αvβ5-ERK pathway and regulated by DUSP6. Sci Rep 2022; 12:926. [PMID: 35042954 PMCID: PMC8766563 DOI: 10.1038/s41598-022-04988-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lymphangiogenesis is essential for the development of the lymphatic system and is important for physiological processes such as homeostasis, metabolism and immunity. Cellular communication network factor 2 (CCN2, also known as CTGF), is a modular and matricellular protein and a well-known angiogenic factor in physiological and pathological angiogenesis. However, its roles in lymphangiogenesis and intracellular signaling in lymphatic endothelial cells (LECs) remain unclear. Here, we investigated the effects of CCN2 on lymphangiogenesis. In in vivo Matrigel plug assays, exogenous CCN2 increased the number of Podoplanin-positive vessels. Subsequently, we found that CCN2 induced phosphorylation of ERK in primary cultured LECs, which was almost completely inhibited by the blockade of integrin αvβ5 and partially decreased by the blockade of integrin αvβ3. CCN2 promoted direct binding of ERK to dual-specific phosphatase 6 (DUSP6), which regulated the activation of excess ERK by dephosphorylating ERK. In vitro, CCN2 promoted tube formation in LECs, while suppression of Dusp6 further increased tube formation. In vivo, immunohistochemistry also detected ERK phosphorylation and DUSP6 expression in Podoplanin-positive cells on CCN2-supplemented Matrigel. These results indicated that CCN2 promotes lymphangiogenesis by enhancing integrin αvβ5-mediated phosphorylation of ERK and demonstrated that DUSP6 is a negative regulator of excessive lymphangiogenesis by CCN2.
Collapse
Affiliation(s)
- Shiho Hashiguchi
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryosuke Mano
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Seiji Kondo
- Department of Oral Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
2
|
Zaykov V, Chaqour B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal 2021; 15:567-580. [PMID: 34613590 DOI: 10.1007/s12079-021-00650-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular communication network 2 (CCN2), also known as connective tissue growth factor (CTGF) regulates diverse cellular processes, some at odds with others, including adhesion, proliferation, apoptosis, and extracellular matrix (ECM) protein synthesis. Although a cause-and-effect relationship between CCN2/CTGF expression and local fibrotic reactions has initially been established, CCN2/CTGF manifests cell-, tissue-, and context-specific functions and differentially affects developmental and pathological processes ranging from progenitor cell fate decisions and angiogenesis to inflammation and tumorigenesis. CCN2/CTGF multimodular structure, binding to and activation or inhibition of multiple cell surface receptors, growth factors and ECM proteins, and susceptibility for proteolytic cleavage highlight the complexity to CCN2/CTGF biochemical attributes. CCN2/CTGF expression and dosage in the local environment affects a defined community of its interacting partners, and this results in sequestration of growth factors, interference with or potentiation of ligand-receptor binding, cellular internalization of CCN2/CTGF, inhibition or activation of proteases, and generation of CCN2/CTGF degradome products that add molecular diversity and expand the repertoire of functional modules in the cells and their microenvironment. Through these interactions, different intracellular signals and cellular responses are elicited culminating into physiological or pathological reactions. Thus, the CCN2/CTGF interactome is a defining factor of its tissue- and context-specific effects. Mapping of new CCN2/CTGF binding partners might shed light on yet unknown roles of CCN2/CTGF and provide a solid basis for tissue-specific targeting this molecule or its interacting partners in a therapeutic context.
Collapse
Affiliation(s)
- Viktor Zaykov
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
3
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
4
|
Sun Z, Cai S, Zabkiewicz C, Liu C, Ye L. Bone morphogenetic proteins mediate crosstalk between cancer cells and the tumour microenvironment at primary tumours and metastases (Review). Int J Oncol 2020; 56:1335-1351. [PMID: 32236571 DOI: 10.3892/ijo.2020.5030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic proteins (BMP) are pluripotent molecules, co‑ordinating cellular functions from early embryonic and postnatal development to tissue repair, regeneration and homeostasis. They are also involved in tumourigenesis, disease progression and the metastasis of various solid tumours. Emerging evidence has indicated that BMPs are able to promote disease progression and metastasis by orchestrating communication between cancer cells and the surrounding microenvironment. The interactions occur between BMPs and epidermal growth factor receptor, hepatocyte growth factor, fibroblast growth factor, vascular endothelial growth factor and extracellular matrix components. Overall, these interactions co‑ordinate the cellular functions of tumour cells and other types of cell in the tumour to promote the growth of the primary tumour, local invasion, angiogenesis and metastasis, and the establishment and survival of cancer cells in the metastatic niche. Therefore, the present study aimed to provide an informative summary of the involvement of BMPs in the tumour microenvironment.
Collapse
Affiliation(s)
- Zhiwei Sun
- VIP‑II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
5
|
Ramaswamy AK, Vorp DA, Weinbaum JS. Functional Vascular Tissue Engineering Inspired by Matricellular Proteins. Front Cardiovasc Med 2019; 6:74. [PMID: 31214600 PMCID: PMC6554335 DOI: 10.3389/fcvm.2019.00074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Modern regenerative medicine, and tissue engineering specifically, has benefited from a greater appreciation of the native extracellular matrix (ECM). Fibronectin, collagen, and elastin have entered the tissue engineer's toolkit; however, as fully decellularized biomaterials have come to the forefront in vascular engineering it has become apparent that the ECM is comprised of more than just fibronectin, collagen, and elastin, and that cell-instructive molecules known as matricellular proteins are critical for desired outcomes. In brief, matricellular proteins are ECM constituents that contrast with the canonical structural proteins of the ECM in that their primary role is to interact with the cell. Of late, matricellular genes have been linked to diseases including connective tissue disorders, cardiovascular disease, and cancer. Despite the range of biological activities, this class of biomolecules has not been actively used in the field of regenerative medicine. The intent of this review is to bring matricellular proteins into wider use in the context of vascular tissue engineering. Matricellular proteins orchestrate the formation of new collagen and elastin fibers that have proper mechanical properties-these will be essential components for a fully biological small diameter tissue engineered vascular graft (TEVG). Matricellular proteins also regulate the initiation of thrombosis via fibrin deposition and platelet activation, and the clearance of thrombus when it is no longer needed-proper regulation of thrombosis will be critical for maintaining patency of a TEVG after implantation. Matricellular proteins regulate the adhesion, migration, and proliferation of endothelial cells-all are biological functions that will be critical for formation of a thrombus-resistant endothelium within a TEVG. Lastly, matricellular proteins regulate the adhesion, migration, proliferation, and activation of smooth muscle cells-proper control of these biological activities will be critical for a TEVG that recellularizes and resists neointimal formation/stenosis. We review all of these functions for matricellular proteins here, in addition to reviewing the few studies that have been performed at the intersection of matricellular protein biology and vascular tissue engineering.
Collapse
Affiliation(s)
- Aneesh K Ramaswamy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Vorp
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin S Weinbaum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Analysis of Signaling Pathways Activated by CCN Proteins. Methods Mol Biol 2016. [PMID: 27734373 DOI: 10.1007/978-1-4939-6430-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
CCN family proteins activate multiple intracellular phosphorylated kinase cascades to yield the multiple physiological functions of a variety of target cells. In this chapter, we describe our protocol examining the effects of these proteins on signal transduction pathways, especially mitogen-activated protein kinase cascades, activated by CCN member proteins, which examinations have been carried out mainly by using Western blotting methodologies.
Collapse
|
7
|
Takigawa M. Terminology of CCN1-6 should not be applicable for their fragments and be limited to only full length CCN1-6. J Cell Commun Signal 2015; 9:81-3. [PMID: 25698662 DOI: 10.1007/s12079-015-0269-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022] Open
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan,
| |
Collapse
|
8
|
Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond) 2014; 128:181-96. [DOI: 10.1042/cs20140264] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CCN family protein 2 (CCN2), also widely known as connective tissue growth factor (CTGF), is one of the founding members of the CCN family of matricellular proteins. Extensive investigation on CCN2 over decades has revealed the novel molecular action and functional properties of this unique signalling modulator. By its interaction with multiple molecular counterparts, CCN2 yields highly diverse and context-dependent biological outcomes in a variety of microenvironments. Nowadays, CCN2 is recognized to conduct the harmonized development of relevant tissues, such as cartilage and bone, in the skeletal system, by manipulating extracellular signalling molecules involved therein by acting as a hub through a web. However, on the other hand, CCN2 occasionally plays profound roles in major human biological disorders, including fibrosis and malignancies in major organs and tissues, by modulating the actions of key molecules involved in these clinical entities. In this review, the physiological and pathological roles of this unique protein are comprehensively summarized from a molecular network-based viewpoint of CCN2 functionalities.
Collapse
|
9
|
Abd El Kader T, Kubota S, Anno K, Tanaka S, Nishida T, Furumatsu T, Aoyama E, Kuboki T, Takigawa M. Direct interaction between CCN family protein 2 and fibroblast growth factor 1. J Cell Commun Signal 2014; 8:157-63. [PMID: 24903028 DOI: 10.1007/s12079-014-0232-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/15/2014] [Indexed: 01/19/2023] Open
Abstract
In an attempt to find out a new molecular counterpart of CCN family protein 2 (CCN2), a matricellular protein with multiple functions, we performed an interactome analysis and found fibroblast growth factor (FGF) -1 as one of the candidates. Solid-phase binding assay indicated specific binding between CCN2 and FGF-1. This binding was also confirmed by surface plasmon resonance (SPR) analysis that revealed a dissociation constant (Kd) of 3.98 nM indicating strong molecular interaction between the two. RNA analysis suggested that both FGF-1 and CCN2 could be produced by chondrocytes and thus their interaction in the cartilage is possible. These findings for the first time indicate the direct interaction of CCN2 and FGF-1 and suggest the co-presence of these molecules in the cartilage microenvironment. CCN2 is a well-known promoter of cartilage development and regeneration, whereas the physiological and pathological role of FGF-1 in cartilage mostly remains unclear. Biological role of FGF-1 itself in cartilage is also suspected.
Collapse
Affiliation(s)
- Tarek Abd El Kader
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abd El Kader T, Kubota S, Nishida T, Hattori T, Aoyama E, Janune D, Hara ES, Ono M, Tabata Y, Kuboki T, Takigawa M. The regenerative effects of CCN2 independent modules on chondrocytes in vitro and osteoarthritis models in vivo. Bone 2014; 59:180-8. [PMID: 24269276 DOI: 10.1016/j.bone.2013.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 11/23/2022]
Abstract
The role of CCN family proteins has been proven to be of extreme importance in the process of cartilage development and endochondral ossification. The second member, CCN2, consists of 4 conserved modules that interact with a number of cofactors to display multiple functions. Although the potentially therapeutic effect of intact CCN2 on cartilage regeneration has been indicated by a number of studies, the regenerative effect of independent modules comprising CCN2 has never been evaluated before. This study aims to discover a more robust and effective CCN2 derivative to induce regeneration through assessing the effect of CCN2 independent modules on regeneration in vitro and in vivo, in comparison to the full length CCN2. In vitro evaluation using human chondrocytic cells showed a remarkable enhancing effect of several single modules on the gene expression of cartilaginous extracellular matrix components; whereas combinations of 2 or 3 modules rather diminished such effects. Interestingly, combination of all 4 modules redeemed the effect of intact CCN2 in vitro. Suspecting the re-assembly of the 4 modules, interaction among the modules was examined by surface plasmon resonance analysis. However, the results did not support the possible formation of a tetramodular complex. Next, the thrombospondin 1 type 1 repeat module (TSP1), which was found most promising in the experiments in vitro, and the combination of 4 modules were forwarded further to in vivo confirmation using 2 rat osteoarthritis (OA) models. As a result, TSP1 displayed more prominent regenerative effects than intact CCN2 on damaged cartilage. Unexpectedly, the combination of 4 modules showed limited effects in vivo. These results indicate the utility of TSP1 in the regenerative therapeutics of OA. Possible molecular mechanism that enables conditional reconstruction of CCN2 by 4 modules is discussed as well.
Collapse
Affiliation(s)
- Tarek Abd El Kader
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Dental Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Danilo Janune
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emilio S Hara
- Department of Dental Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Dental Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takuo Kuboki
- Department of Dental Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| |
Collapse
|
11
|
Kawaki H, Kubota S, Suzuki A, Suzuki M, Kohsaka K, Hoshi K, Fujii T, Lazar N, Ohgawara T, Maeda T, Perbal B, Takano-Yamamoto T, Takigawa M. Differential roles of CCN family proteins during osteoblast differentiation: Involvement of Smad and MAPK signaling pathways. Bone 2011; 49:975-89. [PMID: 21763478 DOI: 10.1016/j.bone.2011.06.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 05/20/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022]
Abstract
CCN family proteins play diverse roles in many aspects of cellular processes such as proliferation, differentiation, adhesion, migration, angiogenesis and survival. In the bone tissue of vertebrate species, the expression of most CCN family members has been observed in osteoblasts. However, their spatial and temporal distributions, as well as their functions, are still only partially understood. In this study, we evaluated the localization of CCN family members in skeletal tissue in vivo and comparatively analyzed the gene expression patterns and functions of the members in murine osteoblasts in primary culture. Immunofluorescent analyses revealed that the CCN family members were differentially produced in osteoblasts and osteocytes. The presence of all Ccn transcripts was confirmed in those osteoblasts. Among the members, CCN1, CCN2, CCN4 and CCN5 were found in osteocytes. CCN4 and CCN5 were distributed in osteocytes located inside of bone matrix as well. Next, we investigated the expression pattern of Ccn family members during osteoblast differentiation. Along with differentiation, most of the members followed proper gene expression patterns; whereas, Ccn4 and Ccn5 showed quite similar patterns. Furthermore, we evaluated the effects of CCN family members on the osteoblastic activities by using recombinant CCN proteins and RNA interference method. Five members of this family displayed positive effects on osteoblast proliferation or differentiation. Of note, CCN3 drastically inhibited the osteoblast activities. Each Ccn specific siRNA could modulate osteoblast activities in a manner expected by the observed effect of respective recombinant CCN protein. In addition, we found that extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinase pathways were critically involved in the CCN family member-mediated modification of osteoblast activities. Collectively, all Ccn family members were found to be differentially expressed along with differentiation and therefore could participate in progression of the osteoblast lineage.
Collapse
Affiliation(s)
- Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Holbourn KP, Malfois M, Acharya KR. First structural glimpse of CCN3 and CCN5 multifunctional signaling regulators elucidated by small angle x-ray scattering. J Biol Chem 2011; 286:22243-9. [PMID: 21543320 DOI: 10.1074/jbc.m111.225755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The CCN (cyr61, ctgf, nov) proteins (CCN1-6) are an important family of matricellular regulatory factors involved in internal and external cell signaling. They are central to essential biological processes such as adhesion, proliferation, angiogenesis, tumorigenesis, wound healing, and modulation of the extracellular matrix. They possess a highly conserved modular structure with four distinct modules that interact with a wide range of regulatory proteins and ligands. However, at the structural level, little is known although their biological function(s) seems to require cooperation between individual modules. Here we present for the first time structural determinants of two of the CCN family members, CCN3 and CCN5 (expressed in Escherichia coli), using small angle x-ray scattering. The results provide a description of the overall molecular shape and possible general three-dimensional modular arrangement for CCN proteins. These data unequivocally provide insight of the nature of CCN protein(s) in solution and thus important insight into their structure-function relationships.
Collapse
Affiliation(s)
- Kenneth P Holbourn
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | |
Collapse
|
13
|
Holbourn KP, Acharya KR. Cloning, expression and purification of the CCN family of proteins in Escherichia coli. Biochem Biophys Res Commun 2011; 407:837-41. [PMID: 21458411 DOI: 10.1016/j.bbrc.2011.03.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
Abstract
The CCN proteins are extracellular matrix associated proteins involved in critical cell activities and several aggressive forms of cancer. The proteins share a modular structure of four discrete domains and 38 conserved cysteine residues. The absence of any structural information of these proteins has resulted in a need for the ability to produce substantial amounts of pure CCN protein. Through bacterial expression and inclusion body based purification, pure recombinant CCN proteins have been produced for use in structural and biochemical experiments.
Collapse
Affiliation(s)
- Kenneth P Holbourn
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | |
Collapse
|
14
|
Design and utility of CCN2 anchor peptide aptamers. Biochimie 2010; 92:1010-5. [DOI: 10.1016/j.biochi.2010.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/23/2010] [Indexed: 11/23/2022]
|
15
|
Tall EG, Bernstein AM, Oliver N, Gray JL, Masur SK. TGF-β-stimulated CTGF production enhanced by collagen and associated with biogenesis of a novel 31-kDa CTGF form in human corneal fibroblasts. Invest Ophthalmol Vis Sci 2010; 51:5002-11. [PMID: 20393108 DOI: 10.1167/iovs.09-5110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Connective tissue growth factor (CTGF) is induced by transforming growth factor-beta (TGF-β) after corneal wounding. This study addressed the role of the extracellular matrix in the induction of CTGF by TGF-β. METHODS Human corneal fibroblasts (HCFs) were grown on fibronectin (FN), vitronectin (VN), or collagen (CL) in supplemented serum-free media alone or with TGF-β1 or fibroblast growth factor plus heparin. CTGF mRNA was analyzed by qPCR and protein expression by Western blot analysis of Triton X-100 (TX-100)-soluble and TX-100-insoluble cell lysates using antibodies to N-terminal, mid, and C-terminal CTGF regions. Immunocytochemistry was performed on nonconfluent or scrape-wounded confluent HCFs. RESULTS TGF-β-treated HCFs grown on CL produced five times more 38-kDa CTGF than untreated controls (72 hours). TGF-β-treated HCFs on CL secreted twofold more CTGF than those on FN or VN. Furthermore, a 31-kDa CTGF form, lacking the N-terminal domain, was detected in Triton X-100 insoluble fractions in Western blot analysis. Immunodetectable extracellular CTGF formed linear arrays parallel to, but not colocalized with, CL or FN. It also did not colocalize with FAK, vinculin, or integrins α(v)β(3) and α(5)β(1). Intracellular CTGF was detected in the Golgi apparatus and vesicles, including endosomes. CONCLUSIONS Enhanced CTGF secretion induced by TGF-β in CL-grown cells may contribute to positive feedback in which CL is overexpressed in CTGF-induced fibrosis. N-terminal CTGF fragments in the plasma of patients with severe fibrotic disease may be a product of CTGF proteolysis that also produces the newly identified 31-kDa CTGF that remains cell associated and may have its impact by non-integrin signaling pathways.
Collapse
Affiliation(s)
- Edward G Tall
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | |
Collapse
|
16
|
Proteins on the catwalk: modelling the structural domains of the CCN family of proteins. J Cell Commun Signal 2009; 3:25-41. [PMID: 19424823 PMCID: PMC2686754 DOI: 10.1007/s12079-009-0048-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 03/24/2009] [Indexed: 12/02/2022] Open
Abstract
The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach.
Collapse
|
17
|
Kikuchi T, Kubota S, Asaumi K, Kawaki H, Nishida T, Kawata K, Mitani S, Tabata Y, Ozaki T, Takigawa M. Promotion of bone regeneration by CCN2 incorporated into gelatin hydrogel. Tissue Eng Part A 2009. [PMID: 19230129 DOI: 10.1089/tea.2007.0167] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CCN family protein 2/connective tissue growth factor (CCN2/CTGF) is a unique molecule that promotes the entire endochondral ossification process and regeneration of damaged articular cartilage. Also, CCN2 has been shown to enhance the adhesion and migration of bone marrow stromal cells as well as the growth and differentiation of osteoblasts; hence, its utility in bone regeneration has been suggested. Here, we evaluated the effect of CCN2 on the regeneration of an intractable bone defect in a rat model. First, we prepared two recombinant CCN2s of different origins, and the one showing the stronger effect on osteoblasts in vitro was selected for further evaluation, based on the result of an in vitro bioassay. Next, to obtain a sustained effect, the recombinant CCN2 was incorporated into gelatin hydrogel that enabled the gradual release of the factor. Evaluation in vivo indicated that CCN2 continued to be released at least for up to 14 days after its incorporation. Application of the gelatin hydrogel-CCN2 complex, together with a collagen scaffold to the bone defect prepared in a rat femur resulted in remarkable induction of osteoblastic mineralization markers within 2 weeks. Finally, distinct enhancement of bone regeneration was observed 3 weeks after the application of the complex. These results confirm the utility of CCN2 in the regeneration of intractable bone defects in vivo when the factor is incorporated into gelatin hydrogel.
Collapse
Affiliation(s)
- Takeshi Kikuchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J Bone Miner Res 2008; 23:1751-64. [PMID: 18597638 PMCID: PMC6956620 DOI: 10.1359/jbmr.080615] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CCN2 is best known as a promoter of chondrocyte differentiation among the CCN family members, and its null mice display skeletal dysmorphisms. However, little is known concerning roles of the other CCN members in chondrocytes. Using both in vivo and in vitro approaches, we conducted a comparative analysis of CCN2-null and wildtype mice to study the roles of CCN2 and the other CCN proteins in cartilage development. Immunohistochemistry was used to evaluate the localization of CCN proteins and other chondrocyte-associated molecules in the two types of mice. Moreover, gene expression levels and the effects of exogenous CCN proteins on chondrocyte proliferation, differentiation, and the expression of chondrocyte-associated genes in their primary chondrocytes were evaluated. Ccn3 was dramatically upregulated in CCN2-null cartilage and chondrocytes. This upregulation was associated with diminished cell proliferation and delayed differentiation. Consistent with the in vivo findings, CCN2 deletion entirely retarded chondrocyte terminal differentiation and decreased the expression of several chondrocyte-associated genes in vitro, whereas Ccn3 expression drastically increased. In contrast, the addition of exogenous CCN2 promoted differentiation strongly and induced the expression of the associated genes, whereas decreasing the Ccn3 expression. These findings collectively indicate that CCN2 induces chondrocyte differentiation by regulating the expression of chondrocyte-associated genes but that these effects are counteracted by CCN3. The lack of CCN2 caused upregulation of CCN3 in CCN2-null mice, which resulted in the observed phenotypes, such as the resultant delay of terminal differentiation. The involvement of the PTHrP-Ihh loop in the regulation of CCN3 expression is also suggested.
Collapse
|
19
|
Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci 2008; 33:461-73. [PMID: 18789696 PMCID: PMC2683937 DOI: 10.1016/j.tibs.2008.07.006] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/03/2008] [Accepted: 07/07/2008] [Indexed: 02/07/2023]
Abstract
The CCN proteins are key signalling and regulatory molecules involved in many vital biological functions, including cell proliferation, angiogenesis, tumourigenesis and wound healing. How these proteins influence such a range of functions remains incompletely understood but is probably related to their discrete modular nature and a complex array of intra- and inter-molecular interactions with a variety of regulatory proteins and ligands. Although certain aspects of their biology can be attributed to the four individual modules that constitute the CCN proteins, recent results suggest that some of their biological functions require cooperation between modules. Indeed, the modular structure of CCN proteins provides important insight into their structure-function relationships.
Collapse
Affiliation(s)
- Kenneth P Holbourn
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | |
Collapse
|
20
|
Kikuchi T, Kubota S, Asaumi K, Kawaki H, Nishida T, Kawata K, Mitani S, Tabata Y, Ozaki T, Takigawa M. Promotion of Bone Regeneration by CCN2 Incorporated into Gelatin Hydrogel. Tissue Eng Part A 2008; 14:1089-98. [DOI: 10.1089/ten.tea.2007.0167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Takeshi Kikuchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Asaumi
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shigeru Mitani
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Functional requirement of CCN2 for intramembranous bone formation in embryonic mice. Biochem Biophys Res Commun 2007; 366:450-6. [PMID: 18067859 DOI: 10.1016/j.bbrc.2007.11.155] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 11/23/2022]
Abstract
CCN2 is best known as a promoter of chondrocyte differentiation among the CCN family members, and Ccn2 null mutant mice display skeletal dysmorphisms. However, little is known concerning the roles of CCN2 during bone formation. We herein present a comparative analysis of wild-type and Ccn2 null mice to investigate the roles of CCN2 in bone development. Multiple histochemical methods were employed to analyze the effects of CCN2 deletion in vivo, and effects of CCN2 on the osteogenic response were evaluated with the isolated and cultured osteoblasts. As a result, we found a drastic reduction of the osteoblastic phenotype in Ccn2 null mutants. Importantly, addition of exogenous CCN2 promoted every step of osteoblast differentiation and rescued the attenuated activities of the Ccn2 null osteoblasts. These results suggest that CCN2 is required not only for the regulation of cartilage and subsequent events, but also for the normal intramembranous bone development.
Collapse
|