1
|
Geib T, Moghaddam G, Supinski A, Golizeh M, Sleno L. Protein Targets of Acetaminophen Covalent Binding in Rat and Mouse Liver Studied by LC-MS/MS. Front Chem 2021; 9:736788. [PMID: 34490218 PMCID: PMC8417805 DOI: 10.3389/fchem.2021.736788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Acetaminophen (APAP) is a mild analgesic and antipyretic used commonly worldwide. Although considered a safe and effective over-the-counter medication, it is also the leading cause of drug-induced acute liver failure. Its hepatotoxicity has been linked to the covalent binding of its reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), to proteins. The aim of this study was to identify APAP-protein targets in both rat and mouse liver, and to compare the results from both species, using bottom-up proteomics with data-dependent high resolution mass spectrometry and targeted multiple reaction monitoring (MRM) experiments. Livers from rats and mice, treated with APAP, were homogenized and digested by trypsin. Digests were then fractionated by mixed-mode solid-phase extraction prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Targeted LC-MRM assays were optimized based on high-resolution MS/MS data from information-dependent acquisition (IDA) using control liver homogenates treated with a custom alkylating reagent yielding an isomeric modification to APAP on cysteine residues, to build a modified peptide database. A list of putative in vivo targets of APAP were screened from data-dependent high-resolution MS/MS analyses of liver digests, previous in vitro studies, as well as selected proteins from the target protein database (TPDB), an online resource compiling previous reports of APAP targets. Multiple protein targets in each species were found, while confirming modification sites. Several proteins were modified in both species, including ATP-citrate synthase, betaine-homocysteine S-methyltransferase 1, cytochrome P450 2C6/29, mitochondrial glutamine amidotransferase-like protein/ES1 protein homolog, glutamine synthetase, microsomal glutathione S-transferase 1, mitochondrial-processing peptidase, methanethiol oxidase, protein/nucleic acid deglycase DJ-1, triosephosphate isomerase and thioredoxin. The targeted method afforded better reproducibility for analysing these low-abundant modified peptides in highly complex samples compared to traditional data-dependent experiments.
Collapse
Affiliation(s)
- Timon Geib
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Ghazaleh Moghaddam
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Aimee Supinski
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Makan Golizeh
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Malik U, Zafar S, Younas N, Zerr I, Javed A. Unveiling the Physical and Functional Niches of FAM26F by Analyzing Its Subcellular Localization and Novel Interacting Partners. ACS OMEGA 2020; 5:22008-22020. [PMID: 32923759 PMCID: PMC7482079 DOI: 10.1021/acsomega.0c01249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The knowledge of a protein's subcellular localization and interacting partners are crucial for elucidating its cellular function and associated regulatory networks. Although FAM26F (family with sequence similarity 26, member F) has been recognized as a vital player in various infections, stimulation studies, cancer, and immune pathogenesis, the precise location and function of FAM26F are not well understood. The current study is the first to focus on functional characterization of FAM26F by analyzing its subcellular localization and identifying its novel interacting partners using advanced proteome approaches. The immunofluorescence and confocal microscopy results revealed FAM26F to be largely localized within the Golgi apparatus of the cell. However, its minor presence in endoplasmic reticulum (ER) pointed toward the probable retrograde transfer of FAM26F from Golgi to ER during adverse conditions. Moreover, co-immunoprecipitation and MS/MS results demonstrated a total of 85 proteins, 44 of which significantly copurified with FAM26F. Interestingly, out of these 44 MS/MS identified proteins, almost 52% were involved in innate immunity, 38.6% in neutrophil degranulation, and remaining 10% were either involved in phosphorylation, degradation, or regulation of apoptosis. Further characterization through Ingenuity Pathway Analysis showed that majority of these proteins was involved in maintaining calcium homeostasis of cell. Consequently, the validation of selected proteins uncovered the key interaction of FAM26F with Thioredoxin, which essentially paved the way for depicting its mechanism of action under stress or disease conditions. It is proposed that activation and inhibition of the cellular immune response is essentially dependent on whether FAM26F or Thioredoxin considerably interact with CD30R.
Collapse
Affiliation(s)
- Uzma Malik
- Department
of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences
(ASAB), National University of Sciences
and Technology (NUST), H-12 Campus, 44000 Islamabad, Pakistan
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Saima Zafar
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
- Department
of Biomedical Engineering & Sciences, School of Mechanical &
Manufacturing Engineering (SMME), National
University of Sciences and Technology (NUST), H-12
Campus, 44000 Islamabad, Pakistan
| | - Neelam Younas
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Inga Zerr
- Department
of Neurology, University Medical Centre Göttingen (UMG), Georg-August-Universität Göttingen, 37075 Göttingen, Germany
| | - Aneela Javed
- Department
of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences
(ASAB), National University of Sciences
and Technology (NUST), H-12 Campus, 44000 Islamabad, Pakistan
| |
Collapse
|
3
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
4
|
The Immunosuppressant Mycophenolic Acid Alters Nucleotide and Lipid Metabolism in an Intestinal Cell Model. Sci Rep 2017; 7:45088. [PMID: 28327659 PMCID: PMC5361167 DOI: 10.1038/srep45088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/16/2017] [Indexed: 01/14/2023] Open
Abstract
The study objective was to elucidate the molecular mechanisms underlying the negative effects of mycophenolic acid (MPA) on human intestinal cells. Effects of MPA exposure and guanosine supplementation on nucleotide concentrations in LS180 cells were assessed using liquid chromatography-mass spectrometry. Proteomics analysis was carried out using stable isotope labeling by amino acids in cell culture combined with gel-based liquid chromatography-mass spectrometry and lipidome analysis using 1H nuclear magnetic resonance spectroscopy. Despite supplementation, depletion of guanosine nucleotides (p < 0.001 at 24 and 72 h; 5, 100, and 250 μM MPA) and upregulation of uridine and cytidine nucleotides (p < 0.001 at 24 h; 5 μM MPA) occurred after exposure to MPA. MPA significantly altered 35 proteins mainly related to nucleotide-dependent processes and lipid metabolism. Cross-reference with previous studies of MPA-associated protein changes widely corroborated these results, but showed differences that may be model- and/or method-dependent. MPA exposure increased intracellular concentrations of fatty acids, cholesterol, and phosphatidylcholine (p < 0.01 at 72 h; 100 μM MPA) which corresponded to the changes in lipid-metabolizing proteins. MPA affected intracellular nucleotide levels, nucleotide-dependent processes, expression of structural proteins, fatty acid and lipid metabolism in LS180 cells. These changes may compromise intestinal membrane integrity and contribute to gastrointestinal toxicity.
Collapse
|
5
|
Toxicological potential of acyl glucuronides and its assessment. Drug Metab Pharmacokinet 2017; 32:2-11. [DOI: 10.1016/j.dmpk.2016.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
|
6
|
Golizeh M, Geib T, Sleno L. Identification of 4-hydroxynonenal protein targets in rat, mouse and human liver microsomes by two-dimensional liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1488-1494. [PMID: 27321836 DOI: 10.1002/rcm.7577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE 4-Hydroxynonenal (HNE), endogenously generated through peroxidation and breakdown of polyunsaturated fatty acids, has been linked to a number of adverse biological effects through carbonylation of essential biomolecules. Covalent binding of HNE to proteins can alter their structure and functions, causing cell damage as well as adverse immune responses. The liver plays a predominant role in metabolic transformations and hepatic proteins are often targeted by reactive metabolites. METHODS Rat, mouse and human liver microsomes were incubated with HNE, enzymatically digested, and subjected to strong cation-exchange peptide fractionation prior to liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis coupled to electrospray ionization quadrupole time-of-flight (QqTOF) mass spectrometry. HNE-modified peptides were detected by probability-driven peptide spectral matching and comparative analysis between treated and control samples, and confirmed based on accurate mass and high-resolution MS/MS spectra. RESULTS A total of 99, 123 and 51 HNE-modified peptides were identified in rat, mouse and human liver microsomes related to 76, 103 and 44 target proteins, respectively. Eight proteins were found to be adducted by HNE in all three species, including ATP synthase, carbamoyl phosphate synthase, cytochrome P450 1A2, glutamate dehydrogenase 1, protein ERGIC-53, protein disulfide-isomerase, and voltage-dependent anion-selective channel protein 1. These proteins play crucial roles in cellular processes and their covalent modification could potentially alter their function and lead to cytotoxicity. CONCLUSIONS An analytical approach was developed for the identification of in vitro HNE protein targets in rat, mouse and human liver microsomes using two-dimensional (2D) LC/MS/MS. This approach can be applied to study HNE modification of proteins in vitro and in vivo, providing insight into the toxicology of HNE protein adduction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Makan Golizeh
- Chemistry Department/Pharmaqam, Université du Québec à Montréal (UQÀM), Montréal, QC, Canada
| | - Timon Geib
- Chemistry Department/Pharmaqam, Université du Québec à Montréal (UQÀM), Montréal, QC, Canada
| | - Lekha Sleno
- Chemistry Department/Pharmaqam, Université du Québec à Montréal (UQÀM), Montréal, QC, Canada
| |
Collapse
|
7
|
Ramm S, Limbeck E, Mally A. Functional and cellular consequences of covalent target protein modification by furan in rat liver. Toxicology 2016; 361-362:49-61. [PMID: 27402187 DOI: 10.1016/j.tox.2016.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
Furan hepatotoxicity is thought to be linked to covalent binding of its reactive metabolite, cis-2-butene-1,4-dial, to hepatic proteins critical for cell homeostasis and survival. We previously identified 61 putative furan target proteins, which participate in various cellular processes including carbohydrate metabolism, fatty acid β-oxidation, adenosine triphosphate (ATP) synthesis, protein folding and maintenance of redox homeostasis. To further investigate the biological significance of target protein modification, this study was designed to determine the impact of furan on the activity of key target enzymes involved in glycolysis, β-oxidation, ATP synthesis, and redox regulation in rat liver, and to link these functional changes to alterations in cellular processes. While cis-2-butene-1,4-dial inhibited thioredoxin 1 (Txn1) in a cell-free assay, in livers of rats treated with a single high dose of furan Txn1 activity was markedly increased due to rapid up-regulation of Txn1 mRNA expression. Significant inhibition of glyceraldehyde-3-phosphate dehydrogenase and metabolic changes consistent with blocked glycolytic breakdown of glucose were observed in rat liver in response to a single high dose of furan. In contrast, furan treatment resulted in increased activity of enoyl-CoA hydratase and enhanced production of ketone bodies, indicative of increased utilization of fatty acids as energy source. Consistent with changes in TCA cycle metabolites, furan treatment resulted in a reduction of succinate dehydrogenase activity, supporting mitochondrial dysfunction as a critical event in furan toxicity. No significant changes in target protein function were observed following repeated administration of furan at lower dose (0.1 and 0.5mg/kg bw for 4 weeks) closer to estimated human exposure to furan via food. Although the relative contribution of furan mediated alterations in metabolic pathways and antioxidant defense to the overall toxic response to furan, including considerations of dose and time, remains to be established, our work contributes to mapping biological processes and toxicity pathways modulated by reactive electrophiles.
Collapse
Affiliation(s)
- Susanne Ramm
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Elisabeth Limbeck
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
8
|
Yang X, Bartlett MG. Identification of protein adduction using mass spectrometry: Protein adducts as biomarkers and predictors of toxicity mechanisms. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:652-664. [PMID: 26842586 DOI: 10.1002/rcm.7462] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
The determination of protein-xenobiotic adducts using mass spectrometry is an emerging area which allows detailed understanding of the underlying mechanisms involved in toxicity. These approaches can also be used to reveal potential biomarkers of exposure or toxic response. The following review covers studies of protein adducts resulting from exposure to a wide variety of xenobiotics including organophosphates, polycyclic aromatic hydrocarbons, acetaminophen, alkylating agents and other related compounds.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA, 30602-2352, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA, 30602-2352, USA
| |
Collapse
|
9
|
Rabilloud T, Lescuyer P. Proteomics in mechanistic toxicology: History, concepts, achievements, caveats, and potential. Proteomics 2014; 15:1051-74. [DOI: 10.1002/pmic.201400288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals; CNRS UMR; 5249 Grenoble France
- Laboratory of Chemistry and Biology of Metals; Université Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CEA Grenoble; iRTSV/CBM; Grenoble France
| | - Pierre Lescuyer
- Department of Human Protein Sciences; Clinical Proteomics and Chemistry Group; Geneva University; Geneva Switzerland
- Toxicology and Therapeutic Drug Monitoring Laboratory; Department of Genetic and Laboratory Medicine; Geneva University Hospitals; Geneva Switzerland
| |
Collapse
|
10
|
Kędzierska K, Sporniak-Tutak K, Sindrewicz K, Bober J, Domański L, Parafiniuk M, Urasińska E, Ciechanowicz A, Domański M, Smektała T, Masiuk M, Skrzypczak W, Ożgo M, Kabat-Koperska J, Ciechanowski K. Effects of immunosuppressive treatment on protein expression in rat kidney. Drug Des Devel Ther 2014; 8:1695-708. [PMID: 25328384 PMCID: PMC4196885 DOI: 10.2147/dddt.s64814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents’ toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins’ synthesis. Very slight differences were observed between the group receiving cyclosporine, mycophenolate mofetil, and glucocorticoids (CMG) and the control group. In contrast, compared to the control group, animals receiving tacrolimus, mycophenolate mofetil, and glucocorticoids (TMG) exhibited higher expression of proteins responsible for renal drug metabolism and lower expression levels of cytoplasmic actin and the major urinary protein. In the TMG group, we observed higher expression of proteins responsible for drug metabolism and a decrease in the expression of respiratory chain enzymes (thioredoxin-2) and markers of distal renal tubular damage (heart fatty acid-binding protein) compared to expression in the CMG group. The consequences of the reported changes in protein expression require further study.
Collapse
Affiliation(s)
- Karolina Kędzierska
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Joanna Bober
- Department of Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Leszek Domański
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Mirosław Parafiniuk
- Department of Forensic Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Urasińska
- Department of Pathomorphology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Maciej Domański
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Smektała
- Department of Dental Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Marek Masiuk
- Department of Pathomorphology, Pomeranian Medical University, Szczecin, Poland
| | - Wiesław Skrzypczak
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
| | - Joanna Kabat-Koperska
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Kazimierz Ciechanowski
- Department of Nephrology, Transplantology, and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
11
|
Anchorless 23-230 PrPC interactomics for elucidation of PrPC protective role. Mol Neurobiol 2014; 49:1385-99. [PMID: 24390569 DOI: 10.1007/s12035-013-8616-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
Accumulation of conformationally altered cellular proteins (i.e., prion protein) is the common feature of prions and other neurodegenerative diseases. Previous studies demonstrated that the lack of terminal sequence of cellular prion protein (PrPC), necessary for the addition of glycosylphosphatidylinositol lipid anchor, leads to a protease-resistant conformation that resembles scrapie-associated isoform of prion protein. Moreover, mice overexpressing the truncated form of PrPC showed late-onset, amyloid deposition, and the presence of a short protease-resistant PrP fragment in the brain similar to those found in Gerstmann-Sträussler-Scheinker disease patients. Therefore, the physiopathological function of truncated_/anchorless 23-230 PrPC (Δ23-230 PrPC) has come into focus of attention. The present study aims at revealing the physiopathological function of the anchorless PrPC form by identifying its interacting proteins. The truncated_/anchorless Δ23-230 PrPC along with its interacting proteins was affinity purified using STrEP-Tactin chromatography, in-gel digested, and identified by quadrupole time-of-flight tandem mass spectrometry analysis in prion protein-deficient murine hippocampus (HpL3-4) neuronal cell line. Twenty-three proteins appeared to interact with anchorless Δ23-230 PrPC in HpL3-4 cells. Out of the 23 proteins, one novel protein, pyruvate kinase isozymes M1/M2 (PKM2), exhibited a potential interaction with the anchorless Δ23-230 form of PrPC. Both reverse co-immunoprecipitation and confocal laser-scanning microscopic analysis confirmed an interaction of PKM2 with the anchorless Δ23-230 form of PrPC. Furthermore, we provide the first evidence for co-localization of PKM2 and PrPC as well as PrPC-dependent PKM2 expression regulation. In addition, given the involvement of PrPC in the regulation of apoptosis, we exposed HpL3-4 cells to staurosporine (STS)-mediated apoptotic stress. In response to STS-mediated apoptotic stress, HpL3-4 cells transiently expressing 23-230-truncated PrPC were markedly less viable, were more prone to apoptosis and exhibited significantly higher PKM2 expressional regulation as compared with HpL3-4 cells transiently expressing full-length PrPC (1-253 PrPC). The enhanced STS-induced apoptosis was shown by increased caspase-3 cleavage. Together, our data suggest that the misbalance or over expression of anchorless Δ23-230 form of PrPC in association with the expressional regulation of interacting proteins could render cells more prone to cellular insults-stress response, formation of aggregates and may ultimately be linked to the cell death.
Collapse
|
12
|
Monrad RN, Errey JC, Barry CS, Iqbal M, Meng X, Iddon L, Perrie JA, Harding JR, Wilson ID, Stachulski AV, Davis BG. Dissecting the reaction of Phase II metabolites of ibuprofen and other NSAIDS with human plasma protein. Chem Sci 2014. [DOI: 10.1039/c4sc01329h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Blood-protein transacylation/glycosylation reactivity of glucuronides may distinguish beneficial (e.g., ibuprofen) and toxic (e.g., ibufenac) drugs.
Collapse
Affiliation(s)
- Rune Nygaard Monrad
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford, UK
| | - James C. Errey
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford, UK
| | - Conor S. Barry
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford, UK
| | - Mazhar Iqbal
- The Robert Robinson Laboratories
- Department of Chemistry
- University of Liverpool
- Liverpool, UK
| | - Xiaoli Meng
- The Robert Robinson Laboratories
- Department of Chemistry
- University of Liverpool
- Liverpool, UK
| | - Lisa Iddon
- The Robert Robinson Laboratories
- Department of Chemistry
- University of Liverpool
- Liverpool, UK
| | - Jennifer A. Perrie
- The Robert Robinson Laboratories
- Department of Chemistry
- University of Liverpool
- Liverpool, UK
| | - John R. Harding
- Drug Metabolism and Pharmacokinetics
- Astra Zeneca
- Cheshire SK10 4TG, UK
| | - Ian D. Wilson
- Drug Metabolism and Pharmacokinetics
- Astra Zeneca
- Cheshire SK10 4TG, UK
| | - Andrew V. Stachulski
- The Robert Robinson Laboratories
- Department of Chemistry
- University of Liverpool
- Liverpool, UK
| | - Benjamin G. Davis
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford, UK
| |
Collapse
|
13
|
Pazik J, Ołdak M, Lewandowski Z, Podgórska M, Sitarek E, Płoski R, Gałazka Z, Kwiatkowski A, Malejczyk J, Durlik M. Uridine diphosphate glucuronosyltransferase 2B7 variant p.His268Tyr as a predictor of kidney allograft early acute rejection. Transplant Proc 2013; 45:1516-9. [PMID: 23726609 DOI: 10.1016/j.transproceed.2013.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Uridine diphosphate glucuronosyltransferase (UGT2B7) is responsible for conversion of mycophenolic acid to mycophenolic acyl-glucuronide (acylMPAG). Conflicting data exist regarding the role of UGT2B7 p.His268Tyr (802C>T, rs7439366) variant in the clinical course following organ transplantation. STUDY AIM The aim of this study was to reveal an association between UGT2B7 p.His268Tyr (802C>T, rs7439366) polymorphism and kidney transplantation outcome. STUDY DESIGN, PATIENTS, AND METHOD: Genomic DNA of 235 kidney transplant recipients was genotyped for UGT2B7 802C>T using TagMan single nucleotide polymorphism (SNP) genotyping assay. Maintenance immunosuppression used mycophenolate mofetil (MMF) and cyclosporine A (n = 137) or tacrolimus (n = 98). Primary end-point was biopsy-confirmed acute rejection within 3 and 12 post-transplantation months. Secondary end-points included gastrointestinal side effects, leukopenia, lymphopenia, neutropenia, and infections. Statistical analysis was performed with the aid of SAS System using kernel-smoothed estimates of acute graft rejection hazard function. The log-rank test and hazard ratio were used to reflect association between UGT2B7 802C>T variant and risk of acute graft rejection. RESULTS Within 3 postimplantation months 38 (16.2%) patients experienced acute rejection; 33 were allele C carriers in UGT2B7 802C>T SNP and 5 were TT homozygotes (P < .0457). Allele C-associated risk of rejection was 2.50 and remained between 2.19 and 3.02 after adjustment for clinical confounders, ie, HLA mismatch, panel-reactive antibodies, donor age, repeated transplantation, induction therapy, donor type, delayed graft function, applied calcineurin inhibitor, or MMF dosing. We found no association between the polymorphism and gastrointestinal side effects, leukopenia, lymphopenia, neutropenia, and infections. CONCLUSION UGT2B7 802C>T genotyping may help identify patients with excessive early acute rejection risk.
Collapse
Affiliation(s)
- J Pazik
- Department of Transplantation Medicine and Nephrology, Medical University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Serum aminoacylase-1 is a novel biomarker with potential prognostic utility for long-term outcome in patients with delayed graft function following renal transplantation. Kidney Int 2013; 84:1214-25. [PMID: 23739232 PMCID: PMC3898105 DOI: 10.1038/ki.2013.200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 12/28/2022]
Abstract
Early identification and prognostic stratification of delayed graft function following renal transplantation has significant potential to improve outcome. Mass spectrometry analysis of serum samples, before and on day 2 post transplant from five patients with delayed graft function and five with an uncomplicated transplant, identified aminoacylase-1 (ACY-1) as a potential outcome biomarker. Following assay development, analysis of longitudinal samples from an initial validation cohort of 55 patients confirmed that the ACY-1 level on day 1 or 2 was a moderate predictor of delayed graft function, similar to serum creatinine, complementing the strongest predictor cystatin C. A further validation cohort of 194 patients confirmed this association with area under ROC curves (95% CI) for day 1 serum (138 patients) of 0.74 (0.67-0.85) for ACY-1, 0.9 (0.84-0.95) for cystatin C, and 0.93 (0.88-0.97) for both combined. Significant differences in serum ACY-1 levels were apparent between delayed, slow, and immediate graft function. Analysis of long-term follow-up for 54 patients with delayed graft function showed a highly significant association between day 1 or 3 serum ACY-1 and dialysis-free survival, mainly associated with the donor-brain-dead transplant type. Thus, proteomic analysis provides novel insights into the potential clinical utility of serum ACY-1 levels immediately post transplantation, enabling subdivision of patients with delayed graft function in terms of long-term outcome. Our study requires independent confirmation.
Collapse
|
15
|
Nasim FUH, Ejaz S, Ashraf M, Asif AR, Oellerich M, Ahmad G, Malik GA, Attiq-Ur-Rehman. Potential biomarkers in the sera of breast cancer patients from bahawalpur, pakistan. BIOMARKERS IN CANCER 2012; 4:19-34. [PMID: 24179392 PMCID: PMC3791917 DOI: 10.4137/bic.s10502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most of the approximately 90,000 cases of Breast Cancer (BC) documented annually in Pakistan are not diagnosed properly because of lack of suitable markers. We performed serum proteome expression profiling of BC and benign breast disease (BBD) patients with the aim to identify biomarkers that can be helpful for diagnosis and prognosis of the disease. Sera of patients were analyzed by one-dimensional SDS polyacrylamide gel electrophoresis (PAGE). Differentially expressed proteins were subjected to identification through LC-MS/MS analysis. In majority of the BC cases some acute phase proteins (APP) and some complement system components (C3 and C8) containing fractions were up-regulated with the exception of transthyretin (TTR) which was predominantly (68.75%) down-regulated (n = 33/48) in the sera of these patients. Varying expression patterns were observed in BBD patients and healthy controls. These differentially expressed proteins have the potential to serve as diagnostic biomarkers for BC as well as benign breast diseases.
Collapse
Affiliation(s)
- Faiz-Ul-Hassan Nasim
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan. ; Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Khojasteh SC, Hartley DP, Ford KA, Uppal H, Oishi S, Nelson SD. Characterization of Rat Liver Proteins Adducted by Reactive Metabolites of Menthofuran. Chem Res Toxicol 2012; 25:2301-9. [DOI: 10.1021/tx300144d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Cyrus Khojasteh
- Drug Metabolism
and Pharmacokinetics, Genentech, Inc.,
1 DNA Way MS 412a, South San Francisco,
California 94080, United States
| | | | - Kevin A. Ford
- Safety Assessment, Genentech, Inc., 1
DNA Way MS 59, South San Francisco,
California 94080, United States
| | - Hirdesh Uppal
- Safety Assessment, Genentech, Inc., 1
DNA Way MS 59, South San Francisco,
California 94080, United States
| | - Shimako Oishi
- Pharma Products Group, Abbott Japan Co., Ltd., Tokyo 108-6303, Japan
| | - Sidney D. Nelson
- Department of Medicinal Chemistry,
School of Pharmacy, University of Washington, Box 357610, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Li N, Yi Z, Wang Y, Zhang Q, Zhong T, Qiu Y, Wu Z, Tang X. Differential proteomic analysis of HL60 cells treated with secalonic acid F reveals caspase 3-induced cleavage of Rho GDP dissociation inhibitor 2. Oncol Rep 2012; 28:2016-22. [PMID: 23023390 DOI: 10.3892/or.2012.2062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/08/2012] [Indexed: 11/06/2022] Open
Abstract
Secalonic acid F (SAF) has been previously identified, however, little is known about its cytotoxic activity and related cytotoxic mechanism. The aim of this study was to evaluate the cytotoxic activity of SAF isolated from a deep sea originated fungus Penicillium sp. F11 in HL60 cells and to analyze the differences in protein expression of HL60 cells treated with SAF. The CCK-8 assay and Annexin V-FLUOS/PI assay indicated that SAF displayed dose- and time-dependent inhibition of HL60 cell proliferation and induced apoptosis. Two-dimensional gel electrophoresis (2-DE) analysis of HL60 cells treated with SAF (4 µg/ml) revealed 10 differentially expressed protein spots (P<0.05), 5 upregulated and 5 downregulated. Three spots (1 downregulated and 2 upregulated) were identified as Rho GDP dissociation inhibitor 2 (RhoGDI 2) proteins by MALDI-TOF MS. Western blotting further demonstrated the decreased abundance of full-length RhoGDI 2 together with the increased abundance of caspase 3-cleaved product of RhoGDI 2. The caspase 3 inhibitor Ac-DEVD-CHO could suppress the cytotoxic effect of SAF and significantly block the cleavage of RhoGDI 2. RhoGDI 2 is a cytosolic regulator of Rho GTPase and the caspase 3-cleaved product of RhoGDI 2 can advance progression of the apoptotic process. Our data showed that SAF may modulate RhoGDI 2 levels in HL60 cells, thereby potentially disrupting cell signaling pathways important for HL60 cell function.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Qasim M, Rahman H, Oellerich M, Asif AR. Differential proteome analysis of human embryonic kidney cell line (HEK-293) following mycophenolic acid treatment. Proteome Sci 2011; 9:57. [PMID: 21933383 PMCID: PMC3189873 DOI: 10.1186/1477-5956-9-57] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/20/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mycophenolic acid (MPA) is widely used as a post transplantation medicine to prevent acute organ rejection. In the present study we used proteomics approach to identify proteome alterations in human embryonic kidney cells (HEK-293) after treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total protein lysates were prepared, resolved by two dimensional gel electrophoresis and differentially expressed proteins were identified by QTOF-MS/MS analysis. Expressional regulations of selected proteins were further validated by real time PCR and Western blotting. RESULTS The proliferation assay demonstrated that therapeutic MPA concentration causes a dose dependent inhibition of HEK-293 cell proliferation. A significant apoptosis was observed after MPA treatment, as revealed by caspase 3 activity. Proteome analysis showed a total of 12 protein spots exhibiting differential expression after incubation with MPA, of which 7 proteins (complement component 1 Q subcomponent-binding protein, electron transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-containing protein 12, myosin regulatory light chain 2, and profilin 1) showed significant increase in their expression. The expression of 5 proteins (protein SET, stathmin, 40S ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-C/E/F/G/I) were down-regulated. MPA mainly altered the proteins associated with the cytoskeleton (26%), chromatin structure/dynamics (17%) and energy production/conversion (17%). Both real time PCR and Western blotting confirmed the regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA treatment. Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF treated rats showed similar increased expression of myosin regulatory light chain 2. CONCLUSION The emerging use of MPA in diverse pathophysiological conditions demands in-depth studies to understand molecular basis of its therapeutic response. The present study identifies the myosin regulatory light chain 2 and peroxiredoxin 1 along with 10 other proteins showing significant regulation by MPA. Further characterization of these proteins may help to understand the diverse cellular effects of MPA in addition to its immunosuppressive activity.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Clinical Chemistry, University Medical Centre Goettingen, 37075, Goettingen, Germany.
| | | | | | | |
Collapse
|
19
|
Zafar S, von Ahsen N, Oellerich M, Zerr I, Schulz-Schaeffer WJ, Armstrong VW, Asif AR. Proteomics Approach to Identify the Interacting Partners of Cellular Prion Protein and Characterization of Rab7a Interaction in Neuronal Cells. J Proteome Res 2011; 10:3123-35. [DOI: 10.1021/pr2001989] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saima Zafar
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Nicolas von Ahsen
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Michael Oellerich
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Inga Zerr
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Walter J. Schulz-Schaeffer
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Victor W. Armstrong
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Abdul R. Asif
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| |
Collapse
|
20
|
Petrova DT, Brehmer F, Schultze FC, Asif AR, Gross O, Oellerich M, Brandhorst G. Differential Kidney Proteome Profiling in a Murine Model of Renal Fibrosis under Treatment with Mycophenolate Mofetil. Pathobiology 2011; 78:162-70. [DOI: 10.1159/000324597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/25/2011] [Indexed: 01/29/2023] Open
|
21
|
Identification of chemical-adducted proteins in urine by multi-dimensional protein identification technology (LC/LC-MS/MS). Methods Mol Biol 2011; 691:339-47. [PMID: 20972764 PMCID: PMC4083842 DOI: 10.1007/978-1-60761-849-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Recent technological advancements in mass spectrometry facilitate the detection of chemical-induced posttranslational modifications (PTMs) that may alter cell signaling pathways or alter the structure and function of the modified proteins. To identify such protein adducts (Kleiner et al., Chem Res Toxicol 11:1283-1290, 1998), multi-dimensional protein identification technology (MuDPIT) has been utilized. MuDPIT was first described by Link et al. as a new technique useful for protein identification from a complex mixture of proteins (Link et al., Nat Biotechnol 17:676-682, 1999). MuDPIT utilizes two different HPLC columns to further enhance peptide separation, increasing the number of peptide hits and protein coverage. The technology is extremely useful for proteomes, such as the urine proteome, samples from immunoprecipitations, and 1D gel bands resolved from a tissue homogenate or lysate. In particular, MuDPIT has enhanced the field of adduct hunting for adducted peptides, since it is more capable of identifying lesser abundant peptides, such as those that are adducted, than the more standard LC-MS/MS. The site-specific identification of covalently adducted proteins is a prerequisite for understanding the biological significance of chemical-induced PTMs and the subsequent toxicological response they elicit.
Collapse
|
22
|
Asif AR, Oellerich M, Amstrong VW, Gross U, Reichard U. Analysis of the cellular Aspergillus fumigatus proteome that reacts with sera from rabbits developing an acquired immunity after experimental aspergillosis. Electrophoresis 2010; 31:1947-58. [PMID: 20564691 DOI: 10.1002/elps.201000015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive aspergillosis caused by the mould Aspergillus fumigatus is a life-threatening lung or systemic infection in the immunocompromised host. In this study, a protective immune response against the disease was achieved in two infected rabbits, and the cellular fungal antigenic proteome that mediated such a response was investigated against the background of vaccine development efforts. Altogether, 59 different Aspergillus proteins were found becoming reactive in the course of the developing immunity, many of which are described in this context for the first time. These included proteins related to oxidative stress management, glycolysis and other metabolic pathways. As oxidative stress is suspected to be one of the major defense mechanisms, the results may indicate at least in part a continuous response of the pathogen to evade the host's immune system. In addition, proteins with suspected cell surface association or crucial function for fungal cell development were identified. As these antigens are newly recognized during the process of the developing immunoprotection, they may not only represent valuable infection markers but also importantly broaden the list of possible vaccine candidates.
Collapse
Affiliation(s)
- Abdul R Asif
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany.
| | | | | | | | | |
Collapse
|
23
|
Schultze FC, Petrova DT, Oellerich M, Armstrong VW, Asif AR. Differential proteome and phosphoproteome signatures in human T-lymphoblast cells induced by sirolimus. Cell Prolif 2010; 43:396-404. [PMID: 20590665 DOI: 10.1111/j.1365-2184.2010.00690.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The present study was designed to investigate early proteome and phosphoproteome changes during inhibition of lymphocyte proliferation induced by sirolimus (SRL). MATERIALS AND METHODS Proliferation assays were conducted using human CCRF-CEM T lymphoblasts under different SRL concentrations. Total protein lysates after SRL treatment were used to identify significantly regulated proteins and phosphorylated proteins by 2-DE and Q-TOF Ultima Global mass spectrometer. RESULTS AND CONCLUSIONS Incubation with 2.5 micromol/l SRL resulted in a approximately 70% inhibition of cell proliferation. Cells incubated with 2.5 micromol/l for 30 min showed a differential phosphorylation pattern with one higher (TCPQ) and six lower phosphorylation signals (TBA1B, VIME, HNRPD, ENPL, SEPT9, PLSL). On investigating the differential protein expression, five proteins were found to be up-regulated (ECHB, PSB3, MTDC, LDHB and NDKA) and four were down-regulated (EHD1, AATC, LMNB1 and MDHC). Nine of these differentially regulated proteins/phosphoproteins (TCPQ, TBA1B, VIME, HNRPD, ENPL, ECHB, PSB3, LDHB and LMNB1) showed significant interaction potential, through binding protein YWHAZ using MINT software. CONCLUSIONS We report for the first time the simultaneous early influence of SRL on phosphorylation status and on protein expression in the total proteome of CCRF-CEM T lymphoblasts and predict that 56% of the proteins interact with each other, highlighting significance of these results.
Collapse
Affiliation(s)
- F C Schultze
- Department of Clinical Chemistry, University Medicine Goettingen, Goettingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Glycosylation of lysine-containing pentapeptides by glucuronic acid: new insights into the Maillard reaction. Carbohydr Res 2010; 345:377-84. [DOI: 10.1016/j.carres.2009.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 11/25/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022]
|
25
|
Abstract
Gemfibrozil is long known for its ability to reduce the level of triglycerides in the blood circulation and to decrease the risk of hyperlipidemia. However, a number of recent studies reveal that apart from its lipid-lowering effects, gemfibrozil can also regulate many other signaling pathways responsible for inflammation, switching of T-helper cells, cell-to-cell contact, migration, and oxidative stress. In this review, we have made an honest attempt to analyze various biological activities of gemfibrozil and associated mechanisms that may help to consider this drug for different human disorders as primary or adjunct therapy.
Collapse
Affiliation(s)
- Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
26
|
Cheng KW, Wong CC, Wang M, He QY, Chen F. Identification and characterization of molecular targets of natural products by mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:126-155. [PMID: 19319922 DOI: 10.1002/mas.20235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Natural products, and their derivatives and mimics, have contributed to the development of important therapeutics to combat diseases such as infections and cancers over the past decades. The value of natural products to modern drug discovery is still considerable. However, its development is hampered by a lack of a mechanistic understanding of their molecular action, as opposed to the emerging molecule-targeted therapeutics that are tailored to a specific protein target(s). Recent advances in the mass spectrometry-based proteomic approaches have the potential to offer unprecedented insights into the molecular action of natural products. Chemical proteomics is established as an invaluable tool for the identification of protein targets of natural products. Small-molecule affinity selection combined with mass spectrometry is a successful strategy to "fish" cellular targets from the entire proteome. Mass spectrometry-based profiling of protein expression is also routinely employed to elucidate molecular pathways involved in the therapeutic and possible toxicological responses upon treatment with natural products. In addition, mass spectrometry is increasingly utilized to probe structural aspects of natural products-protein interactions. Limited proteolysis, photoaffinity labeling, and hydrogen/deuterium exchange in conjunction with mass spectrometry are sensitive and high-throughput strategies that provide low-resolution structural information of non-covalent natural product-protein complexes. In this review, we provide an overview on the applications of mass spectrometry-based techniques in the identification and characterization of natural product-protein interactions, and we describe how these applications might revolutionize natural product-based drug discovery.
Collapse
Affiliation(s)
- Ka-Wing Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
27
|
Feichtiger H, Wieland E, Armstrong VW, Shipkova M. The acyl glucuronide metabolite of mycophenolic acid induces tubulin polymerization in vitro. Clin Biochem 2009; 43:208-13. [PMID: 19744471 DOI: 10.1016/j.clinbiochem.2009.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 08/09/2009] [Accepted: 08/21/2009] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The acyl glucuronide (AcMPAG) of mycophenolic acid (MPA) forms covalent protein adducts and possesses antiproliferative properties independent of IMPDH inhibition. The underlying mechanism is unknown. Disorganized tubulin polymerization prevents cell cycle progression. We investigated whether AcMPAG interacts with tubulin polymerization. DESIGN AND METHODS AcMPAG (1.0-100 microM) was incubated with bovine tubulin in the presence of GTP. Polymerization was followed at 340 nm. The time until onset and the extent of polymerization were determined. MPA (100 microM), phenolic glucuronide MPAG (100 microM), and paclitaxel (10 microM) served as controls. RESULTS MPAG was without effect. The AcMPAG effect on tubulin polymerization was dose dependent and significantly stronger (about 2.5-fold) than that of MPA (n=4; p<0.05), but weaker than paclitaxel. CONCLUSIONS MPA and AcMPAG can induce tubulin polymerization in the presence of GTP with AcMPAG being significantly stronger. This property of AcMPAG may contribute to its IMPDH independent antiproliferative effect.
Collapse
Affiliation(s)
- Horst Feichtiger
- Zentralinstitut für Klinische Chemie und Laboratoriumsmedizin, Klinikum Stuttgart, Stuttgart, Germany
| | | | | | | |
Collapse
|
28
|
Convenient syntheses of the in vivo carbohydrate metabolites of mycophenolic acid: reactivity of the acyl glucuronide. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Fang J, Koen YM, Hanzlik RP. Bioinformatic analysis of xenobiotic reactive metabolite target proteins and their interacting partners. BMC CHEMICAL BIOLOGY 2009; 9:5. [PMID: 19523227 PMCID: PMC2711050 DOI: 10.1186/1472-6769-9-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/12/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND Protein covalent binding by reactive metabolites of drugs, chemicals and natural products can lead to acute cytotoxicity. Recent rapid progress in reactive metabolite target protein identification has shown that adduction is surprisingly selective and inspired the hope that analysis of target proteins might reveal protein factors that differentiate target- vs. non-target proteins and illuminate mechanisms connecting covalent binding to cytotoxicity. RESULTS Sorting 171 known reactive metabolite target proteins revealed a number of GO categories and KEGG pathways to be significantly enriched in targets, but in most cases the classes were too large, and the "percent coverage" too small, to allow meaningful conclusions about mechanisms of toxicity. However, a similar analysis of the directlyinteracting partners of 28 common targets of multiple reactive metabolites revealed highly significant enrichments in terms likely to be highly relevant to cytotoxicity (e.g., MAP kinase pathways, apoptosis, response to unfolded protein). Machine learning was used to rank the contribution of 211 computed protein features to determining protein susceptibility to adduction. Protein lysine (but not cysteine) content and protein instability index (i.e., rate of turnover in vivo) were among the features most important to determining susceptibility. CONCLUSION As yet there is no good explanation for why some low-abundance proteins become heavily adducted while some abundant proteins become only lightly adducted in vivo. Analyzing the directly interacting partners of target proteins appears to yield greater insight into mechanisms of toxicity than analyzing target proteins per se. The insights provided can readily be formulated as hypotheses to test in future experimental studies.
Collapse
Affiliation(s)
- Jianwen Fang
- Applied Bioinformatics Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Yakov M Koen
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Robert P Hanzlik
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
30
|
Differential proteomic analysis of lymphocytes treated with mycophenolic acid reveals caspase 3-induced cleavage of rho GDP dissociation inhibitor 2. Ther Drug Monit 2009; 31:211-7. [PMID: 19214148 DOI: 10.1097/ftd.0b013e318196fb73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The antiproliferative immunosuppressive drug mycophenolic acid (MPA) is an uncompetitive inhibitor of inosine monophosphate dehydrogenase, a key enzyme in de novo synthesis of purine nucleotides. The latter are not only required for synthesis of DNA and RNA but also are essential for the regulation of numerous cellular signaling pathways modulated by guanine nucleotide binding proteins (G proteins). We undertook an analysis of the influence of MPA on protein expression in a T-lymphoblast cell line (CCRF-CEM), which displays concentration-dependent inhibition of proliferation by MPA to obtain insight into the influence of MPA on the cellular proteome. Cells were stimulated with phorbol myristate acetate/ionomycin and incubated in the presence or absence of MPA. Two-dimensional electrophoresis and densitometric imaging revealed 11 differentially expressed protein spots (P < 0.05) on MPA treatment, 6 with increased and 5 with decreased abundance. After in-gel tryptic digestion, proteins were identified by quadrupole time-of-flight mass spectrometry. Proteins displaying increased abundance after MPA treatment included splicing factor arginine/serine-rich 2, prostaglandin E synthase 3, peptidyl-prolyl cis-trans isomerase A, and deoxyuridine 5'-triphosphate nucleotidohydrolase. Endoplasmin, proliferating cell nuclear antigen, acidic leucine-rich nuclear phosphoprotein 32 family member A, and cofilin 1 showed decreased abundance after MPA treatment. Three separate spots (1 decreased and 2 increased abundance) were identified as Rho guanosine diphosphate dissociation inhibitor 2 (Rho GDI 2) proteins. Western blotting with a monoclonal antibody directed against the Rho GDI 2 site cleaved by caspase 3 demonstrated 1 spot with increased abundance to be the caspase 3-cleaved product of Rho GDI 2 lacking the first 19 amino acids. Rho GDI 2 plays a central regulatory role in the activation of Rho guanosine triphosphatases that function as molecular switches in cell signaling pathways affecting cell cytoskeletal dynamics and motility. Our data suggest that MPA can modulate Rho GDI 2 levels in T lymphocytes, thereby potentially disrupting cell signaling pathways important for T-cell function.
Collapse
|
31
|
Labenski MT, Fisher AA, Lo HH, Monks TJ, Lau SS. Protein electrophile-binding motifs: lysine-rich proteins are preferential targets of quinones. Drug Metab Dispos 2009; 37:1211-8. [PMID: 19251821 DOI: 10.1124/dmd.108.026211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Quinones represent an important class of endogenous compounds such as neurotransmitters and coenzyme Q10, electrophilic xenobiotics, and environmental toxicants that have known reactivity based on their ability to redox cycle and generate oxidative stress, as well as to alkylate target proteins. It is likely that topological, chemical, and physical features combine to determine which proteins become targets for chemical adduction. Chemical-induced post-translational modification of certain critical proteins causes a change in structure/function that contributes to the toxicological response to chemical exposure. In this study, we have identified a number of proteins that are modified by quinone-thioethers after administration of 2-(glutathion-S-yl)HQ. Parallel one-dimensional gel electrophoresis was performed, and the Coomassie-stained gel was aligned with the corresponding Western blot, which was probed for adductions. Immunopositive bands were then subjected to trypsin digestion and analyzed via liquid chromatography/tandem mass spectrometry. The proteins that were subsequently identified contained a higher than average (9.7 versus 5.5%) lysine content and numerous stretches of lysine run-ons, which is a presumed electrophile binding motif. Approximately 50% of these proteins have also been identified as targets for electrophilic adduction by a diverse group of chemicals by other investigators, implying overlapping electrophile adductomes. By identifying a motif targeted by electrophiles it becomes possible to make predictions of proteins that may be targeted for adduction and possible sites on these proteins that are adducted. An understanding of proteins targeted for adduction is essential to unraveling the toxicity produced by these electrophiles.
Collapse
Affiliation(s)
- Matthew T Labenski
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
32
|
Regulation of IL2 and NUCB1 in Mononuclear Cells Treated With Acyl Glucuronide of Mycophenolic Acid Reveals Effects Independent of Inosine Monophosphate Dehydrogenase Inhibition. Ther Drug Monit 2009; 31:31-41. [DOI: 10.1097/ftd.0b013e318192693e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Baba A, Yoshioka T. Structure−Activity Relationships for Degradation Reaction of 1-β-O-Acyl Glucuronides: Kinetic Description and Prediction of Intrinsic Electrophilic Reactivity under Physiological Conditions. Chem Res Toxicol 2008; 22:158-72. [DOI: 10.1021/tx800292m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Akiko Baba
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, 047-0264, Hokkaido, Japan
| | - Tadao Yoshioka
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, 047-0264, Hokkaido, Japan
| |
Collapse
|
34
|
Hanzlik RP, Fang J, Koen YM. Filling and mining the reactive metabolite target protein database. Chem Biol Interact 2008; 179:38-44. [PMID: 18823962 DOI: 10.1016/j.cbi.2008.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 12/13/2022]
Abstract
The post-translational modification of proteins is a well-known endogenous mechanism for regulating protein function and activity. Cellular proteins are also susceptible to post-translational modification by xenobiotic agents that possess, or whose metabolites possess, significant electrophilic character. Such non-physiological modifications to endogenous proteins are sometimes benign, but in other cases they are strongly associated with, and are presumed to cause, lethal cytotoxic consequences via necrosis and/or apoptosis. The Reactive Metabolite Target Protein Database (TPDB) is a searchable, freely web-accessible (http://tpdb.medchem.ku.edu:8080/protein_database/) resource that attempts to provide a comprehensive, up-to-date listing of known reactive metabolite target proteins. In this report we characterize the TPDB by reviewing briefly how the information it contains came to be known. We also compare its information to that provided by other types of "-omics" studies relevant to toxicology, and we illustrate how bioinformatic analysis of target proteins may help to elucidate mechanisms of cytotoxic responses to reactive metabolites.
Collapse
Affiliation(s)
- Robert P Hanzlik
- Department of Medicinal Chemistry and Bioinformatics Core Facility, University of Kansas, Lawrence, 66045-7582, USA.
| | | | | |
Collapse
|
35
|
Petrova DT, Asif AR, Armstrong VW, Dimova I, Toshev S, Yaramov N, Oellerich M, Toncheva D. Expression of chloride intracellular channel protein 1 (CLIC1) and tumor protein D52 (TPD52) as potential biomarkers for colorectal cancer. Clin Biochem 2008; 41:1224-36. [PMID: 18710659 DOI: 10.1016/j.clinbiochem.2008.07.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Unequivocal biomarkers are needed to predict susceptibility and progression of colorectal cancer. DESIGN AND METHODS Paired samples of tumor and normal tissue from six patients with colorectal cancer of different localization, pTNM stage and grade were employed in the present study. MS analysis was used to identify differentially regulated proteins after 2-DE separation and densitometric analysis. RESULTS Densitometric analysis revealed differential abundance of 55 spots in tumor as compared to normal tissues. Thirty nine out of 55 spots were unambiguously identified by MS representing 32 different proteins. CLIC1, TPD52 and FABPL were consistently overexpressed (>3-fold, P<0.05) in all tumor tissue samples, while TPM1, TPM2, TPM3, TAGL and MLRN were consistently down-regulated (>3-fold, P<0.05) compared to normal tissue. CONCLUSIONS CLIC1 and TPD52 were significantly (P<0.05) up-regulated in all cases of colorectal cancer investigated, irrespective of localization, pTNM stage and grade of colon cancer highlighting their potential to serve as new biomarkers.
Collapse
|
36
|
Ikehata K, Duzhak TG, Galeva NA, Ji T, Koen YM, Hanzlik RP. Protein targets of reactive metabolites of thiobenzamide in rat liver in vivo. Chem Res Toxicol 2008; 21:1432-42. [PMID: 18547066 PMCID: PMC2493440 DOI: 10.1021/tx800093k] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiobenzamide (TB) is a potent hepatotoxin in rats, causing dose-dependent hyperbilirubinemia, steatosis, and centrolobular necrosis. These effects arise subsequent to and appear to result from the covalent binding of the iminosulfinic acid metabolite of TB to cellular proteins and phosphatidylethanolamine lipids [ Ji et al. ( 2007) Chem. Res. Toxicol. 20, 701- 708 ]. To better understand the relationship between the protein covalent binding and the toxicity of TB, we investigated the chemistry of the adduction process and the identity of the target proteins. Cytosolic and microsomal proteins isolated from the livers of rats treated with a hepatotoxic dose of [ carboxyl- (14)C]TB contained high levels of covalently bound radioactivity (25.6 and 36.8 nmol equiv/mg protein, respectively). These proteins were fractionated by two-dimensional gel electrophoresis, and radioactive spots (154 cytosolic and 118 microsomal) were located by phosphorimaging. Corresponding spots from animals treated with a 1:1 mixture of TB and TB- d 5 were similarly separated, the spots were excised, and the proteins were digested in gel with trypsin. Peptide mass mapping identified 42 cytosolic and 24 microsomal proteins, many of which appeared in more than one spot on the gel; however, only a few spots contained more than one identifiable protein. Eighty-six peptides carrying either a benzoyl or a benzimidoyl adduct on a lysine side chain were clearly recognized by their d 0/ d 5 isotopic signature (sometimes both in the same digest). Because model studies showed that benzoyl adducts do not arise by hydrolysis of benzimidoyl adducts, it was proposed that TB undergoes S-oxidation twice to form iminosulfinic acid 4 [PhC(NH)SO 2H], which either benzimidoylates a lysine side chain or undergoes hydrolysis to 9 [PhC(O)SO 2H] and then benzoylates a lysine side chain. The proteins modified by TB metabolites serve a range of biological functions and form a set that overlaps partly with the sets of proteins known to be modified by several other metabolically activated hepatotoxins. The relationship of the adduction of these target proteins to the cytotoxicity of reactive metabolites is discussed in terms of three currently popular mechanisms of toxicity: inhibition of enzymes important to the maintenance of cellular energy and homeostasis, the unfolded protein response, and interference with kinase-based signaling pathways that affect cell survival.
Collapse
Affiliation(s)
- Keisuke Ikehata
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| | - Tatyana G. Duzhak
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| | | | - Tao Ji
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| | - Yakov M. Koen
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| | - Robert P. Hanzlik
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| |
Collapse
|
37
|
Liebler DC. Protein damage by reactive electrophiles: targets and consequences. Chem Res Toxicol 2007; 21:117-28. [PMID: 18052106 DOI: 10.1021/tx700235t] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has been 60 years since the Millers first described the covalent binding of carcinogens to tissue proteins. Protein covalent binding was gradually overshadowed by the emergence of DNA adduct formation as the dominant paradigm in chemical carcinogenesis but re-emerged in the early 1970s as a critical mechanism of drug and chemical toxicity. Technology limitations hampered the characterization of protein adducts until the emergence of mass spectrometry-based proteomics in the late 1990s. The time since then has seen rapid progress in the characterization of the protein targets of electrophiles and the consequences of protein damage. Recent integration of novel affinity chemistries for electrophile probes, shotgun proteomics methods, and systems modeling tools has led to the identification of hundreds of protein targets of electrophiles in mammalian systems. The technology now exists to map the targets of damage to critical components of signaling pathways and metabolic networks and to understand mechanisms of damage at a systems level. The implementation of sensitive, specific analyses for protein adducts from both xenobiotic-derived and endogenous electrophiles offers a means to link protein damage to clinically relevant health effects of both chemical exposures and disease processes.
Collapse
Affiliation(s)
- Daniel C Liebler
- Department of Biochemistry, Vanderbilt University School of Medicine,, Nashville, Tennessee 37232, USA.
| |
Collapse
|
38
|
Bowkett ER, Harding JR, Maggs JL, Park BK, Perrie JA, Stachulski AV. Efficient synthesis of 1β-O-acyl glucuronides via selective acylation of allyl or benzyl d-glucuronate. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.05.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|